summaryrefslogtreecommitdiff
path: root/libbcache/btree_io.c
diff options
context:
space:
mode:
Diffstat (limited to 'libbcache/btree_io.c')
-rw-r--r--libbcache/btree_io.c1674
1 files changed, 1674 insertions, 0 deletions
diff --git a/libbcache/btree_io.c b/libbcache/btree_io.c
new file mode 100644
index 00000000..ff976b59
--- /dev/null
+++ b/libbcache/btree_io.c
@@ -0,0 +1,1674 @@
+
+#include "bcache.h"
+#include "bkey_methods.h"
+#include "btree_cache.h"
+#include "btree_update.h"
+#include "btree_io.h"
+#include "btree_iter.h"
+#include "btree_locking.h"
+#include "buckets.h"
+#include "checksum.h"
+#include "debug.h"
+#include "error.h"
+#include "extents.h"
+#include "io.h"
+#include "journal.h"
+
+#include <trace/events/bcache.h>
+
+static void verify_no_dups(struct btree *b,
+ struct bkey_packed *start,
+ struct bkey_packed *end)
+{
+#ifdef CONFIG_BCACHE_DEBUG
+ struct bkey_packed *k;
+
+ for (k = start; k != end && bkey_next(k) != end; k = bkey_next(k)) {
+ struct bkey l = bkey_unpack_key(b, k);
+ struct bkey r = bkey_unpack_key(b, bkey_next(k));
+
+ BUG_ON(btree_node_is_extents(b)
+ ? bkey_cmp(l.p, bkey_start_pos(&r)) > 0
+ : bkey_cmp(l.p, bkey_start_pos(&r)) >= 0);
+ //BUG_ON(bkey_cmp_packed(&b->format, k, bkey_next(k)) >= 0);
+ }
+#endif
+}
+
+static void clear_needs_whiteout(struct bset *i)
+{
+ struct bkey_packed *k;
+
+ for (k = i->start; k != bset_bkey_last(i); k = bkey_next(k))
+ k->needs_whiteout = false;
+}
+
+static void set_needs_whiteout(struct bset *i)
+{
+ struct bkey_packed *k;
+
+ for (k = i->start; k != bset_bkey_last(i); k = bkey_next(k))
+ k->needs_whiteout = true;
+}
+
+static void btree_bounce_free(struct cache_set *c, unsigned order,
+ bool used_mempool, void *p)
+{
+ if (used_mempool)
+ mempool_free(virt_to_page(p), &c->btree_bounce_pool);
+ else
+ free_pages((unsigned long) p, order);
+}
+
+static void *btree_bounce_alloc(struct cache_set *c, unsigned order,
+ bool *used_mempool)
+{
+ void *p;
+
+ BUG_ON(1 << order > btree_pages(c));
+
+ *used_mempool = false;
+ p = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, order);
+ if (p)
+ return p;
+
+ *used_mempool = true;
+ return page_address(mempool_alloc(&c->btree_bounce_pool, GFP_NOIO));
+}
+
+typedef int (*sort_cmp_fn)(struct btree *,
+ struct bkey_packed *,
+ struct bkey_packed *);
+
+struct sort_iter {
+ struct btree *b;
+ unsigned used;
+
+ struct sort_iter_set {
+ struct bkey_packed *k, *end;
+ } data[MAX_BSETS + 1];
+};
+
+static void sort_iter_init(struct sort_iter *iter, struct btree *b)
+{
+ memset(iter, 0, sizeof(*iter));
+ iter->b = b;
+}
+
+static inline void __sort_iter_sift(struct sort_iter *iter,
+ unsigned from,
+ sort_cmp_fn cmp)
+{
+ unsigned i;
+
+ for (i = from;
+ i + 1 < iter->used &&
+ cmp(iter->b, iter->data[i].k, iter->data[i + 1].k) > 0;
+ i++)
+ swap(iter->data[i], iter->data[i + 1]);
+}
+
+static inline void sort_iter_sift(struct sort_iter *iter, sort_cmp_fn cmp)
+{
+
+ __sort_iter_sift(iter, 0, cmp);
+}
+
+static inline void sort_iter_sort(struct sort_iter *iter, sort_cmp_fn cmp)
+{
+ unsigned i = iter->used;
+
+ while (i--)
+ __sort_iter_sift(iter, i, cmp);
+}
+
+static void sort_iter_add(struct sort_iter *iter,
+ struct bkey_packed *k,
+ struct bkey_packed *end)
+{
+ BUG_ON(iter->used >= ARRAY_SIZE(iter->data));
+
+ if (k != end)
+ iter->data[iter->used++] = (struct sort_iter_set) { k, end };
+}
+
+static inline struct bkey_packed *sort_iter_peek(struct sort_iter *iter)
+{
+ return iter->used ? iter->data->k : NULL;
+}
+
+static inline void sort_iter_advance(struct sort_iter *iter, sort_cmp_fn cmp)
+{
+ iter->data->k = bkey_next(iter->data->k);
+
+ BUG_ON(iter->data->k > iter->data->end);
+
+ if (iter->data->k == iter->data->end)
+ memmove(&iter->data[0],
+ &iter->data[1],
+ sizeof(iter->data[0]) * --iter->used);
+ else
+ sort_iter_sift(iter, cmp);
+}
+
+static inline struct bkey_packed *sort_iter_next(struct sort_iter *iter,
+ sort_cmp_fn cmp)
+{
+ struct bkey_packed *ret = sort_iter_peek(iter);
+
+ if (ret)
+ sort_iter_advance(iter, cmp);
+
+ return ret;
+}
+
+static inline int sort_key_whiteouts_cmp(struct btree *b,
+ struct bkey_packed *l,
+ struct bkey_packed *r)
+{
+ return bkey_cmp_packed(b, l, r);
+}
+
+static unsigned sort_key_whiteouts(struct bkey_packed *dst,
+ struct sort_iter *iter)
+{
+ struct bkey_packed *in, *out = dst;
+
+ sort_iter_sort(iter, sort_key_whiteouts_cmp);
+
+ while ((in = sort_iter_next(iter, sort_key_whiteouts_cmp))) {
+ bkey_copy(out, in);
+ out = bkey_next(out);
+ }
+
+ return (u64 *) out - (u64 *) dst;
+}
+
+static inline int sort_extent_whiteouts_cmp(struct btree *b,
+ struct bkey_packed *l,
+ struct bkey_packed *r)
+{
+ struct bkey ul = bkey_unpack_key(b, l);
+ struct bkey ur = bkey_unpack_key(b, r);
+
+ return bkey_cmp(bkey_start_pos(&ul), bkey_start_pos(&ur));
+}
+
+static unsigned sort_extent_whiteouts(struct bkey_packed *dst,
+ struct sort_iter *iter)
+{
+ const struct bkey_format *f = &iter->b->format;
+ struct bkey_packed *in, *out = dst;
