From f5baaf48e3e82b1caf9f5cd1207d4d6feba3a2e5 Mon Sep 17 00:00:00 2001 From: Thomas Bertschinger Date: Mon, 15 Jan 2024 23:41:02 -0700 Subject: move Rust sources to top level, C sources into c_src This moves the Rust sources out of rust_src/ and into the top level. Running the bcachefs executable out of the development tree is now: $ ./target/release/bcachefs command or $ cargo run --profile release -- command instead of "./bcachefs command". Building and installing is still: $ make && make install Signed-off-by: Thomas Bertschinger Signed-off-by: Kent Overstreet --- c_src/include/linux/closure.h | 415 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 415 insertions(+) create mode 100644 c_src/include/linux/closure.h (limited to 'c_src/include/linux/closure.h') diff --git a/c_src/include/linux/closure.h b/c_src/include/linux/closure.h new file mode 100644 index 00000000..c554c6a0 --- /dev/null +++ b/c_src/include/linux/closure.h @@ -0,0 +1,415 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _LINUX_CLOSURE_H +#define _LINUX_CLOSURE_H + +#include +#include +#include +#include + +/* + * Closure is perhaps the most overused and abused term in computer science, but + * since I've been unable to come up with anything better you're stuck with it + * again. + * + * What are closures? + * + * They embed a refcount. The basic idea is they count "things that are in + * progress" - in flight bios, some other thread that's doing something else - + * anything you might want to wait on. + * + * The refcount may be manipulated with closure_get() and closure_put(). + * closure_put() is where many of the interesting things happen, when it causes + * the refcount to go to 0. + * + * Closures can be used to wait on things both synchronously and asynchronously, + * and synchronous and asynchronous use can be mixed without restriction. To + * wait synchronously, use closure_sync() - you will sleep until your closure's + * refcount hits 1. + * + * To wait asynchronously, use + * continue_at(cl, next_function, workqueue); + * + * passing it, as you might expect, the function to run when nothing is pending + * and the workqueue to run that function out of. + * + * continue_at() also, critically, requires a 'return' immediately following the + * location where this macro is referenced, to return to the calling function. + * There's good reason for this. + * + * To use safely closures asynchronously, they must always have a refcount while + * they are running owned by the thread that is running them. Otherwise, suppose + * you submit some bios and wish to have a function run when they all complete: + * + * foo_endio(struct bio *bio) + * { + * closure_put(cl); + * } + * + * closure_init(cl); + * + * do_stuff(); + * closure_get(cl); + * bio1->bi_endio = foo_endio; + * bio_submit(bio1); + * + * do_more_stuff(); + * closure_get(cl); + * bio2->bi_endio = foo_endio; + * bio_submit(bio2); + * + * continue_at(cl, complete_some_read, system_wq); + * + * If closure's refcount started at 0, complete_some_read() could run before the + * second bio was submitted - which is almost always not what you want! More + * importantly, it wouldn't be possible to say whether the original thread or + * complete_some_read()'s thread owned the closure - and whatever state it was + * associated with! + * + * So, closure_init() initializes a closure's refcount to 1 - and when a + * closure_fn is run, the refcount will be reset to 1 first. + * + * Then, the rule is - if you got the refcount with closure_get(), release it + * with closure_put() (i.e, in a bio->bi_endio function). If you have a refcount + * on a closure because you called closure_init() or you were run out of a + * closure - _always_ use continue_at(). Doing so consistently will help + * eliminate an entire class of particularly pernicious races. + * + * Lastly, you might have a wait list dedicated to a specific event, and have no + * need for specifying the condition - you just want to wait until someone runs + * closure_wake_up() on the appropriate wait list. In that case, just use + * closure_wait(). It will return either true or false, depending on whether the + * closure was already on a wait list or not - a closure can only be on one wait + * list at a time. + * + * Parents: + * + * closure_init() takes two arguments - it takes the closure to initialize, and + * a (possibly null) parent. + * + * If parent is non null, the new closure will have a refcount for its lifetime; + * a closure is considered to be "finished" when its refcount hits 0 and the + * function