/* * Copyright (C) 2010 Kent Overstreet * Copyright (C) 2014 Datera Inc. */ #include "bcache.h" #include "alloc.h" #include "bkey_methods.h" #include "btree_locking.h" #include "btree_update.h" #include "btree_io.h" #include "btree_gc.h" #include "buckets.h" #include "clock.h" #include "debug.h" #include "error.h" #include "extents.h" #include "journal.h" #include "keylist.h" #include "move.h" #include "super-io.h" #include "writeback.h" #include #include #include #include #include #include struct range_checks { struct range_level { struct bpos min; struct bpos max; } l[BTREE_MAX_DEPTH]; unsigned depth; }; static void btree_node_range_checks_init(struct range_checks *r, unsigned depth) { unsigned i; for (i = 0; i < BTREE_MAX_DEPTH; i++) r->l[i].min = r->l[i].max = POS_MIN; r->depth = depth; } static void btree_node_range_checks(struct cache_set *c, struct btree *b, struct range_checks *r) { struct range_level *l = &r->l[b->level]; struct bpos expected_min = bkey_cmp(l->min, l->max) ? btree_type_successor(b->btree_id, l->max) : l->max; bch_fs_inconsistent_on(bkey_cmp(b->data->min_key, expected_min), c, "btree node has incorrect min key: %llu:%llu != %llu:%llu", b->data->min_key.inode, b->data->min_key.offset, expected_min.inode, expected_min.offset); l->max = b->data->max_key; if (b->level > r->depth) { l = &r->l[b->level - 1]; bch_fs_inconsistent_on(bkey_cmp(b->data->min_key, l->min), c, "btree node min doesn't match min of child nodes: %llu:%llu != %llu:%llu", b->data->min_key.inode, b->data->min_key.offset, l->min.inode, l->min.offset); bch_fs_inconsistent_on(bkey_cmp(b->data->max_key, l->max), c, "btree node max doesn't match max of child nodes: %llu:%llu != %llu:%llu", b->data->max_key.inode, b->data->max_key.offset, l->max.inode, l->max.offset); if (bkey_cmp(b->data->max_key, POS_MAX)) l->min = l->max = btree_type_successor(b->btree_id, b->data->max_key); } } u8 bch_btree_key_recalc_oldest_gen(struct cache_set *c, struct bkey_s_c k) { const struct bch_extent_ptr *ptr; struct cache *ca; u8 max_stale = 0; if (bkey_extent_is_data(k.k)) { struct bkey_s_c_extent e = bkey_s_c_to_extent(k); rcu_read_lock(); extent_for_each_online_device(c, e, ptr, ca) { size_t b = PTR_BUCKET_NR(ca, ptr); if (__gen_after(ca->oldest_gens[b], ptr->gen)) ca->oldest_gens[b] = ptr->gen; max_stale = max(max_stale, ptr_stale(ca, ptr)); } rcu_read_unlock(); } return max_stale; } /* * For runtime mark and sweep: */ static u8 bch_btree_mark_key(struct cache_set *c, enum bkey_type type, struct bkey_s_c k) { switch (type) { case BKEY_TYPE_BTREE: bch_gc_mark_key(c, k, c->sb.btree_node_size, true); return 0; case BKEY_TYPE_EXTENTS: bch_gc_mark_key(c, k, k.k->size, false); return bch_btree_key_recalc_oldest_gen(c, k); default: BUG(); } } u8 bch_btree_mark_key_initial(struct cache_set *c, enum bkey_type type, struct bkey_s_c k) { atomic64_set(&c->key_version, max_t(u64, k.k->version.lo, atomic64_read(&c->key_version))); return bch_btree_mark_key(c, type, k); } static bool btree_gc_mark_node(struct cache_set *c, struct btree *b) { if (btree_node_has_ptrs(b)) { struct btree_node_iter iter; struct bkey unpacked; struct bkey_s_c k; u8 stale = 0; for_each_btree_node_key_unpack(b, k, &iter, btree_node_is_extents(b), &unpacked) { bkey_debugcheck(c, b, k); stale = max(stale, bch_btree_mark_key(c, btree_node_type(b), k)); } if (btree_gc_rewrite_disabled(c)) return false; if (stale > 10) return true; } if (btree_gc_always_rewrite(c)) return true; return false; } static inline void __gc_pos_set(struct cache_set *c, struct gc_pos new_pos) { write_seqcount_begin(&c->gc_pos_lock); c->gc_pos = new_pos; write_seqcount_end(&c->gc_pos_lock); } static inline void gc_pos_set(struct cache_set *c, struct gc_pos new_pos) { BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0); __gc_pos_set(c, new_pos); } static int bch_gc_btree(struct cache_set *c, enum btree_id btree_id) { struct btree_iter iter; struct btree *b; bool should_rewrite; struct range_checks r; unsigned depth = btree_id == BTREE_ID_EXTENTS ? 