// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "btree_cache.h" #include "btree_io.h" #include "btree_key_cache.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_gc.h" #include "buckets.h" #include "clock.h" #include "debug.h" #include "ec.h" #include "error.h" #include "recovery.h" #include "varint.h" #include #include #include #include #include #include #include #include const char * const bch2_allocator_states[] = { #define x(n) #n, ALLOC_THREAD_STATES() #undef x NULL }; static const unsigned BCH_ALLOC_V1_FIELD_BYTES[] = { #define x(name, bits) [BCH_ALLOC_FIELD_V1_##name] = bits / 8, BCH_ALLOC_FIELDS_V1() #undef x }; /* Persistent alloc info: */ static inline u64 alloc_field_v1_get(const struct bch_alloc *a, const void **p, unsigned field) { unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field]; u64 v; if (!(a->fields & (1 << field))) return 0; switch (bytes) { case 1: v = *((const u8 *) *p); break; case 2: v = le16_to_cpup(*p); break; case 4: v = le32_to_cpup(*p); break; case 8: v = le64_to_cpup(*p); break; default: BUG(); } *p += bytes; return v; } static inline void alloc_field_v1_put(struct bkey_i_alloc *a, void **p, unsigned field, u64 v) { unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field]; if (!v) return; a->v.fields |= 1 << field; switch (bytes) { case 1: *((u8 *) *p) = v; break; case 2: *((__le16 *) *p) = cpu_to_le16(v); break; case 4: *((__le32 *) *p) = cpu_to_le32(v); break; case 8: *((__le64 *) *p) = cpu_to_le64(v); break; default: BUG(); } *p += bytes; } static void bch2_alloc_unpack_v1(struct bkey_alloc_unpacked *out, struct bkey_s_c k) { const struct bch_alloc *in = bkey_s_c_to_alloc(k).v; const void *d = in->data; unsigned idx = 0; out->gen = in->gen; #define x(_name, _bits) out->_name = alloc_field_v1_get(in, &d, idx++); BCH_ALLOC_FIELDS_V1() #undef x } static int bch2_alloc_unpack_v2(struct bkey_alloc_unpacked *out, struct bkey_s_c k) { struct bkey_s_c_alloc_v2 a = bkey_s_c_to_alloc_v2(k); const u8 *in = a.v->data; const u8 *end = bkey_val_end(a); unsigned fieldnr = 0; int ret; u64 v; out->gen = a.v->gen; out->oldest_gen = a.v->oldest_gen; out->data_type = a.v->data_type; #define x(_name, _bits) \ if (fieldnr < a.v->nr_fields) { \ ret = bch2_varint_decode(in, end, &v); \ if (ret < 0) \ return ret; \ in += ret; \ } else { \ v = 0; \ } \ out->_name = v; \ if (v != out->_name) \ return -1; \ fieldnr++; BCH_ALLOC_FIELDS_V2() #undef x return 0; } static void bch2_alloc_pack_v2(struct bkey_alloc_buf *dst, const struct bkey_alloc_unpacked src) { struct bkey_i_alloc_v2 *a = bkey_alloc_v2_init(&dst->k); unsigned nr_fields = 0, last_nonzero_fieldnr = 0; u8 *out = a->v.data; u8 *end = (void *) &dst[1]; u8 *last_nonzero_field = out; unsigned bytes; a->k.p = POS(src.dev, src.bucket); a->v.gen = src.gen; a->v.oldest_gen = src.oldest_gen; a->v.data_type = src.data_type; #define x(_name, _bits) \ nr_fields++; \ \ if (src._name) { \ out += bch2_varint_encode(out, src._name); \ \ last_nonzero_field = out; \ last_nonzero_fieldnr = nr_fields; \ } else { \ *out++ = 0; \ } BCH_ALLOC_FIELDS_V2() #undef x BUG_ON(out > end); out = last_nonzero_field; a->v.nr_fields = last_nonzero_fieldnr; bytes = (u8 *) out - (u8 *) &a->v; set_bkey_val_bytes(&a->k, bytes); memset_u64s_tail(&a->v, 0, bytes); } struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k) { struct