summaryrefslogtreecommitdiff
path: root/libbcache/btree_cache.c
blob: ca6064af27866b3bbca90d517c9185f8d9f1df6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

#include "bcache.h"
#include "btree_cache.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "debug.h"
#include "extents.h"

#include <trace/events/bcache.h>

#define DEF_BTREE_ID(kwd, val, name) name,

const char *bch_btree_id_names[BTREE_ID_NR] = {
	DEFINE_BCH_BTREE_IDS()
};

#undef DEF_BTREE_ID

void bch_recalc_btree_reserve(struct cache_set *c)
{
	unsigned i, reserve = 16;

	if (!c->btree_roots[0].b)
		reserve += 8;

	for (i = 0; i < BTREE_ID_NR; i++)
		if (c->btree_roots[i].b)
			reserve += min_t(unsigned, 1,
					 c->btree_roots[i].b->level) * 8;

	c->btree_cache_reserve = reserve;
}

#define mca_can_free(c)						\
	max_t(int, 0, c->btree_cache_used - c->btree_cache_reserve)

static void __mca_data_free(struct cache_set *c, struct btree *b)
{
	EBUG_ON(btree_node_write_in_flight(b));

	free_pages((unsigned long) b->data, btree_page_order(c));
	b->data = NULL;
	bch_btree_keys_free(b);
}

static void mca_data_free(struct cache_set *c, struct btree *b)
{
	__mca_data_free(c, b);
	c->btree_cache_used--;
	list_move(&b->list, &c->btree_cache_freed);
}

#define PTR_HASH(_k)	(bkey_i_to_extent_c(_k)->v._data[0])

static const struct rhashtable_params bch_btree_cache_params = {
	.head_offset	= offsetof(struct btree, hash),
	.key_offset	= offsetof(struct btree, key.v),
	.key_len	= sizeof(struct bch_extent_ptr),
};

static void mca_data_alloc(struct cache_set *c, struct btree *b, gfp_t gfp)
{
	unsigned order = ilog2(btree_pages(c));

	b->data = (void *) __get_free_pages(gfp, order);
	if (!b->data)
		goto err;

	if (bch_btree_keys_alloc(b, order, gfp))
		goto err;

	c->btree_cache_used++;
	list_move(&b->list, &c->btree_cache_freeable);
	return;
err:
	free_pages((unsigned long) b->data, order);
	b->data = NULL;
	list_move(&b->list, &c->btree_cache_freed);
}

static struct btree *mca_bucket_alloc(struct cache_set *c, gfp_t gfp)
{
	struct btree *b = kzalloc(sizeof(struct btree), gfp);
	if (!b)
		return NULL;

	six_lock_init(&b->lock);
	INIT_LIST_HEAD(&b->list);
	INIT_LIST_HEAD(&b->write_blocked);

	mca_data_alloc(c, b, gfp);
	return b->data ? b : NULL;
}

/* Btree in memory cache - hash table */

void mca_hash_remove(struct cache_set *c, struct btree *b)
{
	BUG_ON(btree_node_dirty(b));

	b->nsets = 0;

	rhashtable_remove_fast(&c->btree_cache_table, &b->hash,
			       bch_btree_cache_params);

	/* Cause future lookups for this node to fail: */
	bkey_i_to_extent(&b->key)->v._data[0] = 0;
}

int mca_hash_insert(struct cache_set *c, struct btree *b,
		    unsigned level, enum btree_id id)
{
	int ret;
	b->level	= level;
	b->btree_id	= id;

	ret = rhashtable_lookup_insert_fast(&c->btree_cache_table, &b->hash,
					    bch_btree_cache_params);
	if (ret)
		return ret;

	mutex_lock(&c->btree_cache_lock);
	list_add(&b->list, &c->btree_cache);
	mutex_unlock(&c->btree_cache_lock);

	return 0;
}

__flatten
static inline struct btree *mca_find(struct cache_set *c,
				     const struct bkey_i *k)
{
	return rhashtable_lookup_fast(&c->btree_cache_table, &PTR_HASH(k),
				      bch_btree_cache_params);
}

