#include "bcache.h" #include "btree_update.h" #include "buckets.h" #include "clock.h" #include "error.h" #include "fs.h" #include "fs-gc.h" #include "fs-io.h" #include "inode.h" #include "journal.h" #include "io.h" #include "keylist.h" #include #include #include #include #include #include #include #include #include #include struct bio_set *bch_writepage_bioset; struct bio_set *bch_dio_read_bioset; struct bio_set *bch_dio_write_bioset; /* pagecache_block must be held */ static int write_invalidate_inode_pages_range(struct address_space *mapping, loff_t start, loff_t end) { int ret; /* * XXX: the way this is currently implemented, we can spin if a process * is continually redirtying a specific page */ do { if (!mapping->nrpages && !mapping->nrexceptional) return 0; ret = filemap_write_and_wait_range(mapping, start, end); if (ret) break; if (!mapping->nrpages) return 0; ret = invalidate_inode_pages2_range(mapping, start >> PAGE_SHIFT, end >> PAGE_SHIFT); } while (ret == -EBUSY); return ret; } /* i_size updates: */ static int inode_set_size(struct bch_inode_info *ei, struct bch_inode *bi, void *p) { loff_t *new_i_size = p; unsigned i_flags = le32_to_cpu(bi->i_flags); lockdep_assert_held(&ei->update_lock); bi->i_size = cpu_to_le64(*new_i_size); if (atomic_long_read(&ei->i_size_dirty_count)) i_flags |= BCH_INODE_I_SIZE_DIRTY; else i_flags &= ~BCH_INODE_I_SIZE_DIRTY; bi->i_flags = cpu_to_le32(i_flags); return 0; } static int __must_check bch_write_inode_size(struct cache_set *c, struct bch_inode_info *ei, loff_t new_size) { return __bch_write_inode(c, ei, inode_set_size, &new_size); } static inline void i_size_dirty_put(struct bch_inode_info *ei) { atomic_long_dec_bug(&ei->i_size_dirty_count); } static inline void i_size_dirty_get(struct bch_inode_info *ei) { lockdep_assert_held(&ei->vfs_inode.i_rwsem); atomic_long_inc(&ei->i_size_dirty_count); } /* i_sectors accounting: */ static enum extent_insert_hook_ret i_sectors_hook_fn(struct extent_insert_hook *hook, struct bpos committed_pos, struct bpos next_pos, struct bkey_s_c k, const struct bkey_i *insert) { struct i_sectors_hook *h = container_of(hook, struct i_sectors_hook, hook); s64 sectors = next_pos.offset - committed_pos.offset; int sign = bkey_extent_is_allocation(&insert->k) - (k.k && bkey_extent_is_allocation(k.k)); EBUG_ON(!(h->ei->i_flags & BCH_INODE_I_SECTORS_DIRTY)); EBUG_ON(!atomic_long_read(&h->ei->i_sectors_dirty_count)); h->sectors += sectors * sign; return BTREE_HOOK_DO_INSERT; } static int inode_set_i_sectors_dirty(struct bch_inode_info *ei, struct bch_inode *bi, void *p) { BUG_ON(le32_to_cpu(bi->i_flags) & BCH_INODE_I_SECTORS_DIRTY); bi->i_flags = cpu_to_le32(le32_to_cpu(bi->i_flags)| BCH_INODE_I_SECTORS_DIRTY); return 0; } static int inode_clear_i_sectors_dirty(struct bch_inode_info *ei, struct bch_inode *bi, void *p) { BUG_ON(!(le32_to_cpu(bi->i_flags) & BCH_INODE_I_SECTORS_DIRTY)); bi->i_sectors = cpu_to_le64(atomic64_read(&ei->i_sectors)); bi->i_flags = cpu_to_le32(le32_to_cpu(bi->i_flags) & ~BCH_INODE_I_SECTORS_DIRTY); return 0; } static void i_sectors_dirty_put(struct bch_inode_info *ei, struct i_sectors_hook *h) { struct inode *inode = &ei->vfs_inode; if (h->sectors) { spin_lock(&inode->i_lock); inode->i_blocks += h->sectors; spin_unlock(&inode->i_lock); atomic64_add(h->sectors, &ei->i_sectors); EBUG_ON(atomic64_read(&ei->i_sectors) < 0); } EBUG_ON(atomic_long_read(&ei->i_sectors_dirty_count) <= 0); mutex_lock(&ei->update_lock); if (atomic_long_dec_and_test(&ei->i_sectors_dirty_count)) { struct cache_set *c = ei->vfs_inode.i_sb->s_fs_info; int ret = __bch_write_inode(c, ei, inode_clear_i_sectors_dirty, NULL); ret = ret; } mutex_unlock(&ei->update_lock); } static int __must_check i_sectors_dirty_get(struct bch_inode_info *ei, struct i_sectors_hook *h) { int ret = 0; h->hook.fn = i_sectors_hook_fn; h->sectors = 0; #ifdef CONFIG_BCACHE_DEBUG h->ei = ei; #endif if (atomic_long_inc_not_zero(&ei->i_sectors_dirty_count)) return 0; mutex_lock(&ei->update_lock); if (!(ei->i_flags & BCH_INODE_I_SECTORS_DIRTY)) { struct cache_set *c = ei->vfs_inode.i_sb->s_fs_info; ret = __bch_write_inode(c, ei, inode_set_i_sectors_dirty, NULL); } if (!ret) atomic_long_inc(&ei->i_sectors_dirty_count); mutex_unlock(&ei->update_lock); return ret; } struct bchfs_extent_trans_hook { struct bchfs_write_op *op; struct extent_insert_hook hook; struct bkey_i_inode new_inode; bool need_inode_update; }; static enum extent_insert_hook_ret bchfs_extent_update_hook(struct extent_insert_hook *hook, struct bpos committed_pos, struct bpos next_pos, struct bkey_s_c k, const struct bkey_i *insert) { struct bchfs_extent_trans_hook *h = container_of(hook, struct bchfs_extent_trans_hook, hook); struct bch_inode_info *ei = h->op->ei; struct inode *inode = &ei->vfs_inode; int sign = bkey_extent_is_allocation(&insert->k) - (k.k && bkey_extent_is_allocation(k.k)); s64 sectors = (s64) (next_pos.offset - committed_pos.offset) * sign; u64 offset = min(next_pos.offset << 9, h->op->new_i_size); BUG_ON((next_pos.offset << 9) > round_up(offset, PAGE_SIZE)); /* XXX: ei->i_size locking */ if (offset > ei->i_size) { BUG_ON(ei->i_flags & BCH_INODE_I_SIZE_DIRTY); if (!h->need_inode_update) { h->need_inode_update = true; return BTREE_HOOK_RESTART_TRANS; } h->new_inode.v.i_size = cpu_to_le64(offset); ei->i_size = offset; if (h->op->is_dio) i_size_write(inode, offset); } if (sectors) { if (!h->need_inode_update) { h->need_inode_update = true; return BTREE_HOOK_RESTART_TRANS; } le64_add_cpu(&h->new_inode.v.i_sectors, sectors); atomic64_add(sectors, &ei->i_sectors); h->op->sectors_added += sectors; if (h->op->is_dio) { spin_lock(&inode->i_lock); inode->i_blocks += sectors; spin_unlock(&inode->i_lock); } } return BTREE_HOOK_DO_INSERT; } static int bchfs_write_index_update(struct bch_write_op *wop) { struct bchfs_write_op *op = container_of(wop, struct bchfs_write_op, op); struct keylist *keys = &op->op.insert_keys; struct btree_iter extent_iter, inode_iter; struct bchfs_extent_trans_hook hook; struct bkey_i *k = bch_keylist_front(keys); int ret; BUG_ON(k->k.p.inode != op->ei->vfs_inode.i_ino); bch_btree_iter_init_intent(&extent_iter, wop->c, BTREE_ID_EXTENTS, bkey_start_pos(&bch_keylist_front(keys)->k)); bch_btree_iter_init_intent(&inode_iter, wop->c, BTREE_ID_INODES, POS(extent_iter.pos.inode, 0)); hook.op = op; hook.hook.fn = bchfs_extent_update_hook; hook.need_inode_update = false; do { ret = bch_btree_iter_traverse(&extent_iter); if (ret) goto err; /* XXX: ei->i_size locking */ k = bch_keylist_front(keys); if (min(k->k.p.offset << 9, op->new_i_size) > op->ei->i_size) hook.need_inode_update = true; if (hook.need_inode_update) { struct bkey_s_c inode; if (!btree_iter_linked(&inode_iter)) bch_btree_iter_link(&extent_iter, &inode_iter); inode = bch_btree_iter_peek_with_holes(&inode_iter); if ((ret = btree_iter_err(inode))) goto