+ struct bkey_i l, r;
+ bool prev = false, l_packed;
+ u64 max_packed_size = bkey_field_max(f, BKEY_FIELD_SIZE);
+ u64 max_packed_offset = bkey_field_max(f, BKEY_FIELD_OFFSET);
+ u64 new_size;
+
+ max_packed_size = min_t(u64, max_packed_size, KEY_SIZE_MAX);
+
+ sort_iter_sort(iter, sort_extent_whiteouts_cmp);
+
+ while ((in = sort_iter_next(iter, sort_extent_whiteouts_cmp))) {
+ EBUG_ON(bkeyp_val_u64s(f, in));
+ EBUG_ON(in->type != KEY_TYPE_DISCARD);
+
+ r.k = bkey_unpack_key(iter->b, in);
+
+ if (prev &&
+ bkey_cmp(l.k.p, bkey_start_pos(&r.k)) >= 0) {
+ if (bkey_cmp(l.k.p, r.k.p) >= 0)
+ continue;
+
+ new_size = l_packed
+ ? min(max_packed_size, max_packed_offset -
+ bkey_start_offset(&l.k))
+ : KEY_SIZE_MAX;
+
+ new_size = min(new_size, r.k.p.offset -
+ bkey_start_offset(&l.k));
+
+ BUG_ON(new_size < l.k.size);
+
+ bch_key_resize(&l.k, new_size);
+
+ if (bkey_cmp(l.k.p, r.k.p) >= 0)
+ continue;
+
+ bch_cut_front(l.k.p, &r);
+ }
+
+ if (prev) {
+ if (!bkey_pack(out, &l, f)) {
+ BUG_ON(l_packed);
+ bkey_copy(out, &l);
+ }
+ out = bkey_next(out);
+ }
+
+ l = r;
+ prev = true;
+ l_packed = bkey_packed(in);
+ }
+
+ if (prev) {
+ if (!bkey_pack(out, &l, f)) {
+ BUG_ON(l_packed);
+ bkey_copy(out, &l);
+ }
+ out = bkey_next(out);
+ }
+
+ return (u64 *) out - (u64 *) dst;
+}
+
+static unsigned should_compact_bset(struct btree *b, struct bset_tree *t,
+ bool compacting,
+ enum compact_mode mode)
+{
+ unsigned live_u64s = b->nr.bset_u64s[t - b->set];
+ unsigned bset_u64s = le16_to_cpu(bset(b, t)->u64s);
+
+ if (live_u64s == bset_u64s)
+ return 0;
+
+ if (mode == COMPACT_LAZY) {
+ if (live_u64s * 4 < bset_u64s * 3 ||
+ (compacting && bset_unwritten(b, bset(b, t))))
+ return bset_u64s - live_u64s;
+ } else {
+ if (bset_written(b, bset(b, t)))
+ return bset_u64s - live_u64s;
+ }
+
+ return 0;
+}
+
+bool __bch_compact_whiteouts(struct cache_set *c, struct btree *b,
+ enum compact_mode mode)
+{
+ const struct bkey_format *f = &b->format;
+ struct bset_tree *t;
+ struct bkey_packed *whiteouts = NULL;
+ struct bkey_packed *u_start, *u_pos;
+ struct sort_iter sort_iter;
+ unsigned order, whiteout_u64s = 0, u64s;
+ bool used_mempool, compacting = false;
+
+ for_each_bset(b, t)
+ whiteout_u64s += should_compact_bset(b, t,
+ whiteout_u64s != 0, mode);
+
+ if (!whiteout_u64s)
+ return false;
+
+ sort_iter_init(&sort_iter, b);
+
+ whiteout_u64s += b->whiteout_u64s;
+ order = get_order(whiteout_u64s * sizeof(u64));
+
+ whiteouts = btree_bounce_alloc(c, order, &used_mempool);
+ u_start = u_pos = whiteouts;
+
+ memcpy_u64s(u_pos, unwritten_whiteouts_start(c, b),
+ b->whiteout_u64s);
+ u_pos = (void *) u_pos + b->whiteout_u64s * sizeof(u64);
+
+ sort_iter_add(&sort_iter, u_start, u_pos);
+
+ for_each_bset(b, t) {
+ struct bset *i = bset(b, t);
+ struct bkey_packed *k, *n, *out, *start, *end;
+ struct btree_node_entry *src = NULL, *dst = NULL;
+
+ if (t != b->set && bset_unwritten(b, i)) {
+ src = container_of(i, struct btree_node_entry, keys);
+ dst = max(write_block(b),
+ (void *) btree_bkey_last(b, t -1));
+ }
+
+ if (!should_compact_bset(b, t, compacting, mode)) {
+ if (src != dst) {
+ memmove(dst, src, sizeof(*src) +
+ le16_to_cpu(src->keys.u64s) *
+ sizeof(u64));
+ i = &dst->keys;
+ set_btree_bset(b, t, i);
+ }
+ continue;
+ }
+
+ compacting = true;
+ u_start = u_pos;
+ start = i->start;
+ end = bset_bkey_last(i);
+
+ if (src != dst) {
+ memmove(dst, src, sizeof(*src));
+ i = &dst->keys;
+ set_btree_bset(b, t, i);
+ }
+
+ out = i->start;
+
+ for (k = start; k != end; k = n) {
+ n = bkey_next(k);
+
+ if (bkey_deleted(k) && btree_node_is_extents(b))
+ continue;
+
+ if (bkey_whiteout(k) && !k->needs_whiteout)
+ continue;
+
+ if (bkey_whiteout(k)) {
+ unreserve_whiteout(b, t, k);
+ memcpy_u64s(u_pos, k, bkeyp_key_u64s(f, k));
+ set_bkeyp_val_u64s(f, u_pos, 0);
+ u_pos = bkey_next(u_pos);
+ } else if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) {
+ bkey_copy(out, k);
+ out = bkey_next(out);
+ }
+ }
+
+ sort_iter_add(&sort_iter, u_start, u_pos);
+
+ if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK) {
+ i->u64s = cpu_to_le16((u64 *) out - i->_data);
+ set_btree_bset_end(b, t);
+ bch_bset_set_no_aux_tree(b, t);
+ }
+ }
+
+ b->whiteout_u64s = (u64 *) u_pos - (u64 *) whiteouts;
+
+ BUG_ON((void *) unwritten_whiteouts_start(c, b) <
+ (void *) btree_bkey_last(b, bset_tree_last(b)));
+
+ u64s = btree_node_is_extents(b)
+ ? sort_extent_whiteouts(unwritten_whiteouts_start(c, b),
+ &sort_iter)
+ : sort_key_whiteouts(unwritten_whiteouts_start(c, b),
+ &sort_iter);
+
+ BUG_ON(u64s > b->whiteout_u64s);
+ BUG_ON(u64s != b->whiteout_u64s && !btree_node_is_extents(b));
+ BUG_ON(u_pos != whiteouts && !u64s);
+
+ if (u64s != b->whiteout_u64s) {
+ void *src = unwritten_whiteouts_start(c, b);
+
+ b->whiteout_u64s = u64s;
+ memmove_u64s_up(unwritten_whiteouts_start(c, b), src, u64s);
+ }
+
+ verify_no_dups(b,
+ unwritten_whiteouts_start(c, b),
+ unwritten_whiteouts_end(c, b));
+
+ btree_bounce_free(c, order, used_mempool, whiteouts);