0 : 1; int ret; /* * if expensive_debug_checks is on, run range_checks on all leaf nodes: */ if (expensive_debug_checks(c)) depth = 0; btree_node_range_checks_init(&r, depth); for_each_btree_node(&iter, c, btree_id, POS_MIN, depth, b) { btree_node_range_checks(c, b, &r); bch_verify_btree_nr_keys(b); should_rewrite = btree_gc_mark_node(c, b); gc_pos_set(c, gc_pos_btree_node(b)); if (should_rewrite) bch_btree_node_rewrite(&iter, b, NULL); bch_btree_iter_cond_resched(&iter); } ret = bch_btree_iter_unlock(&iter); if (ret) return ret; mutex_lock(&c->btree_root_lock); b = c->btree_roots[btree_id].b; bch_btree_mark_key(c, BKEY_TYPE_BTREE, bkey_i_to_s_c(&b->key)); gc_pos_set(c, gc_pos_btree_root(b->btree_id)); mutex_unlock(&c->btree_root_lock); return 0; } static void bch_mark_allocator_buckets(struct cache_set *c) { struct cache *ca; struct open_bucket *ob; size_t i, j, iter; unsigned ci; for_each_cache(ca, c, ci) { spin_lock(&ca->freelist_lock); fifo_for_each_entry(i, &ca->free_inc, iter) bch_mark_alloc_bucket(ca, &ca->buckets[i], true); for (j = 0; j < RESERVE_NR; j++) fifo_for_each_entry(i, &ca->free[j], iter) bch_mark_alloc_bucket(ca, &ca->buckets[i], true); spin_unlock(&ca->freelist_lock); } for (ob = c->open_buckets; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { const struct bch_extent_ptr *ptr; mutex_lock(&ob->lock); rcu_read_lock(); open_bucket_for_each_online_device(c, ob, ptr, ca) bch_mark_alloc_bucket(ca, PTR_BUCKET(ca, ptr), true); rcu_read_unlock(); mutex_unlock(&ob->lock); } } static void mark_metadata_sectors(struct cache *ca, u64 start, u64 end, enum bucket_data_type type) { u64 b = start >> ca->bucket_bits; do { bch_mark_metadata_bucket(ca, ca->buckets + b, type, true); b++; } while (b < end >> ca->bucket_bits); } /* * Mark non btree metadata - prios, journal */ static void bch_mark_dev_metadata(struct cache_set *c, struct cache *ca) { struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; unsigned i; u64 b; /* Mark superblocks: */ for (i = 0; i < layout->nr_superblocks; i++) { if (layout->sb_offset[i] == BCH_SB_SECTOR) mark_metadata_sectors(ca, 0, BCH_SB_SECTOR, BUCKET_SB); mark_metadata_sectors(ca, layout->sb_offset[i], layout->sb_offset[i] + (1 << layout->sb_max_size_bits), BUCKET_SB); } spin_lock(&c->journal.lock); for (i = 0; i < ca->journal.nr; i++) { b = ca->journal.buckets[i]; bch_mark_metadata_bucket(ca, ca->buckets + b, BUCKET_JOURNAL, true); } spin_unlock(&c->journal.lock); spin_lock(&ca->prio_buckets_lock); for (i = 0; i < prio_buckets(ca) * 2; i++) { b = ca->prio_buckets[i]; if (b) bch_mark_metadata_bucket(ca, ca->buckets + b, BUCKET_PRIOS, true); } spin_unlock(&ca->prio_buckets_lock); } static void bch_mark_metadata(struct cache_set *c) { struct cache *ca; unsigned i; mutex_lock(&c->sb_lock); for_each_cache(ca, c, i) bch_mark_dev_metadata(c, ca); mutex_unlock(&c->sb_lock); } /* Also see bch_pending_btree_node_free_insert_done() */ static void bch_mark_pending_btree_node_frees(struct cache_set *c) { struct bucket_stats_cache_set stats = { 0 }; struct btree_interior_update *as; struct pending_btree_node_free *d; mutex_lock(&c->btree_interior_update_lock); gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE)); for_each_pending_btree_node_free(c, as, d) if (d->index_update_done) __bch_gc_mark_key(c, bkey_i_to_s_c(&d->key), c->sb.btree_node_size, true, &stats); /* * Don't apply stats - pending deletes aren't tracked in * bch_alloc_stats: */ mutex_unlock(&c->btree_interior_update_lock); } /** * bch_gc - recompute bucket marks and oldest_gen, rewrite btree nodes */ void bch_gc(struct cache_set *c) { struct cache *ca; struct bucket *g; struct bucket_mark new; u64 start_time = local_clock(); unsigned i; int cpu; /* * Walk _all_ references to buckets, and recompute them: * * Order matters here: * - Concurrent GC relies on the fact that we have a total ordering for * everything that GC walks - see gc_will_visit_node(), * gc_will_visit_root() * * - also, references move around in the course of index updates and * various other crap: everything needs to agree on the ordering * references are allowed to move around in - e.g., we're allowed to * start with a reference owned by an open_bucket (the allocator) and * move it to the btree, but not the reverse. * * This is necessary to ensure that gc doesn't miss references that * move around - if references move backwards in the ordering GC * uses, GC could skip past them */ if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) return; trace_bcache_gc_start(c); /* * Do this before taking gc_lock - bch_disk_reservation_get() blocks on * gc_lock if sectors_available goes to 0: */ bch_recalc_sectors_available(c); down_write(&c->gc_lock); lg_global_lock(&c->bucket_stats_lock); /* * Indicates to buckets code that gc is now in progress - done under * bucket_stats_lock to avoid racing with bch_mark_key(): */ __gc_pos_set(c, GC_POS_MIN); /* Save a copy of the existing bucket stats while we recompute them: */ for_each_cache(ca, c, i) { ca->bucket_stats_cached = __bch_bucket_stats_read_cache(ca); for_each_possible_cpu(cpu) { struct bucket_stats_cache *p = per_cpu_ptr(ca->bucket_stats_percpu, cpu); memset(p, 0, sizeof(*p)); } } c->bucket_stats_cached = __bch_bucket_stats_read_cache_set(c); for_each_possible_cpu(cpu) { struct bucket_stats_cache_set *p = per_cpu_ptr(c->bucket_stats_percpu, cpu); memset(p->s, 0, sizeof(p->s)); p->persistent_reserved = 0; } lg_global_unlock(&c->bucket_stats_lock); /* Clear bucket marks: */ for_each_cache(ca, c, i) for_each_bucket(g, ca) { bucket_cmpxchg(g, new, ({ new.owned_by_allocator = 0; new.data_type = 0; new.cached_sectors = 0; new.dirty_sectors = 0; })); ca->oldest_gens[g - ca->buckets] = new.gen; } /* Walk allocator's references: */ bch_mark_allocator_buckets(c); /* Walk btree: */ while (c->gc_pos.phase < (int) BTREE_ID_NR) { int ret = c->btree_roots[c->gc_pos.phase].b ? bch_gc_btree(c, (int) c->gc_pos.phase) : 0; if (ret) { bch_err(c, "btree gc failed: %d", ret); set_bit(BCH_FS_GC_FAILURE, &c->flags); up_write(&c->gc_lock); return; } gc_pos_set(c, gc_phase(c->gc_pos.phase + 1)); } bch_mark_metadata(c); bch_mark_pending_btree_node_frees(c); bch_writeback_recalc_oldest_gens(c); for_each_cache(ca, c, i) atomic_long_set(&ca->saturated_count, 0); /* Indicates that gc is no longer in progress: */ gc_pos_set(c, gc_phase(GC_PHASE_DONE)); up_write(&c->gc_lock); trace_bcache_gc_end(c); bch_time_stats_update(&c->btree_gc_time, start_time); /* * Wake up allocator in case it was waiting for buckets * because of not being able to inc gens */ for_each_cache(ca, c, i) bch_wake_allocator(ca); } /* Btree coalescing */ static void recalc_packed_keys(struct btree *b) { struct bkey_packed *k; memset(&b->nr, 0, sizeof(b->nr)); BUG_ON(b->nsets != 1); for (k = btree_bkey_first(b, b->set); k != btree_bkey_last(b, b->set); k = bkey_next(k)) btree_keys_account_key_add(&b->nr, 0, k); } static void