bkey_alloc_unpacked ret = { .dev = k.k->p.inode, .bucket = k.k->p.offset, .gen = 0, }; if (k.k->type == KEY_TYPE_alloc_v2) bch2_alloc_unpack_v2(&ret, k); else if (k.k->type == KEY_TYPE_alloc) bch2_alloc_unpack_v1(&ret, k); return ret; } void bch2_alloc_pack(struct bch_fs *c, struct bkey_alloc_buf *dst, const struct bkey_alloc_unpacked src) { bch2_alloc_pack_v2(dst, src); } static unsigned bch_alloc_v1_val_u64s(const struct bch_alloc *a) { unsigned i, bytes = offsetof(struct bch_alloc, data); for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_V1_FIELD_BYTES); i++) if (a->fields & (1 << i)) bytes += BCH_ALLOC_V1_FIELD_BYTES[i]; return DIV_ROUND_UP(bytes, sizeof(u64)); } const char *bch2_alloc_v1_invalid(const struct bch_fs *c, struct bkey_s_c k) { struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); if (k.k->p.inode >= c->sb.nr_devices || !c->devs[k.k->p.inode]) return "invalid device"; /* allow for unknown fields */ if (bkey_val_u64s(a.k) < bch_alloc_v1_val_u64s(a.v)) return "incorrect value size"; return NULL; } const char *bch2_alloc_v2_invalid(const struct bch_fs *c, struct bkey_s_c k) { struct bkey_alloc_unpacked u; if (k.k->p.inode >= c->sb.nr_devices || !c->devs[k.k->p.inode]) return "invalid device"; if (bch2_alloc_unpack_v2(&u, k)) return "unpack error"; return NULL; } void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { struct bkey_alloc_unpacked u = bch2_alloc_unpack(k); pr_buf(out, "gen %u oldest_gen %u data_type %s", u.gen, u.oldest_gen, bch2_data_types[u.data_type]); #define x(_name, ...) pr_buf(out, " " #_name " %llu", (u64) u._name); BCH_ALLOC_FIELDS_V2() #undef x } static int bch2_alloc_read_fn(struct bch_fs *c, struct bkey_s_c k) { struct bch_dev *ca; struct bucket *g; struct bkey_alloc_unpacked u; if (k.k->type != KEY_TYPE_alloc && k.k->type != KEY_TYPE_alloc_v2) return 0; ca = bch_dev_bkey_exists(c, k.k->p.inode); g = bucket(ca, k.k->p.offset); u = bch2_alloc_unpack(k); g->_mark.gen = u.gen; g->_mark.data_type = u.data_type; g->_mark.dirty_sectors = u.dirty_sectors; g->_mark.cached_sectors = u.cached_sectors; g->io_time[READ] = u.read_time; g->io_time[WRITE] = u.write_time; g->oldest_gen = u.oldest_gen; g->gen_valid = 1; return 0; } int bch2_alloc_read(struct bch_fs *c) { int ret; down_read(&c->gc_lock); ret = bch2_btree_and_journal_walk(c, BTREE_ID_alloc, bch2_alloc_read_fn); up_read(&c->gc_lock); if (ret) { bch_err(c, "error reading alloc info: %i", ret); return ret; } return 0; } static int bch2_alloc_write_key(struct btree_trans *trans, struct btree_iter *iter, unsigned flags) { struct bch_fs *c = trans->c; struct bkey_s_c k; struct bch_dev *ca; struct bucket *g; struct bucket_mark m; struct bkey_alloc_unpacked old_u, new_u; struct bkey_alloc_buf a; int ret; retry: bch2_trans_begin(trans); ret = bch2_btree_key_cache_flush(trans, BTREE_ID_alloc, iter->pos); if (ret) goto err; k = bch2_btree_iter_peek_slot(iter); ret = bkey_err(k); if (ret) goto err; old_u = bch2_alloc_unpack(k); percpu_down_read(&c->mark_lock); ca = bch_dev_bkey_exists(c, iter->pos.inode); g = bucket(ca, iter->pos.offset); m = READ_ONCE(g->mark); new_u = alloc_mem_to_key(iter, g, m); percpu_up_read(&c->mark_lock); if (!bkey_alloc_unpacked_cmp(old_u, new_u)) return 0; bch2_alloc_pack(c, &a, new_u); bch2_trans_update(trans, iter, &a.k, BTREE_TRIGGER_NORUN); ret = bch2_trans_commit(trans, NULL, NULL, BTREE_INSERT_NOFAIL|flags); err: if (ret == -EINTR) goto retry; return ret; } int bch2_alloc_write(struct bch_fs *c, unsigned flags) { struct btree_trans trans; struct btree_iter *iter; struct bch_dev *ca; unsigned i; int ret = 0; bch2_trans_init(&trans, c, BTREE_ITER_MAX, 0); iter = bch2_trans_get_iter(&trans, BTREE_ID_alloc, POS_MIN, BTREE_ITER_SLOTS|BTREE_ITER_INTENT); for_each_member_device(ca, c, i) { bch2_btree_iter_set_pos(iter, POS(ca->dev_idx, ca->mi.first_bucket)); while (iter->pos.offset < ca->mi.nbuckets) { bch2_trans_cond_resched(&trans); ret = bch2_alloc_write_key(&trans, iter, flags); if (ret) { percpu_ref_put(&ca->ref); goto err; } bch2_btree_iter_next_slot(iter); } } err: bch2_trans_iter_put(&trans, iter); bch2_trans_exit(&trans); return ret; } /* Bucket IO clocks: */ int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev, size_t bucket_nr, int rw) { struct bch_fs *c = trans->c; struct bch_dev *ca = bch_dev_bkey_exists(c, dev); struct btree_iter *iter; struct bucket *g; struct bkey_alloc_buf *a; struct bkey_alloc_unpacked u; u64 *time, now; int ret = 0; iter = bch2_trans_get_iter(trans, BTREE_ID_alloc, POS(dev, bucket_nr), BTREE_ITER_CACHED| BTREE_ITER_CACHED_NOFILL| BTREE_ITER_INTENT); ret = bch2_btree_iter_traverse(iter); if (ret) goto out; a = bch2_trans_kmalloc(trans, sizeof(struct bkey_alloc_buf)); ret = PTR_ERR_OR_ZERO(a); if (ret) goto out; percpu_down_read(&c->mark_lock); g = bucket(ca, bucket_nr); u = alloc_mem_to_key(iter, g, READ_ONCE(g->mark)); percpu_up_read(&c->mark_lock); time = rw == READ ? &u.read_time : &u.write_time; now = atomic64_read(&c->io_clock[rw].now); if (*time == now) goto out; *time = now; bch2_alloc_pack(c, a, u); ret = bch2_trans_update(trans, iter, &a->k, 0) ?: bch2_trans_commit(trans, NULL, NULL, 0); out: bch2_trans_iter_put(trans, iter); return ret; } /* Background allocator thread: */ /* * Scans for buckets to be invalidated, invalidates them, rewrites prios/gens * (marking them as invalidated on disk), then optionally issues discard * commands to the newly free buckets, then puts them on the various freelists. */ static bool bch2_can_invalidate_bucket(struct bch_dev *ca, size_t b, struct bucket_mark m) { u8 gc_gen; if (!is_available_bucket(m)) return false; if (m.owned_by_allocator) return false; if (ca->buckets_nouse && test_bit(b, ca->buckets_nouse)) return false; gc_gen = bucket_gc_gen(bucket(ca, b)); ca->inc_gen_needs_gc += gc_gen >= BUCKET_GC_GEN_MAX / 2; ca->inc_gen_really_needs_gc += gc_gen >= BUCKET_GC_GEN_MAX; return gc_gen < BUCKET_GC_GEN_MAX; } /* * Determines what order we're going to reuse buckets, smallest bucket_key() * first. */ static unsigned bucket_sort_key(struct bucket *g, struct bucket_mark m, u64 now, u64 last_seq_ondisk) { unsigned used = bucket_sectors_used(m); if (used) { /* * Prefer to keep buckets that have been read more recently, and * buckets that have more data in them: */ u64 last_read = max_t(s64, 0, now - g->io_time[READ]); u32 last_read_scaled = max_t(u64, U32_MAX, div_u64(last_read, used)); return -last_read_scaled; } else { /* * Prefer to use buckets with smaller gc_gen so that we don't * have to walk the btree and recalculate oldest_gen - but shift * off the low bits so that buckets will still have equal