+
+ if (mode != COMPACT_WRITTEN_NO_WRITE_LOCK)
+ bch_btree_build_aux_trees(b);
+
+ bch_btree_keys_u64s_remaining(c, b);
+ bch_verify_btree_nr_keys(b);
+
+ return true;
+}
+
+static bool bch_drop_whiteouts(struct btree *b)
+{
+ struct bset_tree *t;
+ bool ret = false;
+
+ for_each_bset(b, t) {
+ struct bset *i = bset(b, t);
+ struct bkey_packed *k, *n, *out, *start, *end;
+
+ if (!should_compact_bset(b, t, true, true))
+ continue;
+
+ start = btree_bkey_first(b, t);
+ end = btree_bkey_last(b, t);
+
+ if (bset_unwritten(b, i) &&
+ t != b->set) {
+ struct bset *dst =
+ max_t(struct bset *, write_block(b),
+ (void *) btree_bkey_last(b, t -1));
+
+ memmove(dst, i, sizeof(struct bset));
+ i = dst;
+ set_btree_bset(b, t, i);
+ }
+
+ out = i->start;
+
+ for (k = start; k != end; k = n) {
+ n = bkey_next(k);
+
+ if (!bkey_whiteout(k)) {
+ bkey_copy(out, k);
+ out = bkey_next(out);
+ }
+ }
+
+ i->u64s = cpu_to_le16((u64 *) out - i->_data);
+ bch_bset_set_no_aux_tree(b, t);
+ ret = true;
+ }
+
+ bch_verify_btree_nr_keys(b);
+
+ return ret;
+}
+
+static inline int sort_keys_cmp(struct btree *b,
+ struct bkey_packed *l,
+ struct bkey_packed *r)
+{
+ return bkey_cmp_packed(b, l, r) ?:
+ (int) bkey_whiteout(r) - (int) bkey_whiteout(l) ?:
+ (int) l->needs_whiteout - (int) r->needs_whiteout;
+}
+
+static unsigned sort_keys(struct bkey_packed *dst,
+ struct sort_iter *iter,
+ bool filter_whiteouts)
+{
+ const struct bkey_format *f = &iter->b->format;
+ struct bkey_packed *in, *next, *out = dst;
+
+ sort_iter_sort(iter, sort_keys_cmp);
+
+ while ((in = sort_iter_next(iter, sort_keys_cmp))) {
+ if (bkey_whiteout(in) &&
+ (filter_whiteouts || !in->needs_whiteout))
+ continue;
+
+ if (bkey_whiteout(in) &&
+ (next = sort_iter_peek(iter)) &&
+ !bkey_cmp_packed(iter->b, in, next)) {
+ BUG_ON(in->needs_whiteout &&
+ next->needs_whiteout);
+ /*
+ * XXX racy, called with read lock from write path
+ *
+ * leads to spurious BUG_ON() in bkey_unpack_key() in
+ * debug mode
+ */
+ next->needs_whiteout |= in->needs_whiteout;
+ continue;
+ }
+
+ if (bkey_whiteout(in)) {
+ memcpy_u64s(out, in, bkeyp_key_u64s(f, in));
+ set_bkeyp_val_u64s(f, out, 0);
+ } else {
+ bkey_copy(out, in);
+ }
+ out = bkey_next(out);
+ }
+
+ return (u64 *) out - (u64 *) dst;
+}
+
+static inline int sort_extents_cmp(struct btree *b,
+ struct bkey_packed *l,
+ struct bkey_packed *r)
+{
+ return bkey_cmp_packed(b, l, r) ?:
+ (int) bkey_deleted(l) - (int) bkey_deleted(r);
+}
+
+static unsigned sort_extents(struct bkey_packed *dst,
+ struct sort_iter *iter,
+ bool filter_whiteouts)
+{
+ struct bkey_packed *in, *out = dst;
+
+ sort_iter_sort(iter, sort_extents_cmp);
+
+ while ((in = sort_iter_next(iter, sort_extents_cmp))) {
+ if (bkey_deleted(in))
+ continue;
+
+ if (bkey_whiteout(in) &&
+ (filter_whiteouts || !in->needs_whiteout))
+ continue;
+
+ bkey_copy(out, in);
+ out = bkey_next(out);
+ }
+
+ return (u64 *) out - (u64 *) dst;
+}
+
+static void btree_node_sort(struct cache_set *c, struct btree *b,
+ struct btree_iter *iter,
+ unsigned start_idx,
+ unsigned end_idx,
+ bool filter_whiteouts)
+{
+ struct btree_node *out;
+ struct sort_iter sort_iter;
+ struct bset_tree *t;
+ struct bset *start_bset = bset(b, &b->set[start_idx]);
+ bool used_mempool = false;
+ u64 start_time;
+ unsigned i, u64s = 0, order, shift = end_idx - start_idx - 1;
+ bool sorting_entire_node = start_idx == 0 &&
+ end_idx == b->nsets;
+
+ sort_iter_init(&sort_iter, b);
+
+ for (t = b->set + start_idx;
+ t < b->set + end_idx;
+ t++) {
+ u64s += le16_to_cpu(bset(b, t)->u64s);
+ sort_iter_add(&sort_iter,
+ btree_bkey_first(b, t),
+ btree_bkey_last(b, t));
+ }
+
+ order = sorting_entire_node
+ ? btree_page_order(c)
+ : get_order(__set_bytes(b->data, u64s));
+
+ out = btree_bounce_alloc(c, order, &used_mempool);
+
+ start_time = local_clock();
+
+ if (btree_node_is_extents(b))
+ filter_whiteouts = bset_written(b, start_bset);
+
+ u64s = btree_node_is_extents(b)
+ ? sort_extents(out->keys.start, &sort_iter, filter_whiteouts)
+ : sort_keys(out->keys.start, &sort_iter, filter_whiteouts);
+
+ out->keys.u64s = cpu_to_le16(u64s);
+
+ BUG_ON((void *) bset_bkey_last(&out->keys) >
+ (void *) out + (PAGE_SIZE << order));
+
+ if (sorting_entire_node)
+ bch_time_stats_update(&c->btree_sort_time, start_time);
+
+ /* Make sure we preserve bset journal_seq: */
+ for (t = b->set + start_idx + 1;
+ t < b->set + end_idx;
+ t++)
+ start_bset->journal_seq =
+ max(start_bset->journal_seq,
+ bset(b, t)->journal_seq);
+
+ if (sorting_entire_node) {
+ unsigned u64s = le16_to_cpu(out->keys.u64s);
+
+ BUG_ON(order != btree_page_order(c));
+
+ /*
+ * Our temporary buffer is the same size as the btree node's
+ * buffer, we can just swap buffers instead of doing a big
+ * memcpy()
+ */
+ *out = *b->data;
+ out->keys.u64s = cpu_to_le16(u64s);
+ swap(out, b->data);
+ set_btree_bset(b, b->set, &b->data->keys);
+ } else {
+ start_bset->u64s = out->keys.u64s;
+ memcpy_u64s(start_bset->start,