/*
 * this version is for btree nodes that have already been freed (we're not
 * reaping a real btree node)
 */
static int mca_reap_notrace(struct cache_set *c, struct btree *b, bool flush)
{
	lockdep_assert_held(&c->btree_cache_lock);

	if (!six_trylock_intent(&b->lock))
		return -ENOMEM;

	if (!six_trylock_write(&b->lock))
		goto out_unlock_intent;

	if (btree_node_write_error(b) ||
	    btree_node_noevict(b))
		goto out_unlock;

	if (!list_empty(&b->write_blocked))
		goto out_unlock;

	if (!flush &&
	    (btree_node_dirty(b) ||
	     btree_node_write_in_flight(b)))
		goto out_unlock;

	/*
	 * Using the underscore version because we don't want to compact bsets
	 * after the write, since this node is about to be evicted - unless
	 * btree verify mode is enabled, since it runs out of the post write
	 * cleanup:
	 */
	if (btree_node_dirty(b)) {
		if (verify_btree_ondisk(c))
			bch_btree_node_write(c, b, NULL, SIX_LOCK_intent, -1);
		else
			__bch_btree_node_write(c, b, NULL, SIX_LOCK_read, -1);
	}

	/* wait for any in flight btree write */
	wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight,
		       TASK_UNINTERRUPTIBLE);

	return 0;
out_unlock:
	six_unlock_write(&b->lock);
out_unlock_intent:
	six_unlock_intent(&b->lock);
	return -ENOMEM;
}

static int mca_reap(struct cache_set *c, struct btree *b, bool flush)
{
	int ret = mca_reap_notrace(c, b, flush);

	trace_bcache_mca_reap(c, b, ret);
	return ret;
}

static unsigned long bch_mca_scan(struct shrinker *shrink,
				  struct shrink_control *sc)
{
	struct cache_set *c = container_of(shrink, struct cache_set,
					   btree_cache_shrink);
	struct btree *b, *t;
	unsigned long nr = sc->nr_to_scan;
	unsigned long can_free;
	unsigned long touched = 0;
	unsigned long freed = 0;
	unsigned i;

	u64 start_time = local_clock();

	if (btree_shrinker_disabled(c))
		return SHRINK_STOP;

	if (c->btree_cache_alloc_lock)
		return SHRINK_STOP;

	/* Return -1 if we can't do anything right now */
	if (sc->gfp_mask & __GFP_IO)
		mutex_lock(&c->btree_cache_lock);
	else if (!mutex_trylock(&c->btree_cache_lock))
		return -1;

	/*
	 * It's _really_ critical that we don't free too many btree nodes - we
	 * have to always leave ourselves a reserve. The reserve is how we
	 * guarantee that allocating memory for a new btree node can always
	 * succeed, so that inserting keys into the btree can always succeed and
	 * IO can always make forward progress:
	 */
	nr /= btree_pages(c);
	can_free = mca_can_free(c);
	nr = min_t(unsigned long, nr, can_free);

	i = 0;
	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
		touched++;

		if (freed >= nr)
			break;

		if (++i > 3 &&
		    !mca_reap_notrace(c, b, false)) {
			mca_data_free(c, b);
			six_unlock_write(&b->lock);
			six_unlock_intent(&b->lock);
			freed++;
		}
	}
restart:
	list_for_each_entry_safe(b, t, &c->btree_cache, list) {
		touched++;

		if (freed >= nr) {
			/* Save position */
			if (&t->list != &c->btree_cache)
				list_move_tail(&c->btree_cache, &t->list);
			break;
		}