err; if (WARN_ONCE(inode.k->type != BCH_INODE_FS, "inode %llu not found when updating", extent_iter.pos.inode)) { ret = -ENOENT; break; } bkey_reassemble(&hook.new_inode.k_i, inode); ret = bch_btree_insert_at(wop->c, &wop->res, &hook.hook, op_journal_seq(wop), BTREE_INSERT_NOFAIL|BTREE_INSERT_ATOMIC, BTREE_INSERT_ENTRY(&extent_iter, k), BTREE_INSERT_ENTRY(&inode_iter, &hook.new_inode.k_i)); } else { ret = bch_btree_insert_at(wop->c, &wop->res, &hook.hook, op_journal_seq(wop), BTREE_INSERT_NOFAIL|BTREE_INSERT_ATOMIC, BTREE_INSERT_ENTRY(&extent_iter, k)); } err: if (ret == -EINTR) continue; if (ret) break; bch_keylist_pop_front(keys); } while (!bch_keylist_empty(keys)); bch_btree_iter_unlock(&extent_iter); bch_btree_iter_unlock(&inode_iter); return ret; } /* page state: */ /* stored in page->private: */ /* * bch_page_state has to (unfortunately) be manipulated with cmpxchg - we could * almost protected it with the page lock, except that bch_writepage_io_done has * to update the sector counts (and from interrupt/bottom half context). */ struct bch_page_state { union { struct { /* * BCH_PAGE_ALLOCATED: page is _fully_ written on disk, and not * compressed - which means to write this page we don't have to reserve * space (the new write will never take up more space on disk than what * it's overwriting) * * BCH_PAGE_UNALLOCATED: page is not fully written on disk, or is * compressed - before writing we have to reserve space with * bch_reserve_sectors() * * BCH_PAGE_RESERVED: page has space reserved on disk (reservation will * be consumed when the page is written). */ enum { BCH_PAGE_UNALLOCATED = 0, BCH_PAGE_ALLOCATED, } alloc_state:2; /* Owns PAGE_SECTORS sized reservation: */ unsigned reserved:1; /* * Number of sectors on disk - for i_blocks * Uncompressed size, not compressed size: */ u8 sectors; u8 dirty_sectors; }; /* for cmpxchg: */ unsigned long v; }; }; #define page_state_cmpxchg(_ptr, _new, _expr) \ ({ \ unsigned long _v = READ_ONCE((_ptr)->v); \ struct bch_page_state _old; \ \ do { \ _old.v = _new.v = _v; \ _expr; \ \ EBUG_ON(_new.sectors + _new.dirty_sectors > PAGE_SECTORS);\ } while (_old.v != _new.v && \ (_v = cmpxchg(&(_ptr)->v, _old.v, _new.v)) != _old.v); \ \ _old; \ }) static inline struct bch_page_state *page_state(struct page *page) { struct bch_page_state *s = (void *) &page->private; BUILD_BUG_ON(sizeof(*s) > sizeof(page->private)); if (!PagePrivate(page)) SetPagePrivate(page); return s; } static void bch_put_page_reservation(struct cache_set *c, struct page *page) { struct disk_reservation res = { .sectors = PAGE_SECTORS }; struct bch_page_state s; s = page_state_cmpxchg(page_state(page), s, { if (!s.reserved) return; s.reserved = 0; }); bch_disk_reservation_put(c, &res); } static int bch_get_page_reservation(struct cache_set *c, struct page *page, bool check_enospc) { struct bch_page_state *s = page_state(page), new; struct disk_reservation res; int ret = 0; BUG_ON(s->alloc_state == BCH_PAGE_ALLOCATED && s->sectors != PAGE_SECTORS); if (s->reserved || s->alloc_state == BCH_PAGE_ALLOCATED) return 0; ret = bch_disk_reservation_get(c, &res, PAGE_SECTORS, !check_enospc ? BCH_DISK_RESERVATION_NOFAIL : 0); if (ret) return ret; page_state_cmpxchg(s, new, { if (new.reserved) { bch_disk_reservation_put(c, &res); return 0; } new.reserved = 1; }); return 0; } static void bch_clear_page_bits(struct page *page) { struct inode *inode = page->mapping->host; struct cache_set *c = inode->i_sb->s_fs_info; struct disk_reservation res = { .sectors = PAGE_SECTORS }; struct bch_page_state s; if (!PagePrivate(page)) return; s = xchg(page_state(page), (struct bch_page_state) { .v = 0 }); ClearPagePrivate(page); if (s.dirty_sectors) { spin_lock(&inode->i_lock); inode->i_blocks -= s.dirty_sectors; spin_unlock(&inode->i_lock); } if (s.reserved) bch_disk_reservation_put(c, &res); } int bch_set_page_dirty(struct page *page) { struct bch_page_state old, new; old = page_state_cmpxchg(page_state(page), new, new.dirty_sectors = PAGE_SECTORS - new.sectors; ); if (old.dirty_sectors != new.dirty_sectors) { struct inode *inode = page->mapping->host; spin_lock(&inode->i_lock); inode->i_blocks += new.dirty_sectors - old.dirty_sectors; spin_unlock(&inode->i_lock); } return __set_page_dirty_nobuffers(page); } /* readpages/writepages: */ static bool bio_can_add_page_contig(struct bio *bio, struct page *page) { sector_t offset = (sector_t) page->index << (PAGE_SHIFT - 9); return bio->bi_vcnt < bio->bi_max_vecs && bio_end_sector(bio) == offset; } static int bio_add_page_contig(struct bio *bio, struct page *page) { sector_t offset = (sector_t) page->index << (PAGE_SHIFT - 9); BUG_ON(!bio->bi_max_vecs); if (!bio->bi_vcnt) bio->bi_iter.bi_sector = offset; else if (!bio_can_add_page_contig(bio, page)) return -1; bio->bi_io_vec[bio->bi_vcnt++] = (struct bio_vec) { .bv_page = page, .bv_len = PAGE_SIZE, .bv_offset = 0, }; bio->bi_iter.bi_size += PAGE_SIZE; return 0; } static void bch_readpages_end_io(struct bio *bio) { struct bio_vec *bv; int i; bio_for_each_segment_all(bv, bio, i) { struct page *page = bv->bv_page; if (!bio->bi_error) { SetPageUptodate(page); } else { ClearPageUptodate(page); SetPageError(page); } unlock_page(page); } bio_put(bio); } static inline struct page *__readpage_next_page(struct address_space *mapping, struct list_head *pages, unsigned *nr_pages) { struct page *page; int ret; while (*nr_pages) { page = list_entry(pages->prev, struct page, lru); prefetchw(&page->flags); list_del(&page->lru); ret = add_to_page_cache_lru(page, mapping, page->index, GFP_NOFS); /* if add_to_page_cache_lru() succeeded, page is locked: */ put_page(page); if (!ret) return page; (*nr_pages)--; } return NULL; } #define for_each_readpage_page(_mapping, _pages, _nr_pages, _page) \ for (; \ ((_page) = __readpage_next_page(_mapping, _pages, &(_nr_pages)));\ (_nr_pages)--) static void bch_mark_pages_unalloc(struct bio *bio) { struct bvec_iter iter; struct bio_vec bv; bio_for_each_segment(bv, bio, iter) page_state(bv.bv_page)->alloc_state = BCH_PAGE_UNALLOCATED; } static void bch_add_page_sectors(struct bio *bio, const struct bkey *k) { struct bvec_iter iter; struct bio_vec bv; bio_for_each_segment(bv, bio, iter) { struct bch_page_state *s = page_state(bv.bv_page); /* sectors in @k from the start of this page: */ unsigned k_sectors = k->size - (iter.bi_sector - k->p.offset); unsigned page_sectors = min(bv.bv_len >> 9, k_sectors); BUG_ON(s->sectors + page_sectors > PAGE_SECTORS); s->sectors += page_sectors; } } static void bchfs_read(struct cache_set *c, struct bch_read_bio *rbio, u64 inode) { struct bio *bio = &rbio->bio; struct btree_iter iter; struct bkey_s_c k; struct bio_vec *bv; unsigned i; int ret; bch_increment_clock(c, bio_sectors(bio), READ); /* * Initialize page state: * If a page is partly allocated and partly a hole, we want it to be * marked