+ out->keys.start,
+ le16_to_cpu(out->keys.u64s));
+ }
+
+ for (i = start_idx + 1; i < end_idx; i++)
+ b->nr.bset_u64s[start_idx] +=
+ b->nr.bset_u64s[i];
+
+ b->nsets -= shift;
+
+ for (i = start_idx + 1; i < b->nsets; i++) {
+ b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift];
+ b->set[i] = b->set[i + shift];
+ }
+
+ for (i = b->nsets; i < MAX_BSETS; i++)
+ b->nr.bset_u64s[i] = 0;
+
+ set_btree_bset_end(b, &b->set[start_idx]);
+ bch_bset_set_no_aux_tree(b, &b->set[start_idx]);
+
+ btree_bounce_free(c, order, used_mempool, out);
+
+ bch_verify_btree_nr_keys(b);
+}
+
+/* Sort + repack in a new format: */
+static struct btree_nr_keys sort_repack(struct bset *dst,
+ struct btree *src,
+ struct btree_node_iter *src_iter,
+ struct bkey_format *out_f,
+ bool filter_whiteouts)
+{
+ struct bkey_format *in_f = &src->format;
+ struct bkey_packed *in, *out = bset_bkey_last(dst);
+ struct btree_nr_keys nr;
+
+ memset(&nr, 0, sizeof(nr));
+
+ while ((in = bch_btree_node_iter_next_all(src_iter, src))) {
+ if (filter_whiteouts && bkey_whiteout(in))
+ continue;
+
+ if (bch_bkey_transform(out_f, out, bkey_packed(in)
+ ? in_f : &bch_bkey_format_current, in))
+ out->format = KEY_FORMAT_LOCAL_BTREE;
+ else
+ bkey_unpack(src, (void *) out, in);
+
+ btree_keys_account_key_add(&nr, 0, out);
+ out = bkey_next(out);
+ }
+
+ dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
+ return nr;
+}
+
+/* Sort, repack, and merge: */
+static struct btree_nr_keys sort_repack_merge(struct cache_set *c,
+ struct bset *dst,
+ struct btree *src,
+ struct btree_node_iter *iter,
+ struct bkey_format *out_f,
+ bool filter_whiteouts,
+ key_filter_fn filter,
+ key_merge_fn merge)
+{
+ struct bkey_packed *k, *prev = NULL, *out;
+ struct btree_nr_keys nr;
+ BKEY_PADDED(k) tmp;
+
+ memset(&nr, 0, sizeof(nr));
+
+ while ((k = bch_btree_node_iter_next_all(iter, src))) {
+ if (filter_whiteouts && bkey_whiteout(k))
+ continue;
+
+ /*
+ * The filter might modify pointers, so we have to unpack the
+ * key and values to &tmp.k:
+ */
+ bkey_unpack(src, &tmp.k, k);
+
+ if (filter && filter(c, src, bkey_i_to_s(&tmp.k)))
+ continue;
+
+ /* prev is always unpacked, for key merging: */
+
+ if (prev &&
+ merge &&
+ merge(c, src, (void *) prev, &tmp.k) == BCH_MERGE_MERGE)
+ continue;
+
+ /*
+ * the current key becomes the new prev: advance prev, then
+ * copy the current key - but first pack prev (in place):
+ */
+ if (prev) {
+ bkey_pack(prev, (void *) prev, out_f);
+
+ btree_keys_account_key_add(&nr, 0, prev);
+ prev = bkey_next(prev);
+ } else {
+ prev = bset_bkey_last(dst);
+ }
+
+ bkey_copy(prev, &tmp.k);
+ }
+
+ if (prev) {
+ bkey_pack(prev, (void *) prev, out_f);
+ btree_keys_account_key_add(&nr, 0, prev);
+ out = bkey_next(prev);
+ } else {
+ out = bset_bkey_last(dst);
+ }
+
+ dst->u64s = cpu_to_le16((u64 *) out - dst->_data);
+ return nr;
+}
+
+void bch_btree_sort_into(struct cache_set *c,
+ struct btree *dst,
+ struct btree *src)
+{
+ struct btree_nr_keys nr;
+ struct btree_node_iter src_iter;
+ u64 start_time = local_clock();
+
+ BUG_ON(dst->nsets != 1);
+
+ bch_bset_set_no_aux_tree(dst, dst->set);
+
+ bch_btree_node_iter_init_from_start(&src_iter, src,
+ btree_node_is_extents(src));
+
+ if (btree_node_ops(src)->key_normalize ||
+ btree_node_ops(src)->key_merge)
+ nr = sort_repack_merge(c, btree_bset_first(dst),
+ src, &src_iter,
+ &dst->format,
+ true,
+ btree_node_ops(src)->key_normalize,
+ btree_node_ops(src)->key_merge);
+ else
+ nr = sort_repack(btree_bset_first(dst),
+ src, &src_iter,
+ &dst->format,
+ true);
+
+ bch_time_stats_update(&c->btree_sort_time, start_time);
+
+ set_btree_bset_end(dst, dst->set);
+
+ dst->nr.live_u64s += nr.live_u64s;
+ dst->nr.bset_u64s[0] += nr.bset_u64s[0];
+ dst->nr.packed_keys += nr.packed_keys;
+ dst->nr.unpacked_keys += nr.unpacked_keys;
+
+ bch_verify_btree_nr_keys(dst);
+}
+
+#define SORT_CRIT (4096 / sizeof(u64))
+
+/*
+ * We're about to add another bset to the btree node, so if there's currently
+ * too many bsets - sort some of them together:
+ */
+static bool btree_node_compact(struct cache_set *c, struct btree *b,
+ struct btree_iter *iter)
+{
+ unsigned unwritten_idx;
+ bool ret = false;
+
+ for (unwritten_idx = 0;
+ unwritten_idx < b->nsets;
+ unwritten_idx++)
+ if (bset_unwritten(b, bset(b, &b->set[unwritten_idx])))
+ break;
+
+ if (b->nsets - unwritten_idx > 1) {
+ btree_node_sort(c, b, iter, unwritten_idx,
+ b->nsets, false);
+ ret = true;
+ }
+
+ if (unwritten_idx > 1) {
+ btree_node_sort(c, b, iter, 0, unwritten_idx, false);
+ ret = true;
+ }
+
+ return ret;
+}
+
+void bch_btree_build_aux_trees(struct btree *b)
+{
+ struct bset_tree *t;
+
+ for_each_bset(b, t)
+ bch_bset_build_aux_tree(b, t,
+ bset_unwritten(b, bset(b, t)) &&
+ t == bset_tree_last(b));
+}
+
+/*
+ * @bch_btree_init_next - initialize a new (unwritten) bset that can then be
+ * inserted into
+ *
+ * Safe to call if there already is an unwritten bset - will only add a new bset
+ * if @b doesn't already have one.