		if (!btree_node_accessed(b) &&
		    !mca_reap(c, b, false)) {
			/* can't call mca_hash_remove under btree_cache_lock  */
			freed++;
			if (&t->list != &c->btree_cache)
				list_move_tail(&c->btree_cache, &t->list);

			mca_data_free(c, b);
			mutex_unlock(&c->btree_cache_lock);

			mca_hash_remove(c, b);
			six_unlock_write(&b->lock);
			six_unlock_intent(&b->lock);

			if (freed >= nr)
				goto out;

			if (sc->gfp_mask & __GFP_IO)
				mutex_lock(&c->btree_cache_lock);
			else if (!mutex_trylock(&c->btree_cache_lock))
				goto out;
			goto restart;
		} else
			clear_btree_node_accessed(b);
	}

	mutex_unlock(&c->btree_cache_lock);
out:
	bch_time_stats_update(&c->mca_scan_time, start_time);

	trace_bcache_mca_scan(c,
			      touched * btree_pages(c),
			      freed * btree_pages(c),
			      can_free * btree_pages(c),
			      sc->nr_to_scan);

	return (unsigned long) freed * btree_pages(c);
}

static unsigned long bch_mca_count(struct shrinker *shrink,
				   struct shrink_control *sc)
{
	struct cache_set *c = container_of(shrink, struct cache_set,
					   btree_cache_shrink);

	if (btree_shrinker_disabled(c))
		return 0;

	if (c->btree_cache_alloc_lock)
		return 0;

	return mca_can_free(c) * btree_pages(c);
}

void bch_btree_cache_free(struct cache_set *c)
{
	struct btree *b;
	unsigned i;

	if (c->btree_cache_shrink.list.next)
		unregister_shrinker(&c->btree_cache_shrink);

	mutex_lock(&c->btree_cache_lock);

#ifdef CONFIG_BCACHE_DEBUG
	if (c->verify_data)
		list_move(&c->verify_data->list, &c->btree_cache);

	free_pages((unsigned long) c->verify_ondisk, ilog2(btree_pages(c)));
#endif

	for (i = 0; i < BTREE_ID_NR; i++)
		if (c->btree_roots[i].b)
			list_add(&c->btree_roots[i].b->list, &c->btree_cache);

	list_splice(&c->btree_cache_freeable,
		    &c->btree_cache);

	while (!list_empty(&c->btree_cache)) {
		b = list_first_entry(&c->btree_cache, struct btree, list);

		if (btree_node_dirty(b))
			bch_btree_complete_write(c, b, btree_current_write(b));
		clear_btree_node_dirty(b);

		mca_data_free(c, b);
	}

	while (!list_empty(&c->btree_cache_freed)) {
		b = list_first_entry(&c->btree_cache_freed,
				     struct btree, list);
		list_del(&b->list);
		kfree(b);
	}

	mutex_unlock(&c->btree_cache_lock);

	if (c->btree_cache_table_init_done)
		rhashtable_destroy(&c->btree_cache_table);
}

int bch_btree_cache_alloc(struct cache_set *c)
{
	unsigned i;
	int ret;

	ret = rhashtable_init(&c->btree_cache_table, &bch_btree_cache_params);
	if (ret)
		return ret;

	c->btree_cache_table_init_done = true;

	bch_recalc_btree_reserve(c);

	for (i = 0; i < c->btree_cache_reserve; i++)
		if (!mca_bucket_alloc(c, GFP_KERNEL))
			return -ENOMEM;

	list_splice_init(&c->btree_cache,
			 &c->btree_cache_freeable);