BCH_PAGE_UNALLOCATED - so we initially mark all pages * allocated and then mark them unallocated as we find holes: * * Note that the bio hasn't been split yet - it's the only bio that * points to these pages. As we walk extents and split @bio, that * necessarily be true, the splits won't necessarily be on page * boundaries: */ bio_for_each_segment_all(bv, bio, i) { struct bch_page_state *s = page_state(bv->bv_page); EBUG_ON(s->reserved); s->alloc_state = BCH_PAGE_ALLOCATED; s->sectors = 0; } for_each_btree_key_with_holes(&iter, c, BTREE_ID_EXTENTS, POS(inode, bio->bi_iter.bi_sector), k) { BKEY_PADDED(k) tmp; struct extent_pick_ptr pick; unsigned bytes, sectors; bool is_last; bkey_reassemble(&tmp.k, k); bch_btree_iter_unlock(&iter); k = bkey_i_to_s_c(&tmp.k); if (!bkey_extent_is_allocation(k.k) || bkey_extent_is_compressed(c, k)) bch_mark_pages_unalloc(bio); bch_extent_pick_ptr(c, k, &pick); if (IS_ERR(pick.ca)) { bcache_io_error(c, bio, "no device to read from"); bio_endio(bio); return; } sectors = min_t(u64, k.k->p.offset, bio_end_sector(bio)) - bio->bi_iter.bi_sector; bytes = sectors << 9; is_last = bytes == bio->bi_iter.bi_size; swap(bio->bi_iter.bi_size, bytes); if (bkey_extent_is_allocation(k.k)) bch_add_page_sectors(bio, k.k); if (pick.ca) { PTR_BUCKET(pick.ca, &pick.ptr)->read_prio = c->prio_clock[READ].hand; bch_read_extent(c, rbio, k, &pick, BCH_READ_RETRY_IF_STALE| BCH_READ_PROMOTE| (is_last ? BCH_READ_IS_LAST : 0)); } else { zero_fill_bio_iter(bio, bio->bi_iter); if (is_last) bio_endio(bio); } if (is_last) return; swap(bio->bi_iter.bi_size, bytes); bio_advance(bio, bytes); } /* * If we get here, it better have been because there was an error * reading a btree node */ ret = bch_btree_iter_unlock(&iter); BUG_ON(!ret); bcache_io_error(c, bio, "btree IO error %i", ret); bio_endio(bio); } int bch_readpages(struct file *file, struct address_space *mapping, struct list_head *pages, unsigned nr_pages) { struct inode *inode = mapping->host; struct cache_set *c = inode->i_sb->s_fs_info; struct bch_read_bio *rbio = NULL; struct page *page; pr_debug("reading %u pages", nr_pages); if (current->pagecache_lock != &mapping->add_lock) pagecache_add_get(&mapping->add_lock); for_each_readpage_page(mapping, pages, nr_pages, page) { again: if (!rbio) { rbio = container_of(bio_alloc_bioset(GFP_NOFS, min_t(unsigned, nr_pages, BIO_MAX_PAGES), &c->bio_read), struct bch_read_bio, bio); rbio->bio.bi_end_io = bch_readpages_end_io; } if (bio_add_page_contig(&rbio->bio, page)) { bchfs_read(c, rbio, inode->i_ino); rbio = NULL; goto again; } } if (rbio) bchfs_read(c, rbio, inode->i_ino); if (current->pagecache_lock != &mapping->add_lock) pagecache_add_put(&mapping->add_lock); pr_debug("success"); return 0; } int bch_readpage(struct file *file, struct page *page) { struct address_space *mapping = page->mapping; struct inode *inode = mapping->host; struct cache_set *c = inode->i_sb->s_fs_info; struct bch_read_bio *rbio; rbio = container_of(bio_alloc_bioset(GFP_NOFS, 1, &c->bio_read), struct bch_read_bio, bio); bio_set_op_attrs(&rbio->bio, REQ_OP_READ, REQ_SYNC); rbio->bio.bi_end_io = bch_readpages_end_io; bio_add_page_contig(&rbio->bio, page); bchfs_read(c, rbio, inode->i_ino); return 0; } struct bch_writepage_state { struct bch_writepage_io *io; }; static void bch_writepage_io_free(struct closure *cl) { struct bch_writepage_io *io = container_of(cl, struct bch_writepage_io, cl); struct bio *bio = &io->bio.bio; bio_put(bio); } static void bch_writepage_io_done(struct closure *cl) { struct bch_writepage_io *io = container_of(cl, struct bch_writepage_io, cl); struct cache_set *c = io->op.op.c; struct bio *bio = &io->bio.bio; struct bio_vec *bvec; unsigned i; atomic_sub(bio->bi_vcnt, &c->writeback_pages); wake_up(&c->writeback_wait); bio_for_each_segment_all(bvec, bio, i) { struct page *page = bvec->bv_page; if (io->op.op.error) { SetPageError(page); if (page->mapping) set_bit(AS_EIO, &page->mapping->flags); } if (io->op.op.written >= PAGE_SECTORS) { struct bch_page_state old, new; old = page_state_cmpxchg(page_state(page), new, { new.sectors = PAGE_SECTORS; new.dirty_sectors = 0; }); io->op.sectors_added -= old.dirty_sectors; io->op.op.written -= PAGE_SECTORS; } } /* * racing with fallocate can cause us to add fewer sectors than * expected - but we shouldn't add more sectors than expected: * * (error (due to going RO) halfway through a page can screw that up * slightly) */ BUG_ON(io->op.sectors_added >= (s64) PAGE_SECTORS); /* * PageWriteback is effectively our ref on the inode - fixup i_blocks * before calling end_page_writeback: */ if (io->op.sectors_added) { struct inode *inode = &io->op.ei->vfs_inode; spin_lock(&inode->i_lock); inode->i_blocks += io->op.sectors_added; spin_unlock(&inode->i_lock); } bio_for_each_segment_all(bvec, bio, i) end_page_writeback(bvec->bv_page); closure_return_with_destructor(&io->cl, bch_writepage_io_free); } static void bch_writepage_do_io(struct bch_writepage_state *w) { struct bch_writepage_io *io = w->io; w->io = NULL; atomic_add(io->bio.bio.bi_vcnt, &io->op.op.c->writeback_pages); io->op.op.pos.offset = io->bio.bio.bi_iter.bi_sector; closure_call(&io->op.op.cl, bch_write, NULL, &io->cl); continue_at(&io->cl, bch_writepage_io_done, NULL); } /* * Get a bch_writepage_io and add @page to it - appending to an existing one if * possible, else allocating a new one: */ static void bch_writepage_io_alloc(struct cache_set *c, struct bch_writepage_state *w, struct bch_inode_info *ei, struct page *page) { u64 inum = ei->vfs_inode.i_ino; if (!w->io) { alloc_io: w->io = container_of(bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, bch_writepage_bioset), struct bch_writepage_io, bio.bio); closure_init(&w->io->cl, NULL); w->io->op.ei = ei; w->io->op.sectors_added = 0; w->io->op.is_dio = false; bch_write_op_init(&w->io->op.op, c, &w->io->bio, (struct disk_reservation) { .nr_replicas = c->opts.data_replicas, }, foreground_write_point(c, inum), POS(inum, 0), &ei->journal_seq, 0); w->io->op.op.index_update_fn = bchfs_write_index_update; } if (bio_add_page_contig(&w->io->bio.bio, page)) { bch_writepage_do_io(w); goto alloc_io; } /* * We shouldn't ever be handed pages for multiple inodes in a single * pass - right? */ BUG_ON(ei != w->io->op.ei); } static int __bch_writepage(struct cache_set *c, struct page *page, struct writeback_control *wbc, struct bch_writepage_state *w) { struct inode *inode = page->mapping->host; struct bch_inode_info *ei = to_bch_ei(inode); struct bch_page_state new, old; unsigned offset; loff_t i_size = i_size_read(inode); pgoff_t end_index = i_size >> PAGE_SHIFT; EBUG_ON(!PageUptodate(page)); /* Is the page fully inside i_size? */ if (page->index < end_index) goto do_io; /* Is the page fully outside i_size? (truncate in progress) */ offset = i_size & (PAGE_SIZE - 1); if (page->index > end_index || !offset) { unlock_page(page); return 0; } /* * The page straddles i_size. It must be zeroed out on each and every * writepage invocation because it may be mmapped. "A file is mapped * in multiples of the page size. For a file that is not a multiple of * the page size, the remaining memory is zeroed when mapped, and * writes to that region are not written out to the file." */ zero_user_segment(page, offset, PAGE_SIZE); do_io: bch_writepage_io_alloc(c, w, ei, page); /* while page is locked: */ w->io->op.new_i_size = i_size; if (wbc->sync_mode == WB_SYNC_ALL) w->io->bio.bio.bi_opf |= WRITE_SYNC; /* Before unlocking the page, transfer reservation to w->io: */ old = page_state_cmpxchg(page_state(page), new, { BUG_ON(!new.reserved && (new.sectors != PAGE_SECTORS || new.alloc_state != BCH_PAGE_ALLOCATED)); if (new.alloc_state == BCH_PAGE_ALLOCATED && w->io->op.op.compression_type != BCH_COMPRESSION_NONE) new.alloc_state = BCH_PAGE_UNALLOCATED; else if (!new.reserved) goto out; new.reserved = 0; }); w->io->op.op.res.sectors += PAGE_SECTORS * (old.reserved - new.reserved); out: BUG_ON(PageWriteback(page)); set_page_writeback(page); unlock_page(page); return 0; } int bch_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct cache_set *c = mapping->host->i_sb->s_fs_info; struct bch_writepage_state w = { NULL }; struct pagecache_iter iter; struct page *page; int ret = 0; int done = 0; pgoff_t uninitialized_var(writeback_index); pgoff_t index; pgoff_t end; /* Inclusive */ pgoff_t done_index; int cycled; int range_whole = 0; int tag; if (wbc->range_cyclic) { writeback_index = mapping->writeback_index; /* prev offset */ index = writeback_index; if (index == 0) cycled = 1; else cycled = 0; end = -1; } else { index = wbc->range_start >> PAGE_SHIFT; end = wbc->range_end >> PAGE_SHIFT; if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) range_whole = 1; cycled = 1; /* ignore range_cyclic tests */ } if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) tag = PAGECACHE_TAG_TOWRITE; else tag = PAGECACHE_TAG_DIRTY; retry: if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) tag_pages_for_writeback(mapping, index, end); done_index = index; get_pages: for_each_pagecache_tag(&iter, mapping, tag, index, end, page) { done_index = page->index; if (w.io && !bio_can_add_page_contig(&w.io->bio.bio, page)) bch_writepage_do_io(&w); if (!w.io && atomic_read(&c->writeback_pages) >= c->writeback_pages_max) { /* don't sleep with pages pinned: */ pagecache_iter_release(&iter); __wait_event(c->writeback_wait, atomic_read(&c->writeback_pages) < c->writeback_pages_max); goto get_pages; } lock_page(page); /* * Page truncated or invalidated. We can freely skip it * then, even for data integrity operations: the page * has disappeared concurrently, so there could be no * real expectation of this data interity operation * even if there is now a new, dirty page at the same * pagecache address. */ if (unlikely(page->mapping != mapping)) { continue_unlock: unlock_page(page); continue; } if (!PageDirty(page)) { /* someone wrote it for us */ goto continue_unlock; } if (PageWriteback(page)) { if (wbc->sync_mode != WB_SYNC_NONE) wait_on_page_writeback(page); else goto continue_unlock; } BUG_ON(PageWriteback(page)); if (!clear_page_dirty_for_io(page)) goto continue_unlock; trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); ret = __bch_writepage(c, page, wbc, &w); if (unlikely(ret)) { if (ret == AOP_WRITEPAGE_ACTIVATE) { unlock_page(page); ret = 0; } else { /* * done_index is set past this page, * so media errors will not choke * background writeout for the entire * file. This has consequences for * range_cyclic semantics (ie. it may * not be suitable for data integrity * writeout). */ done_index = page->index + 1; done = 1; break; } } /* * We stop writing back only if we are not doing * integrity sync. In case of integrity sync we have to * keep going until we have written all the pages * we tagged for writeback prior to entering this loop. */ if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) { done = 1; break; } } pagecache_iter_release(&iter); if (w.io) bch_writepage_do_io(&w); if (!cycled && !done) { /* * range_cyclic: * We hit the last page and there is more work to be done: wrap * back to the start of the file */ cycled = 1; index = 0; end = writeback_index - 1; goto retry; } if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) mapping->writeback_index = done_index; return ret; } int bch_writepage(struct page *page, struct writeback_control *wbc) { struct cache_set *c = page->mapping->host->i_sb->s_fs_info; struct bch_writepage_state w = { NULL }; int ret; ret = __bch_writepage(c, page, wbc, &w); if (w.io) bch_writepage_do_io(&w); return ret; } static void bch_read_single_page_end_io(struct bio *bio) { complete(bio->bi_private); } static int bch_read_single_page(struct page *page, struct address_space *mapping) { struct inode *inode = mapping->host; struct cache_set *c = inode->i_sb->s_fs_info; struct bch_read_bio *rbio; int ret; DECLARE_COMPLETION_ONSTACK(done); rbio = container_of(bio_alloc_bioset(GFP_NOFS, 1, &c->bio_read), struct bch_read_bio, bio); bio_set_op_attrs(&rbio->bio, REQ_OP_READ, REQ_SYNC); rbio->bio.bi_private = &done; rbio->bio.bi_end_io = bch_read_single_page_end_io; bio_add_page_contig(&rbio->bio, page); bchfs_read(c, rbio, inode->i_ino); wait_for_completion(&done); ret = rbio->bio.bi_error; bio_put(&rbio->bio); if (ret < 0) return ret; SetPageUptodate(page); return 0; } int bch_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { struct inode *inode = mapping->host; struct cache_set *c = inode->i_sb->s_fs_info; pgoff_t index = pos >> PAGE_SHIFT; unsigned offset = pos & (PAGE_SIZE - 1); struct page *page; int ret = -ENOMEM; BUG_ON(inode_unhashed(mapping->host)); /* Not strictly necessary - same reason as mkwrite(): */ pagecache_add_get(&mapping->add_lock); page = grab_cache_page_write_begin(mapping, index, flags); if (!page) goto err_unlock; if (PageUptodate(page)) goto out; /* If we're writing entire page, don't need to read it in first: */ if (len == PAGE_SIZE) goto out; if (!offset && pos + len >= inode->i_size) { zero_user_segment(page, len, PAGE_SIZE); flush_dcache_page(page); goto out; } if (index > inode->i_size >> PAGE_SHIFT) { zero_user_segments(page, 0, offset, offset + len, PAGE_SIZE); flush_dcache_page(page); goto out; } readpage: ret = bch_read_single_page(page, mapping); if (ret) goto err; out: ret = bch_get_page_reservation(c, page, true); if (ret) { if (!PageUptodate(page)) { /* * If the page hasn't been read in, we won't know if we * actually need a reservation - we don't actually need * to read here, we just need to check if the page is * fully backed by uncompressed data: */ goto readpage; } goto err; } *pagep = page; return 0; err: unlock_page(page); put_page(page); *pagep = NULL; err_unlock: pagecache_add_put(&mapping->add_lock); return ret; } int bch_write_end(struct file *filp, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct inode *inode = page->mapping->host; struct cache_set *c = inode->i_sb->s_fs_info; lockdep_assert_held(&inode->i_rwsem); if (unlikely(copied < len && !PageUptodate(page))) { /* * The page needs to be read in, but that would destroy * our partial write - simplest thing is to just force * userspace to redo the write: */ zero_user(page, 0, PAGE_SIZE); flush_dcache_page(page); copied = 0; } if (pos + copied > inode->i_size) i_size_write(inode, pos + copied); if (copied) { if (!PageUptodate(page)) SetPageUptodate(page); if (!PageDirty(page)) set_page_dirty(page); } else { bch_put_page_reservation(c, page); } unlock_page(page); put_page(page); pagecache_add_put(&mapping->add_lock); return copied; } /* O_DIRECT */ static void bch_dio_read_complete(struct closure *cl) { struct dio_read *dio = container_of(cl, struct dio_read, cl); dio->req->ki_complete(dio->req, dio->ret, 0); bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */ } static void bch_direct_IO_read_endio(struct bio *bio) { struct dio_read *dio = bio->bi_private; if (bio->bi_error) dio->ret = bio->bi_error; closure_put(&dio->cl); } static void bch_direct_IO_read_split_endio(struct bio *bio) { bch_direct_IO_read_endio(bio); bio_check_pages_dirty(bio); /* transfers ownership */ } static int bch_direct_IO_read(struct cache_set *c, struct kiocb *req, struct file *file, struct inode *inode, struct iov_iter *iter, loff_t offset) { struct dio_read *dio; struct bio *bio; bool sync = is_sync_kiocb(req); ssize_t ret; if ((offset|iter->count) & (block_bytes(c) - 1)) return -EINVAL; ret = min_t(loff_t, iter->count, max_t(loff_t, 0, i_size_read(inode) - offset)); iov_iter_truncate(iter, round_up(ret, block_bytes(c))); if (!ret) return ret; bio = bio_alloc_bioset(GFP_KERNEL, iov_iter_npages(iter, BIO_MAX_PAGES), bch_dio_read_bioset); bio->bi_end_io = bch_direct_IO_read_endio; dio = container_of(bio, struct dio_read, rbio.bio); closure_init(&dio->cl, NULL); /* * this is a _really_ horrible hack just to avoid an atomic sub at the * end: */ if (!sync) { set_closure_fn(&dio->cl, bch_dio_read_complete, NULL); atomic_set(&dio->cl.remaining, CLOSURE_REMAINING_INITIALIZER - CLOSURE_RUNNING + CLOSURE_DESTRUCTOR); } else { atomic_set(&dio->cl.remaining, CLOSURE_REMAINING_INITIALIZER + 1); } dio->req = req; dio->ret = ret; goto start; while (iter->count) { bio = bio_alloc_bioset(GFP_KERNEL, iov_iter_npages(iter, BIO_MAX_PAGES), &c->bio_read); bio->bi_end_io = bch_direct_IO_read_split_endio; start: bio_set_op_attrs(bio, REQ_OP_READ, REQ_SYNC); bio->bi_iter.bi_sector = offset >> 9; bio->bi_private = dio; ret = bio_get_user_pages(bio, iter, 1); if (ret < 0) { /* XXX: fault inject this path */ bio->bi_error = ret; bio_endio(bio); break; } offset += bio->bi_iter.bi_size; bio_set_pages_dirty(bio); if (iter->count) closure_get(&dio->cl); bch_read(c, container_of(bio, struct bch_read_bio, bio), inode->i_ino); } if (sync) { closure_sync(&dio->cl); closure_debug_destroy(&dio->cl); ret = dio->ret; bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */ return ret; } else { return -EIOCBQUEUED; } } static long __bch_dio_write_complete(struct dio_write *dio) { struct file *file = dio->req->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = file->f_inode; long ret = dio->error ?: dio->written; bch_disk_reservation_put(dio->c, &dio->res); __pagecache_block_put(&mapping->add_lock); inode_dio_end(inode); if (dio->iovec && dio->iovec != dio->inline_vecs) kfree(dio->iovec); bio_put(&dio->bio.bio); return ret; } static void bch_dio_write_complete(struct closure *cl) { struct dio_write *dio = container_of(cl, struct dio_write, cl); struct kiocb *req = dio->req; req->ki_complete(req, __bch_dio_write_complete(dio), 0); } static void bch_dio_write_done(struct dio_write *dio) { struct bio_vec *bv; int i; dio->written += dio->iop.op.written << 9; if (dio->iop.op.error) dio->error = dio->iop.op.error; bio_for_each_segment_all(bv, &dio->bio.bio, i) put_page(bv->bv_page); if (dio->iter.count) bio_reset(&dio->bio.bio); } static void bch_do_direct_IO_write(struct dio_write *dio) { struct file *file = dio->req->ki_filp; struct inode *inode = file->f_inode; struct bch_inode_info *ei = to_bch_ei(inode); struct bio *bio = &dio->bio.bio; unsigned flags = 0; int ret; if ((dio->req->ki_flags & IOCB_DSYNC) && !dio->c->opts.journal_flush_disabled) flags |= BCH_WRITE_FLUSH; bio->bi_iter.bi_sector = (dio->offset + dio->written) >> 9; ret = bio_get_user_pages(bio, &dio->iter, 0); if (ret < 0) { /* * these didn't get initialized, but bch_dio_write_done() will * look at them: */ dio->iop.op.error = 0; dio->iop.op.written = 0; dio->error = ret; return; } dio->iop.ei = ei; dio->iop.sectors_added = 0; dio->iop.is_dio = true; dio->iop.new_i_size = U64_MAX; bch_write_op_init(&dio->iop.op, dio->c, &dio->bio, dio->res, foreground_write_point(dio->c, inode->i_ino), POS(inode->i_ino, bio->bi_iter.bi_sector), &ei->journal_seq, flags); dio->iop.op.index_update_fn = bchfs_write_index_update; dio->res.sectors -= bio_sectors(bio); dio->iop.op.res.sectors = bio_sectors(bio); task_io_account_write(bio->bi_iter.bi_size); closure_call(&dio->iop.op.cl, bch_write, NULL, &dio->cl); } static void bch_dio_write_loop_async(struct closure *cl) { struct dio_write *dio = container_of(cl, struct dio_write, cl); struct address_space *mapping = dio->req->ki_filp->f_mapping; bch_dio_write_done(dio); if (dio->iter.count && !dio->error) { use_mm(dio->mm); pagecache_block_get(&mapping->add_lock); bch_do_direct_IO_write(dio); pagecache_block_put(&mapping->add_lock); unuse_mm(dio->mm); continue_at(&dio->cl, bch_dio_write_loop_async, NULL); } else { #if 0 closure_return_with_destructor(cl, bch_dio_write_complete); #else closure_debug_destroy(cl); bch_dio_write_complete(cl); #endif } } static int bch_direct_IO_write(struct cache_set *c, struct kiocb *req, struct file *file, struct inode *inode, struct iov_iter *iter, loff_t offset) { struct address_space *mapping = file->f_mapping; struct dio_write *dio; struct bio *bio; ssize_t ret; bool sync = is_sync_kiocb(req); lockdep_assert_held(&inode->i_rwsem); if (unlikely(!iter->count)) return 0; if (unlikely((offset|iter->count) & (block_bytes(c) - 1))) return -EINVAL; bio = bio_alloc_bioset(GFP_KERNEL, iov_iter_npages(iter, BIO_MAX_PAGES), bch_dio_write_bioset); dio = container_of(bio, struct dio_write, bio.bio); dio->req = req; dio->c = c; dio->written = 0; dio->error = 0; dio->offset = offset; dio->iovec = NULL; dio->iter = *iter; dio->mm = current->mm; closure_init(&dio->cl, NULL); if (offset + iter->count > inode->i_size) sync = true; /* * XXX: we shouldn't return -ENOSPC if we're overwriting existing data - * if getting a reservation fails we should check if we are doing an * overwrite. * * Have to then guard against racing with truncate (deleting data that * we would have been overwriting) */ ret = bch_disk_reservation_get(c, &dio->res, iter->count >> 9, 0); if (unlikely(ret)) { closure_debug_destroy(&dio->cl); bio_put(bio); return ret; } inode_dio_begin(inode); __pagecache_block_get(&mapping->add_lock); if (sync) { do { bch_do_direct_IO_write(dio); closure_sync(&dio->cl); bch_dio_write_done(dio); } while (dio->iter.count && !dio->error); closure_debug_destroy(&dio->cl); return __bch_dio_write_complete(dio); } else { bch_do_direct_IO_write(dio); if (dio->iter.count && !dio->error) { if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) { dio->iovec = kmalloc(dio->iter.nr_segs * sizeof(struct iovec), GFP_KERNEL); if (!dio->iovec) dio->error = -ENOMEM; } else { dio->iovec = dio->inline_vecs; } memcpy(dio->iovec, dio->iter.iov, dio->iter.nr_segs * sizeof(struct iovec)); dio->iter.iov = dio->iovec; } continue_at_noreturn(&dio->cl, bch_dio_write_loop_async, NULL); return -EIOCBQUEUED; } } ssize_t bch_direct_IO(struct kiocb *req, struct iov_iter *iter) { struct file *file = req->ki_filp; struct inode *inode = file->f_inode; struct cache_set *c = inode->i_sb->s_fs_info; return ((iov_iter_rw(iter) == WRITE) ? bch_direct_IO_write : bch_direct_IO_read)(c, req, file, inode, iter, req->ki_pos); } static ssize_t bch_direct_write(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_inode; struct cache_set *c = inode->i_sb->s_fs_info; struct address_space *mapping = file->f_mapping; loff_t pos = iocb->ki_pos; ssize_t ret; pagecache_block_get(&mapping->add_lock); /* Write and invalidate pagecache range that we're writing to: */ ret = write_invalidate_inode_pages_range(file->f_mapping, pos, pos + iov_iter_count(iter) - 1); if (unlikely(ret)) goto err; ret = bch_direct_IO_write(c, iocb, file, inode, iter, pos); err: pagecache_block_put(&mapping->add_lock); return ret; } static ssize_t __bch_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; ssize_t ret; /* We can write back this queue in page reclaim */ current->backing_dev_info = inode_to_bdi(inode); ret = file_remove_privs(file); if (ret) goto out; ret = file_update_time(file); if (ret) goto out; ret = iocb->ki_flags & IOCB_DIRECT ? bch_direct_write(iocb, from) : generic_perform_write(file, from, iocb->ki_pos); if (likely(ret > 0)) iocb->ki_pos += ret; out: current->backing_dev_info = NULL; return ret; } ssize_t bch_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *inode = file->f_mapping->host; bool direct = iocb->ki_flags & IOCB_DIRECT; ssize_t ret; inode_lock(inode); ret = generic_write_checks(iocb, from); if (ret > 0) ret = __bch_write_iter(iocb, from); inode_unlock(inode); if (ret > 0 && !direct) ret = generic_write_sync(iocb, ret); return ret; } int bch_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = file_inode(vma->vm_file); struct address_space *mapping = inode->i_mapping; struct cache_set *c = inode->i_sb->s_fs_info; int ret = VM_FAULT_LOCKED; sb_start_pagefault(inode->i_sb); file_update_time(vma->vm_file); /* * Not strictly necessary, but helps avoid dio writes livelocking in * write_invalidate_inode_pages_range() - can drop this if/when we get * a write_invalidate_inode_pages_range() that works without dropping * page lock before invalidating page */ if (current->pagecache_lock != &mapping->add_lock) pagecache_add_get(&mapping->add_lock); lock_page(page); if (page->mapping != mapping || page_offset(page) > i_size_read(inode)) { unlock_page(page); ret = VM_FAULT_NOPAGE; goto out; } if (bch_get_page_reservation(c, page, true)) { unlock_page(page); ret = VM_FAULT_SIGBUS; goto out; } if (!PageDirty(page)) set_page_dirty(page); wait_for_stable_page(page); out: if (current->pagecache_lock != &mapping->add_lock) pagecache_add_put(&mapping->add_lock); sb_end_pagefault(inode->i_sb); return ret; } void bch_invalidatepage(struct page *page, unsigned int offset, unsigned int length) { EBUG_ON(!PageLocked(page)); EBUG_ON(PageWriteback(page)); if (offset || length < PAGE_SIZE) return; bch_clear_page_bits(page); } int bch_releasepage(struct page *page, gfp_t gfp_mask) { EBUG_ON(!PageLocked(page)); EBUG_ON(PageWriteback(page)); if (PageDirty(page)) return 0; bch_clear_page_bits(page); return 1; } #ifdef CONFIG_MIGRATION int bch_migrate_page(struct address_space *mapping, struct page *newpage, struct page *page, enum migrate_mode mode) { int ret; ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0); if (ret != MIGRATEPAGE_SUCCESS) return ret; if (PagePrivate(page)) { *page_state(newpage) = *page_state(page); ClearPagePrivate(page); } migrate_page_copy(newpage, page); return MIGRATEPAGE_SUCCESS; } #endif int bch_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; struct bch_inode_info *ei = to_bch_ei(inode); struct cache_set *c = inode->i_sb->s_fs_info; int ret; ret = filemap_write_and_wait_range(inode->i_mapping, start, end); if (ret) return ret; if (c->opts.journal_flush_disabled) return 0; return bch_journal_flush_seq(&c->journal, ei->journal_seq); } static int __bch_truncate_page(struct address_space *mapping, pgoff_t index, loff_t start, loff_t end) { struct inode *inode = mapping->host; struct cache_set *c = inode->i_sb->s_fs_info; unsigned start_offset = start & (PAGE_SIZE - 1); unsigned end_offset = ((end - 1) & (PAGE_SIZE - 1)) + 1; struct page *page; int ret = 0; /* Page boundary? Nothing to do */ if (!((index == start >> PAGE_SHIFT && start_offset) || (index == end >> PAGE_SHIFT && end_offset != PAGE_SIZE))) return 0; /* Above i_size? */ if (index << PAGE_SHIFT >= inode->i_size) return 0; page = find_lock_page(mapping, index); if (!page) { struct btree_iter iter; struct bkey_s_c k = bkey_s_c_null; /* * XXX: we're doing two index lookups when we end up reading the * page */ for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, POS(inode->i_ino, index << (PAGE_SHIFT - 9)), k) { if (bkey_cmp(bkey_start_pos(k.k), POS(inode->i_ino, (index + 1) << (PAGE_SHIFT - 9))) >= 0) break; if (k.k->type != KEY_TYPE_DISCARD && k.k->type != BCH_RESERVATION) { bch_btree_iter_unlock(&iter); goto create; } } bch_btree_iter_unlock(&iter); return 0; create: page = find_or_create_page(mapping, index, GFP_KERNEL); if (unlikely(!page)) { ret = -ENOMEM; goto out; } } if (!PageUptodate(page)) { ret = bch_read_single_page(page, mapping); if (ret) goto unlock; } /* * Bit of a hack - we don't want truncate to fail due to -ENOSPC. * * XXX: because we aren't currently tracking whether the page has actual * data in it (vs. just 0s, or only partially written) this wrong. ick. */ ret = bch_get_page_reservation(c, page, false); BUG_ON(ret); if (index == start >> PAGE_SHIFT && index == end >> PAGE_SHIFT) zero_user_segment(page, start_offset, end_offset); else if (index == start >> PAGE_SHIFT) zero_user_segment(page, start_offset, PAGE_SIZE); else if (index == end >> PAGE_SHIFT) zero_user_segment(page, 0, end_offset); if (!PageDirty(page)) set_page_dirty(page); unlock: unlock_page(page); put_page(page); out: return ret; } static int bch_truncate_page(struct address_space *mapping, loff_t from) { return __bch_truncate_page(mapping, from >> PAGE_SHIFT, from, from + PAGE_SIZE); } int bch_truncate(struct inode *inode, struct iattr *iattr) { struct address_space *mapping = inode->i_mapping; struct bch_inode_info *ei = to_bch_ei(inode); struct cache_set *c = inode->i_sb->s_fs_info; bool shrink = iattr->ia_size <= inode->i_size; int ret = 0; inode_dio_wait(inode); pagecache_block_get(&mapping->add_lock); truncate_setsize(inode, iattr->ia_size); /* sync appends.. */ /* XXX what protects ei->i_size? */ if (iattr->ia_size > ei->i_size) ret = filemap_write_and_wait_range(mapping, ei->i_size, S64_MAX); if (ret) goto err_put_pagecache; mutex_lock(&ei->update_lock); i_size_dirty_get(ei); ret = bch_write_inode_size(c, ei, inode->i_size); mutex_unlock(&ei->update_lock); if (unlikely(ret)) goto err; /* * There might be persistent reservations (from fallocate()) * above i_size, which bch_inode_truncate() will discard - we're * only supposed to discard them if we're doing a real truncate * here (new i_size < current i_size): */ if (shrink) { struct i_sectors_hook i_sectors_hook; int ret; ret = i_sectors_dirty_get(ei, &i_sectors_hook); if (unlikely(ret)) goto err; ret = bch_truncate_page(inode->i_mapping, iattr->ia_size); if (unlikely(ret)) { i_sectors_dirty_put(ei, &i_sectors_hook); goto err; } ret = bch_inode_truncate(c, inode->i_ino, round_up(iattr->ia_size, PAGE_SIZE) >> 9, &i_sectors_hook.hook, &ei->journal_seq); i_sectors_dirty_put(ei, &i_sectors_hook); if (unlikely(ret)) goto err; } mutex_lock(&ei->update_lock); setattr_copy(inode, iattr); inode->i_mtime = inode->i_ctime = CURRENT_TIME; /* clear I_SIZE_DIRTY: */ i_size_dirty_put(ei); ret = bch_write_inode_size(c, ei, inode->i_size); mutex_unlock(&ei->update_lock); pagecache_block_put(&mapping->add_lock); return 0; err: i_size_dirty_put(ei); err_put_pagecache: pagecache_block_put(&mapping->add_lock); return ret; } static long bch_fpunch(struct inode *inode, loff_t offset, loff_t len) { struct address_space *mapping = inode->i_mapping; struct bch_inode_info *ei = to_bch_ei(inode); struct cache_set *c = inode->i_sb->s_fs_info; u64 ino = inode->i_ino; u64 discard_start = round_up(offset, PAGE_SIZE) >> 9; u64 discard_end = round_down(offset + len, PAGE_SIZE) >> 9; int ret = 0; inode_lock(inode); inode_dio_wait(inode); pagecache_block_get(&mapping->add_lock); ret = __bch_truncate_page(inode->i_mapping, offset >> PAGE_SHIFT, offset, offset + len); if (unlikely(ret)) goto out; if (offset >> PAGE_SHIFT != (offset + len) >> PAGE_SHIFT) { ret = __bch_truncate_page(inode->i_mapping, (offset + len) >> PAGE_SHIFT, offset, offset + len); if (unlikely(ret)) goto out; } truncate_pagecache_range(inode, offset, offset + len - 1); if (discard_start < discard_end) { struct disk_reservation disk_res; struct i_sectors_hook i_sectors_hook; int ret; BUG_ON(bch_disk_reservation_get(c, &disk_res, 0, 0)); ret = i_sectors_dirty_get(ei, &i_sectors_hook); if (unlikely(ret)) goto out; ret = bch_discard(c, POS(ino, discard_start), POS(ino, discard_end), 0, &disk_res, &i_sectors_hook.hook, &ei->journal_seq); i_sectors_dirty_put(ei, &i_sectors_hook); bch_disk_reservation_put(c, &disk_res); } out: pagecache_block_put(&mapping->add_lock); inode_unlock(inode); return ret; } static long bch_fcollapse(struct inode *inode, loff_t offset, loff_t len) { struct address_space *mapping = inode->i_mapping; struct bch_inode_info *ei = to_bch_ei(inode); struct cache_set *c = inode->i_sb->s_fs_info; struct btree_iter src; struct btree_iter dst; BKEY_PADDED(k) copy; struct bkey_s_c k; struct i_sectors_hook i_sectors_hook; loff_t new_size; int ret; if ((offset | len) & (PAGE_SIZE - 1)) return -EINVAL; bch_btree_iter_init_intent(&dst, c, BTREE_ID_EXTENTS, POS(inode->i_ino, offset >> 9)); /* position will be set from dst iter's position: */ bch_btree_iter_init(&src, c, BTREE_ID_EXTENTS, POS_MIN); bch_btree_iter_link(&src, &dst); /* * We need i_mutex to keep the page cache consistent with the extents * btree, and the btree consistent with i_size - we don't need outside * locking for the extents btree itself, because we're using linked * iterators */ inode_lock(inode); inode_dio_wait(inode); pagecache_block_get(&mapping->add_lock); ret = -EINVAL; if (offset + len >= inode->i_size) goto err; if (inode->i_size < len) goto err; new_size = inode->i_size - len; ret = write_invalidate_inode_pages_range(inode->i_mapping, offset, LLONG_MAX); if (ret) goto err; ret = i_sectors_dirty_get(ei, &i_sectors_hook); if (ret) goto err; while (bkey_cmp(dst.pos, POS(inode->i_ino, round_up(new_size, PAGE_SIZE) >> 9)) < 0) { struct disk_reservation disk_res; bch_btree_iter_set_pos(&src, POS(dst.pos.inode, dst.pos.offset + (len >> 9))); ret = bch_btree_iter_traverse(&dst); if (ret) goto btree_iter_err; k = bch_btree_iter_peek_with_holes(&src); if ((ret = btree_iter_err(k))) goto btree_iter_err; bkey_reassemble(©.k, k); if (bkey_deleted(©.k.k)) copy.k.k.type = KEY_TYPE_DISCARD; bch_cut_front(src.pos, ©.k); copy.k.k.p.offset -= len >> 9; BUG_ON(bkey_cmp(dst.pos, bkey_start_pos(©.k.k))); ret = bch_disk_reservation_get(c, &disk_res, copy.k.k.size, BCH_DISK_RESERVATION_NOFAIL); BUG_ON(ret); ret = bch_btree_insert_at(c, &disk_res, &i_sectors_hook.hook, &ei->journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL, BTREE_INSERT_ENTRY(&dst, ©.k)); bch_disk_reservation_put(c, &disk_res); btree_iter_err: if (ret < 0 && ret != -EINTR) goto err_unwind; bch_btree_iter_cond_resched(&src); } bch_btree_iter_unlock(&src); bch_btree_iter_unlock(&dst); ret = bch_inode_truncate(c, inode->i_ino, round_up(new_size, PAGE_SIZE) >> 9, &i_sectors_hook.hook, &ei->journal_seq); if (ret) goto err_unwind; i_sectors_dirty_put(ei, &i_sectors_hook); mutex_lock(&ei->update_lock); i_size_write(inode, new_size); ret = bch_write_inode_size(c, ei, inode->i_size); mutex_unlock(&ei->update_lock); pagecache_block_put(&mapping->add_lock); inode_unlock(inode); return ret; err_unwind: /* * XXX: we've left data with multiple pointers... which isn't a _super_ * serious problem... */ i_sectors_dirty_put(ei, &i_sectors_hook); err: bch_btree_iter_unlock(&src); bch_btree_iter_unlock(&dst); pagecache_block_put(&mapping->add_lock); inode_unlock(inode); return ret; } static long bch_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len) { struct address_space *mapping = inode->i_mapping; struct bch_inode_info *ei = to_bch_ei(inode); struct cache_set *c = inode->i_sb->s_fs_info; struct i_sectors_hook i_sectors_hook; struct btree_iter iter; struct bkey_i reservation; struct bkey_s_c k; struct bpos end; loff_t block_start, block_end; loff_t new_size = offset + len; unsigned sectors; int ret; bch_btree_iter_init_intent(&iter, c, BTREE_ID_EXTENTS, POS_MIN); inode_lock(inode); inode_dio_wait(inode); pagecache_block_get(&mapping->add_lock); if (!