+ *
+ * Returns true if we sorted (i.e. invalidated iterators
+ */
+void bch_btree_init_next(struct cache_set *c, struct btree *b,
+ struct btree_iter *iter)
+{
+ struct btree_node_entry *bne;
+ bool did_sort;
+
+ EBUG_ON(!(b->lock.state.seq & 1));
+ EBUG_ON(iter && iter->nodes[b->level] != b);
+
+ did_sort = btree_node_compact(c, b, iter);
+
+ bne = want_new_bset(c, b);
+ if (bne)
+ bch_bset_init_next(b, &bne->keys);
+
+ bch_btree_build_aux_trees(b);
+
+ if (iter && did_sort)
+ bch_btree_iter_reinit_node(iter, b);
+}
+
+/*
+ * We seed the checksum with the entire first pointer (dev, gen and offset),
+ * since for btree nodes we have to store the checksum with the data instead of
+ * the pointer - this helps guard against reading a valid btree node that is not
+ * the node we actually wanted:
+ */
+#define btree_csum_set(_b, _i) \
+({ \
+ void *_data = (void *) (_i) + 8; \
+ void *_end = bset_bkey_last(&(_i)->keys); \
+ \
+ bch_checksum_update(BSET_CSUM_TYPE(&(_i)->keys), \
+ bkey_i_to_extent_c(&(_b)->key)->v._data[0], \
+ _data, \
+ _end - _data) ^ 0xffffffffffffffffULL; \
+})
+
+#define btree_node_error(b, c, ptr, fmt, ...) \
+ cache_set_inconsistent(c, \
+ "btree node error at btree %u level %u/%u bucket %zu block %u u64s %u: " fmt,\
+ (b)->btree_id, (b)->level, btree_node_root(c, b) \
+ ? btree_node_root(c, b)->level : -1, \
+ PTR_BUCKET_NR(ca, ptr), (b)->written, \
+ (i)->u64s, ##__VA_ARGS__)
+
+static const char *validate_bset(struct cache_set *c, struct btree *b,
+ struct cache *ca,
+ const struct bch_extent_ptr *ptr,
+ struct bset *i, unsigned sectors,
+ unsigned *whiteout_u64s)
+{
+ struct bkey_packed *k, *prev = NULL;
+ bool seen_non_whiteout = false;
+
+ if (le16_to_cpu(i->version) != BCACHE_BSET_VERSION)
+ return "unsupported bset version";
+
+ if (b->written + sectors > c->sb.btree_node_size)
+ return "bset past end of btree node";
+
+ if (i != &b->data->keys && !i->u64s)
+ btree_node_error(b, c, ptr, "empty set");
+
+ if (!BSET_SEPARATE_WHITEOUTS(i)) {
+ seen_non_whiteout = true;
+ whiteout_u64s = 0;
+ }
+
+ for (k = i->start;
+ k != bset_bkey_last(i);) {
+ struct bkey_s_c u;
+ struct bkey tmp;
+ const char *invalid;
+
+ if (!k->u64s) {
+ btree_node_error(b, c, ptr,
+ "KEY_U64s 0: %zu bytes of metadata lost",
+ (void *) bset_bkey_last(i) - (void *) k);
+
+ i->u64s = cpu_to_le16((u64 *) k - i->_data);
+ break;
+ }
+
+ if (bkey_next(k) > bset_bkey_last(i)) {
+ btree_node_error(b, c, ptr,
+ "key extends past end of bset");
+
+ i->u64s = cpu_to_le16((u64 *) k - i->_data);
+ break;
+ }
+
+ if (k->format > KEY_FORMAT_CURRENT) {
+ btree_node_error(b, c, ptr,
+ "invalid bkey format %u", k->format);
+
+ i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
+ memmove_u64s_down(k, bkey_next(k),
+ (u64 *) bset_bkey_last(i) - (u64 *) k);
+ continue;
+ }
+
+ if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN)
+ bch_bkey_swab(btree_node_type(b), &b->format, k);
+
+ u = bkey_disassemble(b, k, &tmp);
+
+ invalid = btree_bkey_invalid(c, b, u);
+ if (invalid) {
+ char buf[160];
+
+ bch_bkey_val_to_text(c, btree_node_type(b),
+ buf, sizeof(buf), u);
+ btree_node_error(b, c, ptr,
+ "invalid bkey %s: %s", buf, invalid);
+
+ i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s);
+ memmove_u64s_down(k, bkey_next(k),
+ (u64 *) bset_bkey_last(i) - (u64 *) k);
+ continue;
+ }
+
+ /*
+ * with the separate whiteouts thing (used for extents), the
+ * second set of keys actually can have whiteouts too, so we
+ * can't solely go off bkey_whiteout()...
+ */
+
+ if (!seen_non_whiteout &&
+ (!bkey_whiteout(k) ||
+ (prev && bkey_cmp_left_packed_byval(b, prev,
+ bkey_start_pos(u.k)) > 0))) {
+ *whiteout_u64s = k->_data - i->_data;
+ seen_non_whiteout = true;
+ }
+
+ prev = k;
+ k = bkey_next(k);
+ }
+
+ SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
+
+ b->written += sectors;
+ return NULL;
+}
+
+void bch_btree_node_read_done(struct cache_set *c, struct btree *b,
+ struct cache *ca,
+ const struct bch_extent_ptr *ptr)
+{
+ struct btree_node_entry *bne;
+ struct bset *i = &b->data->keys;
+ struct btree_node_iter *iter;
+ struct btree_node *sorted;
+ bool used_mempool;
+ unsigned u64s;
+ const char *err;
+ int ret;
+
+ iter = mempool_alloc(&c->fill_iter, GFP_NOIO);
+ __bch_btree_node_iter_init(iter, btree_node_is_extents(b));
+
+ err = "dynamic fault";
+ if (bch_meta_read_fault("btree"))
+ goto err;
+
+ while (b->written < c->sb.btree_node_size) {
+ unsigned sectors, whiteout_u64s = 0;
+
+ if (!b->written) {
+ i = &b->data->keys;
+
+ err = "unknown checksum type";
+ if (BSET_CSUM_TYPE(i) >= BCH_CSUM_NR)
+ goto err;
+
+ /* XXX: retry checksum errors */
+
+ err = "bad checksum";
+ if (le64_to_cpu(b->data->csum) !=
+ btree_csum_set(b, b->data))
+ goto err;
+
+ sectors = __set_blocks(b->data,
+ le16_to_cpu(b->data->keys.u64s),
+ block_bytes(c)) << c->block_bits;
+
+ err = "bad magic";
+ if (le64_to_cpu(b->data->magic) != bset_magic(&c->disk_sb))
+ goto err;
+
+ err = "bad btree header";
+ if (!b->data->keys.seq)
+ goto err;
+
+ if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN) {
+ bch_bpos_swab(&b->data->min_key);
+ bch_bpos_swab(&b->data->max_key);
+ }
+
+ err = "incorrect max key";
+ if (bkey_cmp(b->data->max_key, b->key.k.p))
+ goto err;
+
+ err = "incorrect level";
+ if (BSET_BTREE_LEVEL(i) != b->level)
+ goto err;
+
+ err = bch_bkey_format_validate(&b->data->format);
+ if (err)
+ goto err;
+