#ifdef CONFIG_BCACHE_DEBUG
	mutex_init(&c->verify_lock);

	c->verify_ondisk = (void *)
		__get_free_pages(GFP_KERNEL, ilog2(btree_pages(c)));
	if (!c->verify_ondisk)
		return -ENOMEM;

	c->verify_data = mca_bucket_alloc(c, GFP_KERNEL);
	if (!c->verify_data)
		return -ENOMEM;

	list_del_init(&c->verify_data->list);
#endif

	c->btree_cache_shrink.count_objects = bch_mca_count;
	c->btree_cache_shrink.scan_objects = bch_mca_scan;
	c->btree_cache_shrink.seeks = 4;
	c->btree_cache_shrink.batch = btree_pages(c) * 2;
	register_shrinker(&c->btree_cache_shrink);

	return 0;
}

/*
 * We can only have one thread cannibalizing other cached btree nodes at a time,
 * or we'll deadlock. We use an open coded mutex to ensure that, which a
 * cannibalize_bucket() will take. This means every time we unlock the root of
 * the btree, we need to release this lock if we have it held.
 */
void mca_cannibalize_unlock(struct cache_set *c)
{
	if (c->btree_cache_alloc_lock == current) {
		trace_bcache_mca_cannibalize_unlock(c);
		c->btree_cache_alloc_lock = NULL;
		closure_wake_up(&c->mca_wait);
	}
}

int mca_cannibalize_lock(struct cache_set *c, struct closure *cl)
{
	struct task_struct *old;

	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
	if (old == NULL || old == current)
		goto success;

	if (!cl) {
		trace_bcache_mca_cannibalize_lock_fail(c);
		return -ENOMEM;
	}

	closure_wait(&c->mca_wait, cl);

	/* Try again, after adding ourselves to waitlist */
	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
	if (old == NULL || old == current) {
		/* We raced */
		closure_wake_up(&c->mca_wait);
		goto success;
	}

	trace_bcache_mca_cannibalize_lock_fail(c);
	return -EAGAIN;

success:
	trace_bcache_mca_cannibalize_lock(c);
	return 0;
}

static struct btree *mca_cannibalize(struct cache_set *c)
{
	struct btree *b;

	list_for_each_entry_reverse(b, &c->btree_cache, list)
		if (!mca_reap(c, b, false))
			return b;

	while (1) {
		list_for_each_entry_reverse(b, &c->btree_cache, list)
			if (!mca_reap(c, b, true))
				return b;

		/*
		 * Rare case: all nodes were intent-locked.
		 * Just busy-wait.
		 */
		WARN_ONCE(1, "btree cache cannibalize failed\n");
		cond_resched();
	}
}

struct btree *mca_alloc(struct cache_set *c)
{
	struct btree *b;
	u64 start_time = local_clock();

	mutex_lock(&c->btree_cache_lock);

	/*
	 * btree_free() doesn't free memory; it sticks the node on the end of
	 * the list. Check if there's any freed nodes there:
	 */
	list_for_each_entry(b, &c->btree_cache_freeable, list)
		if (!mca_reap_notrace(c, b, false))
			goto out_unlock;

	/*
	 * We never free struct btree itself, just the memory that holds the on
	 * disk node. Check the freed list before allocating a new one:
	 */
	list_for_each_entry(b, &c->btree_cache_freed, list)
		if (!mca_reap_notrace(c, b, false)) {
			mca_data_alloc(c, b, __GFP_NOWARN|GFP_NOIO);
			if (b->data)
				goto out_unlock;

			six_unlock_write(&b->lock);
			six_unlock_intent(&b->lock);
			goto err;
		}

	b = mca_bucket_alloc(c, __GFP_NOWARN|GFP_NOIO);
	if (!b)
		goto err;