sort * keys when there's only a small difference, so that we can * keep sequential buckets together: */ return (bucket_needs_journal_commit(m, last_seq_ondisk) << 4)| (bucket_gc_gen(g) >> 4); } } static inline int bucket_alloc_cmp(alloc_heap *h, struct alloc_heap_entry l, struct alloc_heap_entry r) { return cmp_int(l.key, r.key) ?: cmp_int(r.nr, l.nr) ?: cmp_int(l.bucket, r.bucket); } static inline int bucket_idx_cmp(const void *_l, const void *_r) { const struct alloc_heap_entry *l = _l, *r = _r; return cmp_int(l->bucket, r->bucket); } static void find_reclaimable_buckets_lru(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets; struct alloc_heap_entry e = { 0 }; u64 now, last_seq_ondisk; size_t b, i, nr = 0; down_read(&ca->bucket_lock); buckets = bucket_array(ca); ca->alloc_heap.used = 0; now = atomic64_read(&c->io_clock[READ].now); last_seq_ondisk = c->journal.last_seq_ondisk; /* * Find buckets with lowest read priority, by building a maxheap sorted * by read priority and repeatedly replacing the maximum element until * all buckets have been visited. */ for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) { struct bucket *g = &buckets->b[b]; struct bucket_mark m = READ_ONCE(g->mark); unsigned key = bucket_sort_key(g, m, now, last_seq_ondisk); cond_resched(); if (!bch2_can_invalidate_bucket(ca, b, m)) continue; if (e.nr && e.bucket + e.nr == b && e.key == key) { e.nr++; } else { if (e.nr) heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); e = (struct alloc_heap_entry) { .bucket = b, .nr = 1, .key = key, }; } } if (e.nr) heap_add_or_replace(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); for (i = 0; i < ca->alloc_heap.used; i++) nr += ca->alloc_heap.data[i].nr; while (nr - ca->alloc_heap.data[0].nr >= ALLOC_SCAN_BATCH(ca)) { nr -= ca->alloc_heap.data[0].nr; heap_pop(&ca->alloc_heap, e, -bucket_alloc_cmp, NULL); } up_read(&ca->bucket_lock); } static void find_reclaimable_buckets_fifo(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets = bucket_array(ca); struct bucket_mark m; size_t b, start; if (ca->fifo_last_bucket < ca->mi.first_bucket || ca->fifo_last_bucket >= ca->mi.nbuckets) ca->fifo_last_bucket = ca->mi.first_bucket; start = ca->fifo_last_bucket; do { ca->fifo_last_bucket++; if (ca->fifo_last_bucket == ca->mi.nbuckets) ca->fifo_last_bucket = ca->mi.first_bucket; b = ca->fifo_last_bucket; m = READ_ONCE(buckets->b[b].mark); if (bch2_can_invalidate_bucket(ca, b, m)) { struct alloc_heap_entry e = { .bucket = b, .nr = 1, }; heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); if (heap_full(&ca->alloc_heap)) break; } cond_resched(); } while (ca->fifo_last_bucket != start); } static void find_reclaimable_buckets_random(struct bch_fs *c, struct bch_dev *ca) { struct bucket_array *buckets = bucket_array(ca); struct bucket_mark m; size_t checked, i; for (checked = 0; checked < ca->mi.nbuckets / 2; checked++) { size_t b = bch2_rand_range(ca->mi.nbuckets - ca->mi.first_bucket) + ca->mi.first_bucket; m = READ_ONCE(buckets->b[b].mark); if (bch2_can_invalidate_bucket(ca, b, m)) { struct alloc_heap_entry e = { .bucket = b, .nr = 1, }; heap_add(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); if (heap_full(&ca->alloc_heap)) break; } cond_resched(); } sort(ca->alloc_heap.data, ca->alloc_heap.used, sizeof(ca->alloc_heap.data[0]), bucket_idx_cmp, NULL); /* remove