+ set_btree_bset(b, b->set, &b->data->keys);
+
+ btree_node_set_format(b, b->data->format);
+ } else {
+ bne = write_block(b);
+ i = &bne->keys;
+
+ if (i->seq != b->data->keys.seq)
+ break;
+
+ err = "unknown checksum type";
+ if (BSET_CSUM_TYPE(i) >= BCH_CSUM_NR)
+ goto err;
+
+ err = "bad checksum";
+ if (le64_to_cpu(bne->csum) !=
+ btree_csum_set(b, bne))
+ goto err;
+
+ sectors = __set_blocks(bne,
+ le16_to_cpu(bne->keys.u64s),
+ block_bytes(c)) << c->block_bits;
+ }
+
+ err = validate_bset(c, b, ca, ptr, i, sectors, &whiteout_u64s);
+ if (err)
+ goto err;
+
+ err = "insufficient memory";
+ ret = bch_journal_seq_should_ignore(c, le64_to_cpu(i->journal_seq), b);
+ if (ret < 0)
+ goto err;
+
+ if (ret)
+ continue;
+
+ __bch_btree_node_iter_push(iter, b,
+ i->start,
+ bkey_idx(i, whiteout_u64s));
+
+ __bch_btree_node_iter_push(iter, b,
+ bkey_idx(i, whiteout_u64s),
+ bset_bkey_last(i));
+ }
+
+ err = "corrupted btree";
+ for (bne = write_block(b);
+ bset_byte_offset(b, bne) < btree_bytes(c);
+ bne = (void *) bne + block_bytes(c))
+ if (bne->keys.seq == b->data->keys.seq)
+ goto err;
+
+ sorted = btree_bounce_alloc(c, ilog2(btree_pages(c)), &used_mempool);
+ sorted->keys.u64s = 0;
+
+ b->nr = btree_node_is_extents(b)
+ ? bch_extent_sort_fix_overlapping(c, &sorted->keys, b, iter)
+ : bch_key_sort_fix_overlapping(&sorted->keys, b, iter);
+
+ u64s = le16_to_cpu(sorted->keys.u64s);
+ *sorted = *b->data;
+ sorted->keys.u64s = cpu_to_le16(u64s);
+ swap(sorted, b->data);
+ set_btree_bset(b, b->set, &b->data->keys);
+ b->nsets = 1;
+
+ BUG_ON(b->nr.live_u64s != u64s);
+
+ btree_bounce_free(c, ilog2(btree_pages(c)), used_mempool, sorted);
+
+ bch_bset_build_aux_tree(b, b->set, false);
+
+ set_needs_whiteout(btree_bset_first(b));
+
+ btree_node_reset_sib_u64s(b);
+out:
+ mempool_free(iter, &c->fill_iter);
+ return;
+err:
+ set_btree_node_read_error(b);
+ btree_node_error(b, c, ptr, "%s", err);
+ goto out;
+}
+
+static void btree_node_read_endio(struct bio *bio)
+{
+ closure_put(bio->bi_private);
+}
+
+void bch_btree_node_read(struct cache_set *c, struct btree *b)
+{
+ uint64_t start_time = local_clock();
+ struct closure cl;
+ struct bio *bio;
+ struct extent_pick_ptr pick;
+
+ trace_bcache_btree_read(c, b);
+
+ closure_init_stack(&cl);
+
+ pick = bch_btree_pick_ptr(c, b);
+ if (cache_set_fatal_err_on(!pick.ca, c,
+ "no cache device for btree node")) {
+ set_btree_node_read_error(b);
+ return;
+ }
+
+ bio = bio_alloc_bioset(GFP_NOIO, btree_pages(c), &c->btree_read_bio);
+ bio->bi_bdev = pick.ca->disk_sb.bdev;
+ bio->bi_iter.bi_sector = pick.ptr.offset;
+ bio->bi_iter.bi_size = btree_bytes(c);
+ bio->bi_end_io = btree_node_read_endio;
+ bio->bi_private = &cl;
+ bio_set_op_attrs(bio, REQ_OP_READ, REQ_META|READ_SYNC);
+
+ bch_bio_map(bio, b->data);
+
+ closure_get(&cl);
+ bch_generic_make_request(bio, c);
+ closure_sync(&cl);
+
+ if (cache_fatal_io_err_on(bio->bi_error,
+ pick.ca, "IO error reading bucket %zu",
+ PTR_BUCKET_NR(pick.ca, &pick.ptr)) ||
+ bch_meta_read_fault("btree")) {
+ set_btree_node_read_error(b);
+ goto out;
+ }
+
+ bch_btree_node_read_done(c, b, pick.ca, &pick.ptr);
+ bch_time_stats_update(&c->btree_read_time, start_time);
+out:
+ bio_put(bio);
+ percpu_ref_put(&pick.ca->ref);
+}
+
+int bch_btree_root_read(struct cache_set *c, enum btree_id id,
+ const struct bkey_i *k, unsigned level)
+{
+ struct closure cl;
+ struct btree *b;
+ int ret;
+
+ closure_init_stack(&cl);
+
+ do {
+ ret = mca_cannibalize_lock(c, &cl);
+ closure_sync(&cl);
+ } while (ret);
+
+ b = mca_alloc(c);
+ mca_cannibalize_unlock(c);
+
+ BUG_ON(IS_ERR(b));
+
+ bkey_copy(&b->key, k);
+ BUG_ON(mca_hash_insert(c, b, level, id));
+
+ bch_btree_node_read(c, b);
+ six_unlock_write(&b->lock);
+
+ if (btree_node_read_error(b)) {
+ six_unlock_intent(&b->lock);
+ return -EIO;
+ }
+
+ bch_btree_set_root_initial(c, b, NULL);
+ six_unlock_intent(&b->lock);
+
+ return 0;
+}
+
+void bch_btree_complete_write(struct cache_set *c, struct btree *b,
+ struct btree_write *w)
+{
+ bch_journal_pin_drop(&c->journal, &w->journal);
+ closure_wake_up(&w->wait);
+}
+
+static void btree_node_write_done(struct cache_set *c, struct btree *b)
+{
+ struct btree_write *w = btree_prev_write(b);
+
+ /*
+ * Before calling bch_btree_complete_write() - if the write errored, we
+ * have to halt new journal writes before they see this btree node
+ * write as completed:
+ */
+ if (btree_node_write_error(b))
+ bch_journal_halt(&c->journal);
+
+ bch_btree_complete_write(c, b, w);
+ btree_node_io_unlock(b);
+}
+
+static void btree_node_write_endio(struct bio *bio)
+{
+ struct btree *b = bio->bi_private;
+ struct bch_write_bio *wbio = to_wbio(bio);
+ struct cache_set *c = wbio->c;
+ struct bio *orig = wbio->split ? wbio->orig : NULL;
+ struct closure *cl = !wbio->split ? wbio->cl : NULL;
+ struct cache *ca = wbio->ca;
+
+ if (cache_fatal_io_err_on(bio->bi_error, ca, "btree write") ||
+ bch_meta_write_fault("btree"))
+ set_btree_node_write_error(b);
+
+ if (wbio->bounce)
+ btree_bounce_free(c,
+ wbio->order,
+ wbio->used_mempool,
+ page_address(bio->bi_io_vec[0].bv_page));
+
+ if (wbio->put_bio)
+ bio_put(bio);
+
+ if (orig) {
+ bio_endio(orig);
+ } else {
+ btree_node_write_done(c, b);
+ if (cl)
+ closure_put(cl);
+ }
+
+ if (ca)
+ percpu_ref_put(&ca->ref);
+}
+
+void __bch_btree_node_write(struct cache_set *c, struct btree *b,
+ struct closure *parent,
+ enum six_lock_type lock_type_held,