	BUG_ON(!six_trylock_intent(&b->lock));
	BUG_ON(!six_trylock_write(&b->lock));
out_unlock:
	BUG_ON(bkey_extent_is_data(&b->key.k) && PTR_HASH(&b->key));
	BUG_ON(btree_node_write_in_flight(b));

	list_del_init(&b->list);
	mutex_unlock(&c->btree_cache_lock);
out:
	b->flags		= 0;
	b->written		= 0;
	b->nsets		= 0;
	b->sib_u64s[0]		= 0;
	b->sib_u64s[1]		= 0;
	b->whiteout_u64s	= 0;
	b->uncompacted_whiteout_u64s = 0;
	bch_btree_keys_init(b, &c->expensive_debug_checks);

	bch_time_stats_update(&c->mca_alloc_time, start_time);

	return b;
err:
	/* Try to cannibalize another cached btree node: */
	if (c->btree_cache_alloc_lock == current) {
		b = mca_cannibalize(c);
		list_del_init(&b->list);
		mutex_unlock(&c->btree_cache_lock);

		mca_hash_remove(c, b);

		trace_bcache_mca_cannibalize(c);
		goto out;
	}

	mutex_unlock(&c->btree_cache_lock);
	return ERR_PTR(-ENOMEM);
}

/* Slowpath, don't want it inlined into btree_iter_traverse() */
static noinline struct btree *bch_btree_node_fill(struct btree_iter *iter,
						  const struct bkey_i *k,
						  unsigned level,
						  enum six_lock_type lock_type)
{
	struct cache_set *c = iter->c;
	struct btree *b;

	b = mca_alloc(c);
	if (IS_ERR(b))
		return b;

	bkey_copy(&b->key, k);
	if (mca_hash_insert(c, b, level, iter->btree_id)) {
		/* raced with another fill: */

		/* mark as unhashed... */
		bkey_i_to_extent(&b->key)->v._data[0] = 0;

		mutex_lock(&c->btree_cache_lock);
		list_add(&b->list, &c->btree_cache_freeable);
		mutex_unlock(&c->btree_cache_lock);

		six_unlock_write(&b->lock);
		six_unlock_intent(&b->lock);
		return NULL;
	}

	/*
	 * If the btree node wasn't cached, we can't drop our lock on
	 * the parent until after it's added to the cache - because
	 * otherwise we could race with a btree_split() freeing the node
	 * we're trying to lock.
	 *
	 * But the deadlock described below doesn't exist in this case,
	 * so it's safe to not drop the parent lock until here:
	 */
	if (btree_node_read_locked(iter, level + 1))
		btree_node_unlock(iter, level + 1);

	bch_btree_node_read(c, b);
	six_unlock_write(&b->lock);

	if (lock_type == SIX_LOCK_read)
		six_lock_downgrade(&b->lock);

	return b;
}

/**
 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
 * in from disk if necessary.
 *
 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
 *
 * The btree node will have either a read or a write lock held, depending on
 * the @write parameter.
 */
struct btree *bch_btree_node_get(struct btree_iter *iter,
				 const struct bkey_i *k, unsigned level,
				 enum six_lock_type lock_type)
{
	struct btree *b;
	struct bset_tree *t;

	BUG_ON(level >= BTREE_MAX_DEPTH);
retry:
	rcu_read_lock();
	b = mca_find(iter->c, k);
	rcu_read_unlock();

	if (unlikely(!b)) {
		/*
		 * We must have the parent locked to call bch_btree_node_fill(),
		 * else we could read in a btree node from disk that's been
		 * freed:
		 */
		b = bch_btree_node_fill(iter, k, level, lock_type);

		/* We raced and found the btree node in the cache */
		if (!b)
			goto retry;

		if (IS_ERR(b))
			return b;
	} else {
		/*
		 * There's a potential deadlock with splits and insertions into
		 * interior nodes we have to avoid:
		 *
		 * The other thread might be holding an intent lock on the node
		 * we want, and they want to update its parent node so they're
		 * going to upgrade their intent lock on the parent node to a
		 * write lock.
		 *
		 * But if we're holding a read lock on the parent, and we're
		 * trying to get the intent lock they're holding, we deadlock.
		 *
		 * So to avoid this we drop the read locks on parent nodes when
		 * we're starting to take intent locks - and handle the race.
		 *
		 * The race is that they might be about to free the node we
		 * want, and dropping our read lock on the parent node lets them
		 * update the parent marking the node we want as freed, and then
		 * free it:
		 *
		 * To guard against this, btree nodes are evicted from the cache
		 * when they're freed - and PTR_HASH() is zeroed out, which we
		 * check for after we lock the node.
		 *
		 * Then, btree_node_relock() on the parent will fail - because
		 * the parent was modified, when the pointer to the node we want
		 * was removed - and we'll bail out:
		 */
		if (btree_node_read_locked(iter, level + 1))
			btree_node_unlock(iter, level + 1);