to run is null. Hence + * + * continue_at(cl, NULL, NULL); + * + * returns up the (spaghetti) stack of closures, precisely like normal return + * returns up the C stack. continue_at() with non null fn is better thought of + * as doing a tail call. + * + * All this implies that a closure should typically be embedded in a particular + * struct (which its refcount will normally control the lifetime of), and that + * struct can very much be thought of as a stack frame. + */ + +struct closure; +struct closure_syncer; +typedef void (closure_fn) (struct work_struct *); +extern struct dentry *bcache_debug; + +struct closure_waitlist { + struct llist_head list; +}; + +enum closure_state { + /* + * CLOSURE_WAITING: Set iff the closure is on a waitlist. Must be set by + * the thread that owns the closure, and cleared by the thread that's + * waking up the closure. + * + * The rest are for debugging and don't affect behaviour: + * + * CLOSURE_RUNNING: Set when a closure is running (i.e. by + * closure_init() and when closure_put() runs then next function), and + * must be cleared before remaining hits 0. Primarily to help guard + * against incorrect usage and accidentally transferring references. + * continue_at() and closure_return() clear it for you, if you're doing + * something unusual you can use closure_set_dead() which also helps + * annotate where references are being transferred. + */ + + CLOSURE_BITS_START = (1U << 26), + CLOSURE_DESTRUCTOR = (1U << 26), + CLOSURE_WAITING = (1U << 28), + CLOSURE_RUNNING = (1U << 30), +}; + +#define CLOSURE_GUARD_MASK \ + ((CLOSURE_DESTRUCTOR|CLOSURE_WAITING|CLOSURE_RUNNING) << 1) + +#define CLOSURE_REMAINING_MASK (CLOSURE_BITS_START - 1) +#define CLOSURE_REMAINING_INITIALIZER (1|CLOSURE_RUNNING) + +struct closure { + union { + struct { + struct workqueue_struct *wq; + struct closure_syncer *s; + struct llist_node list; + closure_fn *fn; + }; + struct work_struct work; + }; + + struct closure *parent; + + atomic_t remaining; + bool closure_get_happened; + +#ifdef CONFIG_DEBUG_CLOSURES +#define CLOSURE_MAGIC_DEAD 0xc054dead +#define CLOSURE_MAGIC_ALIVE 0xc054a11e + + unsigned int magic; + struct list_head all; + unsigned long ip; + unsigned long waiting_on; +#endif +}; + +void closure_sub(struct closure *cl, int v); +void closure_put(struct closure *cl); +void __closure_wake_up(struct closure_waitlist *list); +bool closure_wait(struct closure_waitlist *list, struct closure *cl); +void __closure_sync(struct closure *cl); + +static inline unsigned closure_nr_remaining(struct closure *cl) +{ + return atomic_read(&cl->remaining) & CLOSURE_REMAINING_MASK; +} + +/** + * closure_sync - sleep until a closure a closure has nothing left to wait on + * + * Sleeps until the refcount hits 1 - the thread that's running the closure owns + * the last refcount. + */ +static inline void closure_sync(struct closure *cl) +{ +#ifdef CONFIG_DEBUG_CLOSURES + BUG_ON(closure_nr_remaining(cl) != 1 && !cl->closure_get_happened); +#endif + + if (cl->closure_get_happened) + __closure_sync(cl); +} + +#ifdef CONFIG_DEBUG_CLOSURES + +void closure_debug_create(struct closure *cl); +void closure_debug_destroy(struct closure *cl); + +#else + +static inline void closure_debug_create(struct closure *cl) {} +static inline void closure_debug_destroy(struct closure *cl) {} + +#endif + +static inline void closure_set_ip(struct closure *cl) +{ +#ifdef CONFIG_DEBUG_CLOSURES + cl->ip = _THIS_IP_; +#endif +} + +static inline void closure_set_ret_ip(struct closure *cl) +{ +#ifdef CONFIG_DEBUG_CLOSURES + cl->ip = _RET_IP_; +#endif +} + +static inline void closure_set_waiting(struct closure *cl, unsigned long f) +{ +#ifdef CONFIG_DEBUG_CLOSURES + cl->waiting_on = f; +#endif +} + +static inline void closure_set_stopped(struct closure *cl) +{ + atomic_sub(CLOSURE_RUNNING, &cl->remaining); +} + +static inline void set_closure_fn(struct closure *cl, closure_fn *fn, + struct workqueue_struct *wq) +{ + closure_set_ip(cl); + cl->fn = fn; + cl->wq = wq; +} + +static inline void closure_queue(struct closure *cl) +{ + struct workqueue_struct *wq = cl->wq; + /** + * Changes made to closure, work_struct, or a couple of other structs + * may cause work.func not pointing to the right location. + */ + BUILD_BUG_ON(offsetof(struct closure, fn) + != offsetof(struct work_struct, func)); + + if (wq) { + INIT_WORK(&cl->work, cl->work.func); + BUG_ON(!queue_work(wq, &cl->work)); + } else + cl->fn(&cl->work); +} + +/** + * closure_get - increment a closure's refcount + */ +static inline void closure_get(struct closure *cl) +{ + cl->closure_get_happened = true; + +#ifdef CONFIG_DEBUG_CLOSURES + BUG_ON((atomic_inc_return(&cl->remaining) & + CLOSURE_REMAINING_MASK) <= 1); +#else + atomic_inc(&cl->remaining); +#endif +} + +/** + * closure_init - Initialize a closure, setting the refcount to 1 + * @cl: closure to initialize + * @parent: parent of the new closure. cl will take a refcount on it for its + * lifetime; may be NULL. + */ +static inline void closure_init(struct closure *cl, struct closure *parent) +{ + cl->fn = NULL; + cl->parent = parent; + if (parent) + closure_get(parent); + + atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER); + cl->closure_get_happened = false; + + closure_debug_create(cl); + closure_set_ip(cl); +} + +static inline void closure_init_stack(struct closure *cl) +{ + memset(cl, 0, sizeof(struct closure)); + atomic_set(&cl->remaining, CLOSURE_REMAINING_INITIALIZER); +} + +/** + * closure_wake_up - wake up all closures on a wait list, + * with memory barrier + */ +static inline void closure_wake_up(struct closure_waitlist *list) +{ + /* Memory barrier for the wait list */ + smp_mb(); + __closure_wake_up(list); +} + +#define CLOSURE_CALLBACK(name) void name(struct work_struct *ws) +#define closure_type(name, type, member) \ + struct closure *cl = container_of(ws, struct closure, work); \ + type *name = container_of(cl, type, member) + +/** + * continue_at - jump to another function with barrier + * + * After @cl is no longer waiting on anything (i.e. all outstanding refs have + * been dropped with closure_put()), it will resume execution at @fn running out + * of @wq (or, if @wq is NULL, @fn will be called by closure_put() directly). + * + * This is because after calling continue_at() you no longer have a ref on @cl, + * and whatever @cl owns may be freed out from under you - a running closure fn + * has a ref on its own closure which continue_at() drops. + * + * Note you are expected to immediately return after using this macro. + */ +#define continue_at(_cl, _fn, _wq) \ +do { \ + set_closure_fn(_cl, _fn, _wq); \ + closure_sub(_cl, CLOSURE_RUNNING + 1); \ +} while (0) + +/** + * closure_return - finish execution of a closure + * + * This is used to indicate that @cl is finished: when all outstanding refs on + * @cl have been dropped @cl's ref on its parent closure (as passed to + * closure_init()) will be dropped, if one was specified - thus this can be + * thought of as returning to the parent closure. + */ +#define closure_return(_cl) continue_at((_cl), NULL, NULL) + +/** + * continue_at_nobarrier - jump to another function without barrier + * + * Causes @fn to be executed out of @cl, in @wq context (or called directly if + * @wq is NULL). + * + * The ref the caller of continue_at_nobarrier() had on @cl is now owned by @fn, + * thus it's not safe to touch anything protected by @cl after a + * continue_at_nobarrier(). + */ +#define continue_at_nobarrier(_cl, _fn, _wq) \ +do { \ + set_closure_fn(_cl, _fn, _wq); \ + closure_queue(_cl); \ +} while (0) + +/** + * closure_return_with_destructor - finish execution of a closure, + * with destructor + * + * Works like closure_return(), except @destructor will be called when all + * outstanding refs on @cl have been dropped; @destructor may be used to safely + * free the memory occupied by @cl, and it is called with the ref on the parent + * closure still held - so @destructor could safely return an item to a + * freelist protected by @cl's parent. + */ +#define closure_return_with_destructor(_cl, _destructor) \ +do { \ + set_closure_fn(_cl, _destructor, NULL); \ + closure_sub(_cl, CLOSURE_RUNNING - CLOSURE_DESTRUCTOR + 1); \ +} while (0) + +/** + * closure_call - execute @fn out of a new, uninitialized closure + * + * Typically used when running out of one closure, and we want to run @fn + * asynchronously out of a new closure - @parent will then wait for @cl to + * finish. + */ +static inline void closure_call(struct closure *cl, closure_fn fn, + struct workqueue_struct *wq, + struct closure *parent) +{ + closure_init(cl, parent); + continue_at_nobarrier(cl, fn, wq); +} + +#define __closure_wait_event(waitlist, _cond) \ +do { \ + struct closure cl; \ + \ + closure_init_stack(&cl); \ + \ + while (1) { \ + closure_wait(waitlist, &cl); \ + if (_cond) \ + break; \ + closure_sync(&cl); \ + } \ + closure_wake_up(waitlist); \ + closure_sync(&cl); \ +} while (0) + +#define closure_wait_event(waitlist, _cond) \ +do { \ + if (!(_cond)) \ + __closure_wait_event(waitlist, _cond); \ +} while (0) + +#endif /* _LINUX_CLOSURE_H */ -- cgit v1.2.3