+ int idx_to_write)
+{
+ struct bio *bio;
+ struct bch_write_bio *wbio;
+ struct bset_tree *t;
+ struct bset *i;
+ struct btree_node *bn = NULL;
+ struct btree_node_entry *bne = NULL;
+ BKEY_PADDED(key) k;
+ struct bkey_s_extent e;
+ struct bch_extent_ptr *ptr;
+ struct cache *ca;
+ struct sort_iter sort_iter;
+ unsigned bytes_to_write, sectors_to_write, order, bytes, u64s;
+ u64 seq = 0;
+ bool used_mempool;
+ unsigned long old, new;
+ void *data;
+
+ /*
+ * We may only have a read lock on the btree node - the dirty bit is our
+ * "lock" against racing with other threads that may be trying to start
+ * a write, we do a write iff we clear the dirty bit. Since setting the
+ * dirty bit requires a write lock, we can't race with other threads
+ * redirtying it:
+ */
+ do {
+ old = new = READ_ONCE(b->flags);
+
+ if (!(old & (1 << BTREE_NODE_dirty)))
+ return;
+
+ if (idx_to_write >= 0 &&
+ idx_to_write != !!(old & (1 << BTREE_NODE_write_idx)))
+ return;
+
+ if (old & (1 << BTREE_NODE_write_in_flight)) {
+ wait_on_bit_io(&b->flags,
+ BTREE_NODE_write_in_flight,
+ TASK_UNINTERRUPTIBLE);
+ continue;
+ }
+
+ new &= ~(1 << BTREE_NODE_dirty);
+ new |= (1 << BTREE_NODE_write_in_flight);
+ new |= (1 << BTREE_NODE_just_written);
+ new ^= (1 << BTREE_NODE_write_idx);
+ } while (cmpxchg_acquire(&b->flags, old, new) != old);
+
+ BUG_ON(!list_empty(&b->write_blocked));
+
+ BUG_ON(b->written >= c->sb.btree_node_size);
+ BUG_ON(bset_written(b, btree_bset_last(b)));
+ BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(&c->disk_sb));
+ BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format)));
+
+ if (lock_type_held == SIX_LOCK_intent) {
+ six_lock_write(&b->lock);
+ __bch_compact_whiteouts(c, b, COMPACT_WRITTEN);
+ six_unlock_write(&b->lock);
+ } else {
+ __bch_compact_whiteouts(c, b, COMPACT_WRITTEN_NO_WRITE_LOCK);
+ }
+
+ BUG_ON(b->uncompacted_whiteout_u64s);
+
+ sort_iter_init(&sort_iter, b);
+
+ bytes = !b->written
+ ? sizeof(struct btree_node)
+ : sizeof(struct btree_node_entry);
+
+ bytes += b->whiteout_u64s * sizeof(u64);
+
+ for_each_bset(b, t) {
+ i = bset(b, t);
+
+ if (bset_written(b, i))
+ continue;
+
+ bytes += le16_to_cpu(i->u64s) * sizeof(u64);
+ sort_iter_add(&sort_iter,
+ btree_bkey_first(b, t),
+ btree_bkey_last(b, t));
+ seq = max(seq, le64_to_cpu(i->journal_seq));
+ }
+
+ order = get_order(bytes);
+ data = btree_bounce_alloc(c, order, &used_mempool);
+
+ if (!b->written) {
+ bn = data;
+ *bn = *b->data;
+ i = &bn->keys;
+ } else {
+ bne = data;
+ bne->keys = b->data->keys;
+ i = &bne->keys;
+ }
+
+ i->journal_seq = cpu_to_le64(seq);
+ i->u64s = 0;
+
+ if (!btree_node_is_extents(b)) {
+ sort_iter_add(&sort_iter,
+ unwritten_whiteouts_start(c, b),
+ unwritten_whiteouts_end(c, b));
+ SET_BSET_SEPARATE_WHITEOUTS(i, false);
+ } else {
+ memcpy_u64s(i->start,
+ unwritten_whiteouts_start(c, b),
+ b->whiteout_u64s);
+ i->u64s = cpu_to_le16(b->whiteout_u64s);
+ SET_BSET_SEPARATE_WHITEOUTS(i, true);
+ }
+
+ b->whiteout_u64s = 0;
+
+ u64s = btree_node_is_extents(b)
+ ? sort_extents(bset_bkey_last(i), &sort_iter, false)
+ : sort_keys(i->start, &sort_iter, false);
+ le16_add_cpu(&i->u64s, u64s);
+
+ clear_needs_whiteout(i);
+
+ if (b->written && !i->u64s) {
+ /* Nothing to write: */
+ btree_bounce_free(c, order, used_mempool, data);
+ btree_node_write_done(c, b);
+ return;
+ }
+
+ BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN);
+ BUG_ON(i->seq != b->data->keys.seq);
+
+ i->version = cpu_to_le16(BCACHE_BSET_VERSION);
+ SET_BSET_CSUM_TYPE(i, c->opts.metadata_checksum);
+
+ if (bn)
+ bn->csum = cpu_to_le64(btree_csum_set(b, bn));
+ else
+ bne->csum = cpu_to_le64(btree_csum_set(b, bne));
+
+ bytes_to_write = (void *) bset_bkey_last(i) - data;
+ sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9;
+
+ memset(data + bytes_to_write, 0,
+ (sectors_to_write << 9) - bytes_to_write);
+
+ BUG_ON(b->written + sectors_to_write > c->sb.btree_node_size);
+
+ trace_bcache_btree_write(b, bytes_to_write, sectors_to_write);
+
+ /*
+ * We handle btree write errors by immediately halting the journal -
+ * after we've done that, we can't issue any subsequent btree writes
+ * because they might have pointers to new nodes that failed to write.
+ *
+ * Furthermore, there's no point in doing any more btree writes because
+ * with the journal stopped, we're never going to update the journal to
+ * reflect that those writes were done and the data flushed from the
+ * journal:
+ *
+ * Make sure to update b->written so bch_btree_init_next() doesn't
+ * break:
+ */
+ if (bch_journal_error(&c->journal)) {
+ set_btree_node_write_error(b);
+ b->written += sectors_to_write;
+
+ btree_bounce_free(c, order, used_mempool, data);
+ btree_node_write_done(c, b);
+ return;
+ }
+
+ bio = bio_alloc_bioset(GFP_NOIO, 1 << order, &c->bio_write);
+
+ wbio = to_wbio(bio);
+ wbio->cl = parent;
+ wbio->bounce = true;
+ wbio->put_bio = true;
+ wbio->order = order;
+ wbio->used_mempool = used_mempool;
+ bio->bi_iter.bi_size = sectors_to_write << 9;
+ bio->bi_end_io = btree_node_write_endio;
+ bio->bi_private = b;
+ bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_META|WRITE_SYNC|REQ_FUA);
+
+ if (parent)
+ closure_get(parent);
+
+ bch_bio_map(bio, data);
+
+ /*
+ * If we're appending to a leaf node, we don't technically need FUA -
+ * this write just needs to be persisted before the next journal write,
+ * which will be marked FLUSH|FUA.