bch_coalesce_nodes(struct btree *old_nodes[GC_MERGE_NODES], struct btree_iter *iter) { struct btree *parent = iter->nodes[old_nodes[0]->level + 1]; struct cache_set *c = iter->c; unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0; unsigned blocks = btree_blocks(c) * 2 / 3; struct btree *new_nodes[GC_MERGE_NODES]; struct btree_interior_update *as; struct btree_reserve *res; struct keylist keylist; struct bkey_format_state format_state; struct bkey_format new_format; memset(new_nodes, 0, sizeof(new_nodes)); bch_keylist_init(&keylist, NULL, 0); /* Count keys that are not deleted */ for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++) u64s += old_nodes[i]->nr.live_u64s; nr_old_nodes = nr_new_nodes = i; /* Check if all keys in @old_nodes could fit in one fewer node */ if (nr_old_nodes <= 1 || __vstruct_blocks(struct btree_node, c->block_bits, DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks) return; res = bch_btree_reserve_get(c, parent, nr_old_nodes, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE, NULL); if (IS_ERR(res)) { trace_bcache_btree_gc_coalesce_fail(c, BTREE_GC_COALESCE_FAIL_RESERVE_GET); return; } if (bch_keylist_realloc(&keylist, NULL, 0, (BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) { trace_bcache_btree_gc_coalesce_fail(c, BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC); goto out; } /* Find a format that all keys in @old_nodes can pack into */ bch_bkey_format_init(&format_state); for (i = 0; i < nr_old_nodes; i++) __bch_btree_calc_format(&format_state, old_nodes[i]); new_format = bch_bkey_format_done(&format_state); /* Check if repacking would make any nodes too big to fit */ for (i = 0; i < nr_old_nodes; i++) if (!bch_btree_node_format_fits(c, old_nodes[i], &new_format)) { trace_bcache_btree_gc_coalesce_fail(c, BTREE_GC_COALESCE_FAIL_FORMAT_FITS); goto out; } trace_bcache_btree_gc_coalesce(c, parent, nr_old_nodes); as = bch_btree_interior_update_alloc(c); for (i = 0; i < nr_old_nodes; i++) bch_btree_interior_update_will_free_node(c, as, old_nodes[i]); /* Repack everything with @new_format and sort down to one bset */ for (i = 0; i < nr_old_nodes; i++) new_nodes[i] = __btree_node_alloc_replacement(c, old_nodes[i], new_format, res); /* * Conceptually we concatenate the nodes together and slice them * up at different boundaries. */ for (i = nr_new_nodes - 1; i > 0; --i) { struct btree *n1 = new_nodes[i]; struct btree *n2 = new_nodes[i - 1]; struct bset *s1 = btree_bset_first(n1); struct bset *s2 = btree_bset_first(n2); struct bkey_packed *k, *last = NULL; /* Calculate how many keys from @n2 we could fit inside @n1 */ u64s = 0; for (k = s2->start; k < vstruct_last(s2) && vstruct_blocks_plus(n1->data, c->block_bits, u64s + k->u64s) <= blocks; k = bkey_next(k)) { last = k; u64s += k->u64s; } if (u64s == le16_to_cpu(s2->u64s)) { /* n2 fits entirely in n1 */ n1->key.k.p = n1->data->max_key = n2->data->max_key; memcpy_u64s(vstruct_last(s1), s2->start, le16_to_cpu(s2->u64s)); le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s)); set_btree_bset_end(n1, n1->set); six_unlock_write(&n2->lock); bch_btree_node_free_never_inserted(c, n2); six_unlock_intent(&n2->lock); memmove(new_nodes + i - 1, new_nodes + i, sizeof(new_nodes[0]) * (nr_new_nodes - i)); new_nodes[--nr_new_nodes] = NULL; } else if (u64s) { /* move part of n2 into n1 */ n1->key.k.p = n1->data->max_key = bkey_unpack_pos(n1, last); n2->data->min_key = btree_type_successor(iter->btree_id, n1->data->max_key); memcpy_u64s(vstruct_last(s1), s2->start, u64s); le16_add_cpu(&s1->u64s, u64s); memmove(s2->start, vstruct_idx(s2, u64s), (le16_to_cpu(s2->u64s) - u64s) * sizeof(u64)); s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s); set_btree_bset_end(n1, n1->set); set_btree_bset_end(n2, n2->set); } } for (i = 0; i < nr_new_nodes; i++) { struct btree *n = new_nodes[i]; recalc_packed_keys(n); btree_node_reset_sib_u64s(n); bch_btree_build_aux_trees(n); six_unlock_write(&n->lock); bch_btree_node_write(c, n, &as->cl, SIX_LOCK_intent, -1); } /* * The keys for the old nodes get deleted. We don't want to insert keys * that compare equal to the keys for the new nodes we'll also be * inserting - we can't because keys on a keylist must be strictly * greater than the previous keys, and we also don't need to since the * key for the new node will serve the same purpose (overwriting the key * for the old node). */ for (i = 0; i < nr_old_nodes; i++) { struct bkey_i delete; unsigned j; for (j = 0; j < nr_new_nodes; j++) if (!bkey_cmp(old_nodes[i]->key.k.p, new_nodes[j]->key.k.p)) goto next; bkey_init(&delete.k); delete.k.p = old_nodes[i]->key.k.p; bch_keylist_add_in_order(&keylist, &delete); next: i = i; } /* * Keys for the new nodes get inserted: bch_btree_insert_keys() only * does the lookup once and thus expects the keys to be in sorted order * so we have to make sure the new keys are correctly ordered with * respect to the deleted keys added in the previous loop */ for (i = 0; i < nr_new_nodes; i++) bch_keylist_add_in_order(&keylist, &new_nodes[i]->key); /* Insert the newly coalesced nodes */ bch_btree_insert_node(parent, iter, &keylist, res, as); BUG_ON(!bch_keylist_empty(&keylist)); BUG_ON(iter->nodes[old_nodes[0]->level] != old_nodes[0]); BUG_ON(!bch_btree_iter_node_replace(iter, new_nodes[0])); for (i = 0; i < nr_new_nodes; i++) btree_open_bucket_put(c, new_nodes[i]); /* Free the old nodes and update our sliding window */ for (i = 0; i < nr_old_nodes; i++) { bch_btree_node_free_inmem(iter, old_nodes[i]); six_unlock_intent(&old_nodes[i]->lock); /* * the index update might have triggered a split, in which case * the nodes we coalesced - the new nodes we just created - * might not be sibling nodes anymore - don't add them to the * sliding window (except the first): */ if (!i) { old_nodes[i] = new_nodes[i]; } else { old_nodes[i] = NULL; if (new_nodes[i]) six_unlock_intent(&new_nodes[i]->lock); } } out: bch_keylist_free(&keylist, NULL); bch_btree_reserve_put(c, res); } static int bch_coalesce_btree(struct cache_set *c, enum btree_id btree_id) { struct btree_iter iter; struct btree *b; unsigned i; /* Sliding window of adjacent btree nodes */ struct btree *merge[GC_MERGE_NODES]; u32 lock_seq[GC_MERGE_NODES]; /* * XXX: We don't have a good way of positively matching on sibling nodes * that have the same parent - this code works by handling the cases * where they might not have the same parent, and is thus fragile. Ugh. * * Perhaps redo this to use multiple linked iterators? */ memset(merge, 0, sizeof(merge)); __for_each_btree_node(&iter, c, btree_id, POS_MIN, 0, b, U8_MAX) { memmove(merge + 1, merge, sizeof(merge) - sizeof(merge[0])); memmove(lock_seq + 1, lock_seq, sizeof(lock_seq) - sizeof(lock_seq[0])); merge[0] = b; for (i = 1; i < GC_MERGE_NODES; i++) { if (!merge[i] || !six_relock_intent(&merge[i]->lock, lock_seq[i])) break; if (merge[i]->level != merge[0]->level) { six_unlock_intent(&merge[i]->lock); break; } } memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0])); bch_coalesce_nodes(merge, &iter); for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) { lock_seq[i] = merge[i]->lock.state.seq; six_unlock_intent(&merge[i]->lock); } lock_seq[0] = merge[0]->lock.state.seq; if (test_bit(BCH_FS_GC_STOPPING, &c->flags)) { bch_btree_iter_unlock(&iter); return -ESHUTDOWN; } bch_btree_iter_cond_resched(&iter); /* * If the parent node wasn't relocked, it might have been split * and the nodes in our sliding window might not have the same * parent anymore - blow away the sliding window: */ if (iter.nodes[iter.level + 1] && !btree_node_intent_locked(&iter, iter.level + 1)) memset(merge + 1, 0, (GC_MERGE_NODES - 1) * sizeof(merge[0])); } return bch_btree_iter_unlock(&iter); } /** * bch_coalesce - coalesce adjacent nodes with low occupancy */ void bch_coalesce(struct cache_set *c) { u64 start_time; enum btree_id id; if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) return; down_read(&c->gc_lock); trace_bcache_gc_coalesce_start(c); start_time = local_clock(); for (id = 0; id < BTREE_ID_NR; id++) { int ret = c->btree_roots[id].b ? bch_coalesce_btree(c, id) : 0; if (ret) { if (ret != -ESHUTDOWN) bch_err(c, "btree coalescing failed: %d", ret); set_bit(BCH_FS_GC_FAILURE, &c->flags); return; } } bch_time_stats_update(&c->btree_coalesce_time, start_time); trace_bcache_gc_coalesce_end(c); up_read(&c->gc_lock); } static int bch_gc_thread(void *arg) { struct cache_set *c = arg; struct io_clock *clock = &c->io_clock[WRITE]; unsigned long last = atomic_long_read(&clock->now); unsigned last_kick = atomic_read(&c->kick_gc); set_freezable(); while (1) { unsigned long next = last + c->capacity / 16; while (atomic_long_read(&clock->now) < next) { set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); return 0; } if (atomic_read(&c->kick_gc) != last_kick) { __set_current_state(TASK_RUNNING); break; } bch_io_clock_schedule_timeout(clock, next); try_to_freeze(); } last = atomic_long_read(&clock->now); last_kick = atomic_read(&c->kick_gc); bch_gc(c); if (!btree_gc_coalesce_disabled(c)) bch_coalesce(c); debug_check_no_locks_held(); } return 0; } void bch_gc_thread_stop(struct cache_set *c) { set_bit(BCH_FS_GC_STOPPING, &c->flags); if (c->gc_thread) kthread_stop(c->gc_thread); c->gc_thread = NULL; clear_bit(BCH_FS_GC_STOPPING, &c->flags); } int bch_gc_thread_start(struct cache_set *c) { struct task_struct *p; BUG_ON(c->gc_thread); p = kthread_create(bch_gc_thread, c, "bcache_gc"); if (IS_ERR(p)) return PTR_ERR(p); c->gc_thread = p; wake_up_process(c->gc_thread); return 0; } /* Initial GC computes bucket marks during startup */ static void bch_initial_gc_btree(struct cache_set *c, enum btree_id id) { struct btree_iter iter; struct btree *b; struct range_checks r; btree_node_range_checks_init(&r, 0); if (!c->btree_roots[id].b) return; /* * We have to hit every btree node before starting journal replay, in * order for the journal seq blacklist machinery to work: */ for_each_btree_node(&iter, c, id, POS_MIN, 0, b) { btree_node_range_checks(c, b, &r); if (btree_node_has_ptrs(b)) { struct btree_node_iter node_iter; struct bkey unpacked; struct bkey_s_c k; for_each_btree_node_key_unpack(b, k, &node_iter, btree_node_is_extents(b), &unpacked) bch_btree_mark_key_initial(c, btree_node_type(b), k); } bch_btree_iter_cond_resched(&iter); } bch_btree_iter_unlock(&iter); bch_btree_mark_key(c, BKEY_TYPE_BTREE, bkey_i_to_s_c(&c->btree_roots[id].b->key)); } int bch_initial_gc(struct cache_set *c, struct list_head *journal) { enum btree_id id; bch_mark_metadata(c); for (id = 0; id < BTREE_ID_NR; id++) bch_initial_gc_btree(c, id); if (journal) bch_journal_mark(c, journal); /* * Skip past versions that might have possibly been used (as nonces), * but hadn't had their pointers written: */ if (c->sb.encryption_type) atomic64_add(1 << 16, &c->key_version); gc_pos_set(c, gc_phase(GC_PHASE_DONE)); set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags); return 0; }