duplicates: */ for (i = 0; i + 1 < ca->alloc_heap.used; i++) if (ca->alloc_heap.data[i].bucket == ca->alloc_heap.data[i + 1].bucket) ca->alloc_heap.data[i].nr = 0; } static size_t find_reclaimable_buckets(struct bch_fs *c, struct bch_dev *ca) { size_t i, nr = 0; ca->inc_gen_needs_gc = 0; ca->inc_gen_really_needs_gc = 0; switch (ca->mi.replacement) { case BCH_CACHE_REPLACEMENT_lru: find_reclaimable_buckets_lru(c, ca); break; case BCH_CACHE_REPLACEMENT_fifo: find_reclaimable_buckets_fifo(c, ca); break; case BCH_CACHE_REPLACEMENT_random: find_reclaimable_buckets_random(c, ca); break; } heap_resort(&ca->alloc_heap, bucket_alloc_cmp, NULL); for (i = 0; i < ca->alloc_heap.used; i++) nr += ca->alloc_heap.data[i].nr; return nr; } /* * returns sequence number of most recent journal entry that updated this * bucket: */ static u64 bucket_journal_seq(struct bch_fs *c, struct bucket_mark m) { if (m.journal_seq_valid) { u64 journal_seq = atomic64_read(&c->journal.seq); u64 bucket_seq = journal_seq; bucket_seq &= ~((u64) U16_MAX); bucket_seq |= m.journal_seq; if (bucket_seq > journal_seq) bucket_seq -= 1 << 16; return bucket_seq; } else { return 0; } } static int bucket_invalidate_btree(struct btree_trans *trans, struct bch_dev *ca, u64 b) { struct bch_fs *c = trans->c; struct bkey_alloc_buf *a; struct bkey_alloc_unpacked u; struct bucket *g; struct bucket_mark m; struct btree_iter *iter = bch2_trans_get_iter(trans, BTREE_ID_alloc, POS(ca->dev_idx, b), BTREE_ITER_CACHED| BTREE_ITER_CACHED_NOFILL| BTREE_ITER_INTENT); int ret; a = bch2_trans_kmalloc(trans, sizeof(*a)); ret = PTR_ERR_OR_ZERO(a); if (ret) goto err; ret = bch2_btree_iter_traverse(iter); if (ret) goto err; percpu_down_read(&c->mark_lock); g = bucket(ca, b); m = READ_ONCE(g->mark); u = alloc_mem_to_key(iter, g, m); percpu_up_read(&c->mark_lock); u.gen++; u.data_type = 0; u.dirty_sectors = 0; u.cached_sectors = 0; u.read_time = atomic64_read(&c->io_clock[READ].now); u.write_time = atomic64_read(&c->io_clock[WRITE].now); bch2_alloc_pack(c, a, u); bch2_trans_update(trans, iter, &a->k, BTREE_TRIGGER_BUCKET_INVALIDATE); err: bch2_trans_iter_put(trans, iter); return ret; } static int bch2_invalidate_one_bucket(struct bch_fs *c, struct bch_dev *ca, u64 *journal_seq, unsigned flags) { struct bucket *g; struct bucket_mark m; size_t b; int ret = 0; BUG_ON(!ca->alloc_heap.used || !ca->alloc_heap.data[0].nr); b = ca->alloc_heap.data[0].bucket; /* first, put on free_inc and mark as owned by allocator: */ percpu_down_read(&c->mark_lock); g = bucket(ca, b); m = READ_ONCE(g->mark); BUG_ON(m.dirty_sectors); bch2_mark_alloc_bucket(c, ca, b, true); spin_lock(&c->freelist_lock); verify_not_on_freelist(c, ca, b); BUG_ON(!fifo_push(&ca->free_inc, b)); spin_unlock(&c->freelist_lock); /* * If we're not invalidating cached data, we only increment the bucket * gen in memory here, the incremented gen will be updated in the btree * by bch2_trans_mark_pointer(): */ if (!m.cached_sectors && !bucket_needs_journal_commit(m, c->journal.last_seq_ondisk)) { BUG_ON(m.data_type); bucket_cmpxchg(g, m, m.gen++); percpu_up_read(&c->mark_lock); goto out; } percpu_up_read(&c->mark_lock); /* * If the read-only path is trying to shut down, we can't be generating * new btree updates: */ if (test_bit(BCH_FS_ALLOCATOR_STOPPING, &c->flags)) { ret = 1; goto out; } ret = bch2_trans_do(c, NULL, journal_seq, BTREE_INSERT_NOCHECK_RW| BTREE_INSERT_NOFAIL| BTREE_INSERT_JOURNAL_RESERVED| flags, bucket_invalidate_btree(&trans, ca, b)); out: if (!ret) { /* remove from alloc_heap: */ struct alloc_heap_entry e, *top = ca->alloc_heap.data; top->bucket++; top->nr--; if (!top->nr) heap_pop(&ca->alloc_heap, e, bucket_alloc_cmp, NULL); /* * Make sure we flush the last journal entry that updated this * bucket (i.e. deleting the last reference) before writing to * this bucket again: */ *journal_seq = max(*journal_seq, bucket_journal_seq(c, m)); } else { size_t b2; /* remove from free_inc: */ percpu_down_read(&c->mark_lock); spin_lock(&c->freelist_lock); bch2_mark_alloc_bucket(c, ca, b, false); BUG_ON(!fifo_pop_back(&ca->free_inc, b2)); BUG_ON(b != b2); spin_unlock(&c->freelist_lock); percpu_up_read(&c->mark_lock); } return ret < 0 ? ret : 0; } /* * Pull buckets off ca->alloc_heap, invalidate them, move them to ca->free_inc: */ static int bch2_invalidate_buckets(struct bch_fs *c, struct bch_dev *ca) { u64 journal_seq = 0; int ret = 0; /* Only use nowait if we've already invalidated at least one bucket: */ while (!ret && !fifo_full(&ca->free_inc) && ca->alloc_heap.used) { ret = bch2_invalidate_one_bucket(c, ca, &journal_seq, (!fifo_empty(&ca->free_inc) ? BTREE_INSERT_NOWAIT : 0)); /* * We only want to batch up invalidates when they're going to * require flushing the journal: */ if (!journal_seq) break; } /* If we used NOWAIT, don't return the error: */ if (!fifo_empty(&ca->free_inc)) ret = 0; if (ret) { bch_err(ca, "error invalidating buckets: %i", ret); return ret; } if (journal_seq) ret = bch2_journal_flush_seq(&c->journal, journal_seq); if (ret) { bch_err(ca, "journal error: %i", ret); return ret; } return 0; } static void alloc_thread_set_state(struct bch_dev *ca, unsigned new_state) { if (ca->allocator_state != new_state) { ca->allocator_state = new_state; closure_wake_up(&ca->fs->freelist_wait); } } static int push_invalidated_bucket(struct bch_fs *c, struct bch_dev *ca, u64 b) { unsigned i; int ret = 0; spin_lock(&c->freelist_lock); for (i = 0; i < RESERVE_NR; i++) { /* * Don't strand buckets on the copygc freelist until * after recovery is finished: */ if (i == RESERVE_MOVINGGC && !test_bit(BCH_FS_STARTED, &c->flags)) continue; if (fifo_push(&ca->free[i], b)) { fifo_pop(&ca->free_inc, b); ret = 1; break; } } spin_unlock(&c->freelist_lock); ca->allocator_state = ret ? ALLOCATOR_running : ALLOCATOR_blocked_full; closure_wake_up(&c->freelist_wait); return ret; } static void discard_one_bucket(struct bch_fs *c, struct bch_dev *ca, u64 b) { if (ca->mi.discard && blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev))) blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, b), ca->mi.bucket_size, GFP_NOFS, 0); } static bool allocator_thread_running(struct bch_dev *ca) { unsigned state = ca->mi.state == BCH_MEMBER_STATE_rw && test_bit(BCH_FS_ALLOCATOR_RUNNING, &ca->fs->flags) ? ALLOCATOR_running : ALLOCATOR_stopped; alloc_thread_set_state(ca, state); return state == ALLOCATOR_running; } static int buckets_available(struct bch_dev *ca, unsigned long gc_count) { s64 available = dev_buckets_reclaimable(ca) - (gc_count == ca->fs->gc_count ? ca->inc_gen_really_needs_gc : 0); bool ret = available > 