(mode & FALLOC_FL_KEEP_SIZE) && new_size > inode->i_size) { ret = inode_newsize_ok(inode, new_size); if (ret) goto err; } if (mode & FALLOC_FL_ZERO_RANGE) { ret = __bch_truncate_page(inode->i_mapping, offset >> PAGE_SHIFT, offset, offset + len); if (!ret && offset >> PAGE_SHIFT != (offset + len) >> PAGE_SHIFT) ret = __bch_truncate_page(inode->i_mapping, (offset + len) >> PAGE_SHIFT, offset, offset + len); if (unlikely(ret)) goto err; truncate_pagecache_range(inode, offset, offset + len - 1); block_start = round_up(offset, PAGE_SIZE); block_end = round_down(offset + len, PAGE_SIZE); } else { block_start = round_down(offset, PAGE_SIZE); block_end = round_up(offset + len, PAGE_SIZE); } bch_btree_iter_set_pos(&iter, POS(inode->i_ino, block_start >> 9)); end = POS(inode->i_ino, block_end >> 9); ret = i_sectors_dirty_get(ei, &i_sectors_hook); if (unlikely(ret)) goto err; while (bkey_cmp(iter.pos, end) < 0) { struct disk_reservation disk_res = { 0 }; k = bch_btree_iter_peek_with_holes(&iter); if ((ret = btree_iter_err(k))) goto btree_iter_err; /* already reserved */ if (k.k->type == BCH_RESERVATION) { bch_btree_iter_advance_pos(&iter); continue; } if (bkey_extent_is_data(k.k)) { if (!(mode & FALLOC_FL_ZERO_RANGE)) { bch_btree_iter_advance_pos(&iter); continue; } } bkey_init(&reservation.k); reservation.k.type = BCH_RESERVATION; reservation.k.p = k.k->p; reservation.k.size = k.k->size; bch_cut_front(iter.pos, &reservation); bch_cut_back(end, &reservation.k); sectors = reservation.k.size; if (!bkey_extent_is_allocation(k.k) || bkey_extent_is_compressed(c, k)) { ret = bch_disk_reservation_get(c, &disk_res, sectors, 0); if (ret) goto err_put_sectors_dirty; } ret = bch_btree_insert_at(c, &disk_res, &i_sectors_hook.hook, &ei->journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL, BTREE_INSERT_ENTRY(&iter, &reservation)); bch_disk_reservation_put(c, &disk_res); btree_iter_err: if (ret < 0 && ret != -EINTR) goto err_put_sectors_dirty; } bch_btree_iter_unlock(&iter); i_sectors_dirty_put(ei, &i_sectors_hook); if (!(mode & FALLOC_FL_KEEP_SIZE) && new_size > inode->i_size) { i_size_write(inode, new_size); mutex_lock(&ei->update_lock); ret = bch_write_inode_size(c, ei, inode->i_size); mutex_unlock(&ei->update_lock); } /* blech */ if ((mode & FALLOC_FL_KEEP_SIZE) && (mode & FALLOC_FL_ZERO_RANGE) && ei->i_size != inode->i_size) { /* sync appends.. */ ret = filemap_write_and_wait_range(mapping, ei->i_size, S64_MAX); if (ret) goto err; if (ei->i_size != inode->i_size) { mutex_lock(&ei->update_lock); ret = bch_write_inode_size(c, ei, inode->i_size); mutex_unlock(&ei->update_lock); } } pagecache_block_put(&mapping->add_lock); inode_unlock(inode); return 0; err_put_sectors_dirty: i_sectors_dirty_put(ei, &i_sectors_hook); err: bch_btree_iter_unlock(&iter); pagecache_block_put(&mapping->add_lock); inode_unlock(inode); return ret; } long bch_fallocate_dispatch(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); if (!(mode & ~(FALLOC_FL_KEEP_SIZE|FALLOC_FL_ZERO_RANGE))) return bch_fallocate(inode, mode, offset, len); if (mode == (FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE)) return bch_fpunch(inode, offset, len); if (mode == FALLOC_FL_COLLAPSE_RANGE) return bch_fcollapse(inode, offset, len); return -EOPNOTSUPP; } static bool page_is_data(struct page *page) { /* XXX: should only have to check PageDirty */ return PagePrivate(page) && (page_state(page)->sectors || page_state(page)->dirty_sectors); } static loff_t bch_next_pagecache_data(struct inode *inode, loff_t start_offset, loff_t end_offset) { struct address_space *mapping = inode->i_mapping; struct page *page; pgoff_t index; for (index = start_offset >> PAGE_SHIFT; index < end_offset >> PAGE_SHIFT; index++) { if (find_get_pages(mapping, index, 1, &page)) { lock_page(page); index = page->index; if (page_is_data(page)) end_offset = min(end_offset, max(start_offset, ((loff_t) index) << PAGE_SHIFT)); unlock_page(page); put_page(page); } else { break; } } return end_offset; } static loff_t bch_seek_data(struct file *file, u64 offset) { struct inode *inode = file->f_mapping->host; struct cache_set *c = inode->i_sb->s_fs_info; struct btree_iter iter; struct bkey_s_c k; u64 isize, next_data = MAX_LFS_FILESIZE; int ret; isize = i_size_read(inode); if (offset >= isize) return -ENXIO; for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, POS(inode->i_ino, offset >> 9), k) { if (k.k->p.inode != inode->i_ino) { break; } else if (bkey_extent_is_data(k.k)) { next_data = max(offset, bkey_start_offset(k.k) << 9); break; } else if (k.k->p.offset >> 9 > isize) break; } ret = bch_btree_iter_unlock(&iter); if (ret) return ret; if (next_data > offset) next_data = bch_next_pagecache_data(inode, offset, next_data); if (next_data > isize) return -ENXIO; return vfs_setpos(file, next_data, MAX_LFS_FILESIZE); } static bool page_slot_is_data(struct address_space *mapping, pgoff_t index) { struct page *page; bool ret; page = find_lock_entry(mapping, index); if (!page || radix_tree_exception(page)) return false; ret = page_is_data(page); unlock_page(page); return ret; } static loff_t bch_next_pagecache_hole(struct inode *inode, loff_t start_offset, loff_t end_offset) { struct address_space *mapping = inode->i_mapping; pgoff_t index; for (index = start_offset >> PAGE_SHIFT; index < end_offset >> PAGE_SHIFT; index++) if (!page_slot_is_data(mapping, index)) end_offset = max(start_offset, ((loff_t) index) << PAGE_SHIFT); return end_offset; } static loff_t bch_seek_hole(struct file *file, u64 offset) { struct inode *inode = file->f_mapping->host; struct cache_set *c = inode->i_sb->s_fs_info; struct btree_iter iter; struct bkey_s_c k; u64 isize, next_hole = MAX_LFS_FILESIZE; int ret; isize = i_size_read(inode); if (offset >= isize) return -ENXIO; for_each_btree_key_with_holes(&iter, c, BTREE_ID_EXTENTS, POS(inode->i_ino, offset >> 9), k) { if (k.k->p.inode != inode->i_ino) { next_hole = bch_next_pagecache_hole(inode, offset, MAX_LFS_FILESIZE); break; } else if (!bkey_extent_is_data(k.k)) { next_hole = bch_next_pagecache_hole(inode, max(offset, bkey_start_offset(k.k) << 9), k.k->p.offset << 9); if (next_hole < k.k->p.offset << 9) break; } else { offset = max(offset, bkey_start_offset(k.k) << 9); } } ret = bch_btree_iter_unlock(&iter); if (ret) return ret; if (next_hole > isize) next_hole = isize; return vfs_setpos(file, next_hole, MAX_LFS_FILESIZE); } loff_t bch_llseek(struct file *file, loff_t offset, int whence) { switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: return generic_file_llseek(file, offset, whence); case SEEK_DATA: return bch_seek_data(file, offset); case SEEK_HOLE: return bch_seek_hole(file, offset); } return -EINVAL; }