+ *
+ * Similarly if we're writing a new btree root - the pointer is going to
+ * be in the next journal entry.
+ *
+ * But if we're writing a new btree node (that isn't a root) or
+ * appending to a non leaf btree node, we need either FUA or a flush
+ * when we write the parent with the new pointer. FUA is cheaper than a
+ * flush, and writes appending to leaf nodes aren't blocking anything so
+ * just make all btree node writes FUA to keep things sane.
+ */
+
+ bkey_copy(&k.key, &b->key);
+ e = bkey_i_to_s_extent(&k.key);
+
+ extent_for_each_ptr(e, ptr)
+ ptr->offset += b->written;
+
+ rcu_read_lock();
+ extent_for_each_online_device(c, e, ptr, ca)
+ atomic64_add(sectors_to_write, &ca->btree_sectors_written);
+ rcu_read_unlock();
+
+ b->written += sectors_to_write;
+
+ bch_submit_wbio_replicas(wbio, c, &k.key, true);
+}
+
+/*
+ * Work that must be done with write lock held:
+ */
+bool bch_btree_post_write_cleanup(struct cache_set *c, struct btree *b)
+{
+ bool invalidated_iter = false;
+ struct btree_node_entry *bne;
+ struct bset_tree *t;
+
+ if (!btree_node_just_written(b))
+ return false;
+
+ BUG_ON(b->whiteout_u64s);
+ BUG_ON(b->uncompacted_whiteout_u64s);
+
+ clear_btree_node_just_written(b);
+
+ /*
+ * Note: immediately after write, bset_unwritten()/bset_written() don't
+ * work - the amount of data we had to write after compaction might have
+ * been smaller than the offset of the last bset.
+ *
+ * However, we know that all bsets have been written here, as long as
+ * we're still holding the write lock:
+ */
+
+ /*
+ * XXX: decide if we really want to unconditionally sort down to a
+ * single bset:
+ */
+ if (b->nsets > 1) {
+ btree_node_sort(c, b, NULL, 0, b->nsets, true);
+ invalidated_iter = true;
+ } else {
+ invalidated_iter = bch_drop_whiteouts(b);
+ }
+
+ for_each_bset(b, t)
+ set_needs_whiteout(bset(b, t));
+
+ bch_btree_verify(c, b);
+
+ /*
+ * If later we don't unconditionally sort down to a single bset, we have
+ * to ensure this is still true:
+ */
+ BUG_ON((void *) bset_bkey_last(btree_bset_last(b)) > write_block(b));
+
+ bne = want_new_bset(c, b);
+ if (bne)
+ bch_bset_init_next(b, &bne->keys);
+
+ bch_btree_build_aux_trees(b);
+
+ return invalidated_iter;
+}
+
+/*
+ * Use this one if the node is intent locked:
+ */
+void bch_btree_node_write(struct cache_set *c, struct btree *b,
+ struct closure *parent,
+ enum six_lock_type lock_type_held,
+ int idx_to_write)
+{
+ BUG_ON(lock_type_held == SIX_LOCK_write);
+
+ if (lock_type_held == SIX_LOCK_intent ||
+ six_trylock_convert(&b->lock, SIX_LOCK_read,
+ SIX_LOCK_intent)) {
+ __bch_btree_node_write(c, b, parent, SIX_LOCK_intent, idx_to_write);
+
+ six_lock_write(&b->lock);
+ bch_btree_post_write_cleanup(c, b);
+ six_unlock_write(&b->lock);
+
+ if (lock_type_held == SIX_LOCK_read)
+ six_lock_downgrade(&b->lock);
+ } else {
+ __bch_btree_node_write(c, b, parent, SIX_LOCK_read, idx_to_write);
+ }
+}
+
+static void bch_btree_node_write_dirty(struct cache_set *c, struct btree *b,
+ struct closure *parent)
+{
+ six_lock_read(&b->lock);
+ BUG_ON(b->level);
+
+ bch_btree_node_write(c, b, parent, SIX_LOCK_read, -1);
+ six_unlock_read(&b->lock);
+}
+
+/*
+ * Write all dirty btree nodes to disk, including roots
+ */
+void bch_btree_flush(struct cache_set *c)
+{
+ struct closure cl;
+ struct btree *b;
+ struct bucket_table *tbl;
+ struct rhash_head *pos;
+ bool dropped_lock;
+ unsigned i;
+
+ closure_init_stack(&cl);
+
+ rcu_read_lock();
+
+ do {
+ dropped_lock = false;
+ i = 0;
+restart:
+ tbl = rht_dereference_rcu(c->btree_cache_table.tbl,
+ &c->btree_cache_table);
+
+ for (; i < tbl->size; i++)
+ rht_for_each_entry_rcu(b, pos, tbl, i, hash)
+ /*
+ * XXX - locking for b->level, when called from
+ * bch_journal_move()
+ */
+ if (!b->level && btree_node_dirty(b)) {
+ rcu_read_unlock();
+ bch_btree_node_write_dirty(c, b, &cl);
+ dropped_lock = true;
+ rcu_read_lock();
+ goto restart;
+ }
+ } while (dropped_lock);
+
+ rcu_read_unlock();
+
+ closure_sync(&cl);
+}
+
+/**
+ * bch_btree_node_flush_journal - flush any journal entries that contain keys
+ * from this node
+ *
+ * The bset's journal sequence number is used for preserving ordering of index
+ * updates across unclean shutdowns - it's used to ignore bsets newer than the
+ * most recent journal entry.
+ *
+ * But when rewriting btree nodes we compact all the bsets in a btree node - and
+ * if we compacted a bset that should be ignored with bsets we do need, that
+ * would be bad. So to avoid that, prior to making the new node visible ensure
+ * that the journal has been flushed so that all the bsets we compacted should
+ * be visible.
+ */
+void bch_btree_node_flush_journal_entries(struct cache_set *c,
+ struct btree *b,
+ struct closure *cl)
+{
+ int i = b->nsets;
+
+ /*
+ * Journal sequence numbers in the different bsets will always be in
+ * ascending order, we only need to flush the highest - except that the
+ * most recent bset might not have a journal sequence number yet, so we
+ * need to loop:
+ */
+ while (i--) {
+ u64 seq = le64_to_cpu(bset(b, &b->set[i])->journal_seq);
+
+ if (seq) {
+ bch_journal_flush_seq_async(&c->journal, seq, cl);
+ break;
+ }
+ }
+}