0; alloc_thread_set_state(ca, ret ? ALLOCATOR_running : ALLOCATOR_blocked); return ret; } /** * bch_allocator_thread - move buckets from free_inc to reserves * * The free_inc FIFO is populated by find_reclaimable_buckets(), and * the reserves are depleted by bucket allocation. When we run out * of free_inc, try to invalidate some buckets and write out * prios and gens. */ static int bch2_allocator_thread(void *arg) { struct bch_dev *ca = arg; struct bch_fs *c = ca->fs; unsigned long gc_count = c->gc_count; size_t nr; int ret; set_freezable(); while (1) { ret = kthread_wait_freezable(allocator_thread_running(ca)); if (ret) goto stop; while (!ca->alloc_heap.used) { cond_resched(); ret = kthread_wait_freezable(buckets_available(ca, gc_count)); if (ret) goto stop; gc_count = c->gc_count; nr = find_reclaimable_buckets(c, ca); trace_alloc_scan(ca, nr, ca->inc_gen_needs_gc, ca->inc_gen_really_needs_gc); if ((ca->inc_gen_needs_gc >= ALLOC_SCAN_BATCH(ca) || ca->inc_gen_really_needs_gc) && c->gc_thread) { atomic_inc(&c->kick_gc); wake_up_process(c->gc_thread); } } ret = bch2_invalidate_buckets(c, ca); if (ret) goto stop; while (!fifo_empty(&ca->free_inc)) { u64 b = fifo_peek(&ca->free_inc); discard_one_bucket(c, ca, b); ret = kthread_wait_freezable(push_invalidated_bucket(c, ca, b)); if (ret) goto stop; } } stop: alloc_thread_set_state(ca, ALLOCATOR_stopped); return 0; } /* Startup/shutdown (ro/rw): */ void bch2_recalc_capacity(struct bch_fs *c) { struct bch_dev *ca; u64 capacity = 0, reserved_sectors = 0, gc_reserve; unsigned bucket_size_max = 0; unsigned long ra_pages = 0; unsigned i, j; lockdep_assert_held(&c->state_lock); for_each_online_member(ca, c, i) { struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_bdi; ra_pages += bdi->ra_pages; } bch2_set_ra_pages(c, ra_pages); for_each_rw_member(ca, c, i) { u64 dev_reserve = 0; /* * We need to reserve buckets (from the number * of currently available buckets) against * foreground writes so that mainly copygc can * make forward progress. * * We need enough to refill the various reserves * from scratch - copygc will use its entire * reserve all at once, then run against when * its reserve is refilled (from the formerly * available buckets). * * This reserve is just used when considering if * allocations for foreground writes must wait - * not -ENOSPC calculations. */ for (j = 0; j < RESERVE_NONE; j++) dev_reserve += ca->free[j].size; dev_reserve += 1; /* btree write point */ dev_reserve += 1; /* copygc write point */ dev_reserve += 1; /* rebalance write point */ dev_reserve *= ca->mi.bucket_size; capacity += bucket_to_sector(ca, ca->mi.nbuckets - ca->mi.first_bucket); reserved_sectors += dev_reserve * 2; bucket_size_max = max_t(unsigned, bucket_size_max, ca->mi.bucket_size); } gc_reserve = c->opts.gc_reserve_bytes ? c->opts.gc_reserve_bytes >> 9 : div64_u64(capacity * c->opts.gc_reserve_percent, 100); reserved_sectors = max(gc_reserve, reserved_sectors); reserved_sectors = min(reserved_sectors, capacity); c->capacity = capacity - reserved_sectors; c->bucket_size_max = bucket_size_max; /* Wake up case someone was waiting for buckets */ closure_wake_up(&c->freelist_wait); } static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca) { struct open_bucket *ob; bool ret = false; for (ob = c->open_buckets; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock(&ob->lock); if (ob->valid && !ob->on_partial_list && ob->ptr.dev == ca->dev_idx) ret = true; spin_unlock(&ob->lock); } return ret; } /* device goes ro: */ void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca) { unsigned i; BUG_ON(ca->alloc_thread); /* First, remove device from allocation groups: */ for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) clear_bit(ca->dev_idx, c->rw_devs[i].d); /* * Capacity is calculated based off of devices in allocation groups: */ bch2_recalc_capacity(c); /* Next, close write points that point to this device... */ for (i = 0; i < ARRAY_SIZE(c->write_points); i++) bch2_writepoint_stop(c, ca, &c->write_points[i]); bch2_writepoint_stop(c, ca, &c->copygc_write_point); bch2_writepoint_stop(c, ca, &c->rebalance_write_point); bch2_writepoint_stop(c, ca, &c->btree_write_point); mutex_lock(&c->btree_reserve_cache_lock); while (c->btree_reserve_cache_nr) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; bch2_open_buckets_put(c, &a->ob); } mutex_unlock(&c->btree_reserve_cache_lock); while (1) { struct open_bucket *ob; spin_lock(&c->freelist_lock); if (!ca->open_buckets_partial_nr) { spin_unlock(&c->freelist_lock); break; } ob = c->open_buckets + ca->open_buckets_partial[--ca->open_buckets_partial_nr]; ob->on_partial_list = false; spin_unlock(&c->freelist_lock); bch2_open_bucket_put(c, ob); } bch2_ec_stop_dev(c, ca); /* * Wake up threads that were blocked on allocation, so they can notice * the device can no longer be removed and the capacity has changed: */ closure_wake_up(&c->freelist_wait); /* * journal_res_get() can block waiting for free space in the journal - * it needs to notice there may not be devices to allocate from anymore: */ wake_up(&c->journal.wait); /* Now wait for any in flight writes: */ closure_wait_event(&c->open_buckets_wait, !bch2_dev_has_open_write_point(c, ca)); } /* device goes rw: */ void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca) { unsigned i; for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) if (ca->mi.data_allowed & (1 << i)) set_bit(ca->dev_idx, c->rw_devs[i].d); } void bch2_dev_allocator_quiesce(struct bch_fs *c, struct bch_dev *ca) { if (ca->alloc_thread) closure_wait_event(&c->freelist_wait, ca->allocator_state != ALLOCATOR_running); } /* stop allocator thread: */ void bch2_dev_allocator_stop(struct bch_dev *ca) { struct task_struct *p; p = rcu_dereference_protected(ca->alloc_thread, 1); ca->alloc_thread = NULL; /* * We need an rcu barrier between setting ca->alloc_thread = NULL and * the thread shutting down to avoid bch2_wake_allocator() racing: * * XXX: it would be better to have the rcu barrier be asynchronous * instead of blocking us here */ synchronize_rcu(); if (p) { kthread_stop(p); put_task_struct(p); } } /* start allocator thread: */ int bch2_dev_allocator_start(struct bch_dev *ca) { struct task_struct *p; /* * allocator thread already started? */ if (ca->alloc_thread) return 0; p = kthread_create(bch2_allocator_thread, ca, "bch-alloc/%s", ca->name); if (IS_ERR(p)) { bch_err(ca->fs, "error creating allocator thread: %li", PTR_ERR(p)); return PTR_ERR(p); } get_task_struct(p); rcu_assign_pointer(ca->alloc_thread, p); wake_up_process(p); return 0; } void bch2_fs_allocator_background_init(struct bch_fs *c) { spin_lock_init(&c->freelist_lock); }