		if (!btree_node_lock(b, k->k.p, level, iter, lock_type))
			return ERR_PTR(-EINTR);

		if (unlikely(PTR_HASH(&b->key) != PTR_HASH(k) ||
			     b->level != level ||
			     race_fault())) {
			six_unlock_type(&b->lock, lock_type);
			if (btree_node_relock(iter, level + 1))
				goto retry;

			return ERR_PTR(-EINTR);
		}
	}

	prefetch(b->aux_data);

	for_each_bset(b, t) {
		void *p = (u64 *) b->aux_data + t->aux_data_offset;

		prefetch(p + L1_CACHE_BYTES * 0);
		prefetch(p + L1_CACHE_BYTES * 1);
		prefetch(p + L1_CACHE_BYTES * 2);
	}

	/* avoid atomic set bit if it's not needed: */
	if (btree_node_accessed(b))
		set_btree_node_accessed(b);

	if (unlikely(btree_node_read_error(b))) {
		six_unlock_type(&b->lock, lock_type);
		return ERR_PTR(-EIO);
	}

	EBUG_ON(!b->written);
	EBUG_ON(b->btree_id != iter->btree_id ||
		BSET_BTREE_LEVEL(&b->data->keys) != level ||
		bkey_cmp(b->data->max_key, k->k.p));

	return b;
}

int bch_print_btree_node(struct cache_set *c, struct btree *b,
			 char *buf, size_t len)
{
	const struct bkey_format *f = &b->format;
	struct bset_stats stats;
	char ptrs[100];

	memset(&stats, 0, sizeof(stats));

	bch_val_to_text(c, BKEY_TYPE_BTREE, ptrs, sizeof(ptrs),
			bkey_i_to_s_c(&b->key));
	bch_btree_keys_stats(b, &stats);

	return scnprintf(buf, len,
			 "l %u %llu:%llu - %llu:%llu:\n"
			 "    ptrs: %s\n"
			 "    format: u64s %u fields %u %u %u %u %u\n"
			 "    unpack fn len: %u\n"
			 "    bytes used %zu/%zu (%zu%% full)\n"
			 "    sib u64s: %u, %u (merge threshold %zu)\n"
			 "    nr packed keys %u\n"
			 "    nr unpacked keys %u\n"
			 "    floats %zu\n"
			 "    failed unpacked %zu\n"
			 "    failed prev %zu\n"
			 "    failed overflow %zu\n",
			 b->level,
			 b->data->min_key.inode,
			 b->data->min_key.offset,
			 b->data->max_key.inode,
			 b->data->max_key.offset,
			 ptrs,
			 f->key_u64s,
			 f->bits_per_field[0],
			 f->bits_per_field[1],
			 f->bits_per_field[2],
			 f->bits_per_field[3],
			 f->bits_per_field[4],
			 b->unpack_fn_len,
			 b->nr.live_u64s * sizeof(u64),
			 btree_bytes(c) - sizeof(struct btree_node),
			 b->nr.live_u64s * 100 / btree_max_u64s(c),
			 b->sib_u64s[0],
			 b->sib_u64s[1],
			 BTREE_FOREGROUND_MERGE_THRESHOLD(c),
			 b->nr.packed_keys,
			 b->nr.unpacked_keys,
			 stats.floats,
			 stats.failed_unpacked,
			 stats.failed_prev,
			 stats.failed_overflow);
}