// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "backpointers.h" #include "btree_cache.h" #include "btree_io.h" #include "btree_key_cache.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_gc.h" #include "buckets.h" #include "buckets_waiting_for_journal.h" #include "clock.h" #include "debug.h" #include "ec.h" #include "error.h" #include "lru.h" #include "recovery.h" #include "varint.h" #include #include #include #include #include #include #include #include /* Persistent alloc info: */ static const unsigned BCH_ALLOC_V1_FIELD_BYTES[] = { #define x(name, bits) [BCH_ALLOC_FIELD_V1_##name] = bits / 8, BCH_ALLOC_FIELDS_V1() #undef x }; struct bkey_alloc_unpacked { u64 journal_seq; u8 gen; u8 oldest_gen; u8 data_type; bool need_discard:1; bool need_inc_gen:1; #define x(_name, _bits) u##_bits _name; BCH_ALLOC_FIELDS_V2() #undef x }; static inline u64 alloc_field_v1_get(const struct bch_alloc *a, const void **p, unsigned field) { unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field]; u64 v; if (!(a->fields & (1 << field))) return 0; switch (bytes) { case 1: v = *((const u8 *) *p); break; case 2: v = le16_to_cpup(*p); break; case 4: v = le32_to_cpup(*p); break; case 8: v = le64_to_cpup(*p); break; default: BUG(); } *p += bytes; return v; } static inline void alloc_field_v1_put(struct bkey_i_alloc *a, void **p, unsigned field, u64 v) { unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field]; if (!v) return; a->v.fields |= 1 << field; switch (bytes) { case 1: *((u8 *) *p) = v; break; case 2: *((__le16 *) *p) = cpu_to_le16(v); break; case 4: *((__le32 *) *p) = cpu_to_le32(v); break; case 8: *((__le64 *) *p) = cpu_to_le64(v); break; default: BUG(); } *p += bytes; } static void bch2_alloc_unpack_v1(struct bkey_alloc_unpacked *out, struct bkey_s_c k) { const struct bch_alloc *in = bkey_s_c_to_alloc(k).v; const void *d = in->data; unsigned idx = 0; out->gen = in->gen; #define x(_name, _bits) out->_name = alloc_field_v1_get(in, &d, idx++); BCH_ALLOC_FIELDS_V1() #undef x } static int bch2_alloc_unpack_v2(struct bkey_alloc_unpacked *out, struct bkey_s_c k) { struct bkey_s_c_alloc_v2 a = bkey_s_c_to_alloc_v2(k); const u8 *in = a.v->data; const u8 *end = bkey_val_end(a); unsigned fieldnr = 0; int ret; u64 v; out->gen = a.v->gen; out->oldest_gen = a.v->oldest_gen; out->data_type = a.v->data_type; #define x(_name, _bits) \ if (fieldnr < a.v->nr_fields) { \ ret = bch2_varint_decode_fast(in, end, &v); \ if (ret < 0) \ return ret; \ in += ret; \ } else { \ v = 0; \ } \ out->_name = v; \ if (v != out->_name) \ return -1; \ fieldnr++; BCH_ALLOC_FIELDS_V2() #undef x return 0; } static int bch2_alloc_unpack_v3(struct bkey_alloc_unpacked *out, struct bkey_s_c k) { struct bkey_s_c_alloc_v3 a = bkey_s_c_to_alloc_v3(k); const u8 *in = a.v->data; const u8 *end = bkey_val_end(a); unsigned fieldnr = 0; int ret; u64 v; out->gen = a.v->gen; out->oldest_gen = a.v->oldest_gen; out->data_type = a.v->data_type; out->need_discard = BCH_ALLOC_V3_NEED_DISCARD(a.v); out->need_inc_gen = BCH_ALLOC_V3_NEED_INC_GEN(a.v); out->journal_seq = le64_to_cpu(a.v->journal_seq); #define x(_name, _bits) \ if (fieldnr < a.v->nr_fields) { \ ret = bch2_varint_decode_fast(in, end, &v); \ if (ret < 0) \ return ret; \ in += ret; \ } else { \ v = 0; \ } \ out->_name = v; \ if (v != out->_name) \ return -1; \ fieldnr++; BCH_ALLOC_FIELDS_V2() #undef x return 0; } static struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k) { struct bkey_alloc_unpacked ret = { .gen = 0 }; switch (k.k->type) { case KEY_TYPE_alloc: bch2_alloc_unpack_v1(&ret, k); break; case KEY_TYPE_alloc_v2: bch2_alloc_unpack_v2(&ret, k); break; case KEY_TYPE_alloc_v3: bch2_alloc_unpack_v3(&ret, k); break; } return ret; } static unsigned bch_alloc_v1_val_u64s(const struct bch_alloc *a) { unsigned i, bytes = offsetof(struct bch_alloc, data); for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_V1_FIELD_BYTES); i++) if (a->fields & (1 << i)) bytes += BCH_ALLOC_V1_FIELD_BYTES[i]; return DIV_ROUND_UP(bytes, sizeof(u64)); } int bch2_alloc_v1_invalid(const struct bch_fs *c, struct bkey_s_c k, int rw, struct printbuf *err) { struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); /* allow for unknown fields */ if (bkey_val_u64s(a.k) < bch_alloc_v1_val_u64s(a.v)) { prt_printf(err, "incorrect value size (%zu < %u)", bkey_val_u64s(a.k), bch_alloc_v1_val_u64s(a.v)); return -BCH_ERR_invalid_bkey; } return 0; } int bch2_alloc_v2_invalid(const struct bch_fs *c, struct bkey_s_c k, int rw, struct printbuf *err) { struct bkey_alloc_unpacked u; if (bch2_alloc_unpack_v2(&u, k)) { prt_printf(err, "unpack error"); return -BCH_ERR_invalid_bkey; } return 0; } int bch2_alloc_v3_invalid(const struct bch_fs *c, struct bkey_s_c k, int rw, struct printbuf *err) { struct bkey_alloc_unpacked u; if (bch2_alloc_unpack_v3(&u, k)) { prt_printf(err, "unpack error"); return -BCH_ERR_invalid_bkey; } return 0; } int bch2_alloc_v4_invalid(const struct bch_fs *c, struct bkey_s_c k, int rw, struct printbuf *err) { struct bkey_s_c_alloc_v4 a = bkey_s_c_to_alloc_v4(k); if (alloc_v4_u64s(a.v) != bkey_val_u64s(k.k)) { prt_printf(err, "bad val size (%lu != %u)", bkey_val_u64s(k.k), alloc_v4_u64s(a.v)); return -BCH_ERR_invalid_bkey; } if (!BCH_ALLOC_V4_BACKPOINTERS_START(a.v) && BCH_ALLOC_V4_NR_BACKPOINTERS(a.v)) { prt_printf(err, "invalid backpointers_start"); return -BCH_ERR_invalid_bkey; } /* * XXX this is wrong, we'll be checking updates that happened from * before BCH_FS_CHECK_BACKPOINTERS_DONE */ if (rw == WRITE && test_bit(BCH_FS_CHECK_BACKPOINTERS_DONE, &c->flags)) { unsigned i, bp_len = 0; for (i = 0; i < BCH_ALLOC_V4_NR_BACKPOINTERS(a.v); i++) bp_len += alloc_v4_backpointers_c(a.v)[i].bucket_len; if (bp_len > a.v->dirty_sectors) { prt_printf(err, "too many backpointers"); return -BCH_ERR_invalid_bkey; } } if (rw == WRITE) { if (alloc_data_type(*a.v, a.v->data_type) != a.v->data_type) { prt_printf(err, "invalid data type (got %u should be %u)", a.v->data_type, alloc_data_type(*a.v, a.v->data_type)); return -BCH_ERR_invalid_bkey; } switch (a.v->data_type) { case BCH_DATA_free: case BCH_DATA_need_gc_gens: case BCH_DATA_need_discard: if (a.v->dirty_sectors || a.v->cached_sectors || a.v->stripe) { prt_printf(err, "empty data type free but have data"); return -BCH_ERR_invalid_bkey; } break; case BCH_DATA_sb: case BCH_DATA_journal: case BCH_DATA_btree: case BCH_DATA_user: case BCH_DATA_parity: if (!a.v->dirty_sectors) { prt_printf(err, "data_type %s but dirty_sectors==0", bch2_data_types[a.v->data_type]); return -BCH_ERR_invalid_bkey; } break; case BCH_DATA_cached: if (!a.v->cached_sectors || a.v->dirty_sectors || a.v->stripe) { prt_printf(err, "data type inconsistency"); return -BCH_ERR_invalid_bkey; } if (!a.v->io_time[READ] && test_bit(BCH_FS_CHECK_ALLOC_TO_LRU_REFS_DONE, &c->flags)) { prt_printf(err, "cached bucket with read_time == 0"); return -BCH_ERR_invalid_bkey; } break; case BCH_DATA_stripe: if (!a.v->stripe) { prt_printf(err, "data_type %s but stripe==0", bch2_data_types[a.v->data_type]); return -BCH_ERR_invalid_bkey; } break; } } return 0; } static inline u64 swab40(u64 x) { return (((x & 0x00000000ffULL) << 32)| ((x & 0x000000ff00ULL) << 16)| ((x & 0x0000ff0000ULL) >> 0)| ((x & 0x00ff000000ULL) >> 16)| ((x & 0xff00000000ULL) >> 32)); } void bch2_alloc_v4_swab(struct bkey_s k) { struct bch_alloc_v4 *a = bkey_s_to_alloc_v4(k).v; struct bch_backpointer *bp, *bps; a->journal_seq = swab64(a->journal_seq); a->flags = swab32(a->flags); a->dirty_sectors = swab32(a->dirty_sectors); a->cached_sectors = swab32(a->cached_sectors); a->io_time[0] = swab64(a->io_time[0]); a->io_time[1] = swab64(a->io_time[1]); a->stripe = swab32(a->stripe); a->nr_external_backpointers = swab32(a->nr_external_backpointers); bps = alloc_v4_backpointers(a); for (bp = bps; bp < bps + BCH_ALLOC_V4_NR_BACKPOINTERS(a); bp++) { bp->bucket_offset = swab40(bp->bucket_offset); bp->bucket_len = swab32(bp->bucket_len); bch2_bpos_swab(&bp->pos); } } void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { struct bch_alloc_v4 _a; const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &_a); const struct bch_backpointer *bps; unsigned i; prt_newline(out); printbuf_indent_add(out, 2); prt_printf(out, "gen %u oldest_gen %u data_type %s", a->gen, a->oldest_gen, bch2_data_types[a->data_type]); prt_newline(out); prt_printf(out, "journal_seq %llu", a->journal_seq); prt_newline(out); prt_printf(out, "need_discard %llu", BCH_ALLOC_V4_NEED_DISCARD(a)); prt_newline(out); prt_printf(out, "need_inc_gen %llu", BCH_ALLOC_V4_NEED_INC_GEN(a)); prt_newline(out); prt_printf(out, "dirty_sectors %u", a->dirty_sectors); prt_newline(out); prt_printf(out, "cached_sectors %u", a->cached_sectors); prt_newline(out); prt_printf(out, "stripe %u", a->stripe); prt_newline(out); prt_printf(out, "stripe_redundancy %u", a->stripe_redundancy); prt_newline(out); prt_printf(out, "io_time[READ] %llu", a->io_time[READ]); prt_newline(out); prt_printf(out, "io_time[WRITE] %llu", a->io_time[WRITE]); prt_newline(out); prt_printf(out, "backpointers: %llu", BCH_ALLOC_V4_NR_BACKPOINTERS(a)); printbuf_indent_add(out, 2); bps = alloc_v4_backpointers_c(a); for (i = 0; i < BCH_ALLOC_V4_NR_BACKPOINTERS(a); i++) { prt_newline(out); bch2_backpointer_to_text(out, &bps[i]); } printbuf_indent_sub(out, 4); } void __bch2_alloc_to_v4(struct bkey_s_c k, struct bch_alloc_v4 *out) { if (k.k->type == KEY_TYPE_alloc_v4) { int d; *out = *bkey_s_c_to_alloc_v4(k).v; d = (int) BCH_ALLOC_V4_U64s - (int) (BCH_ALLOC_V4_BACKPOINTERS_START(out) ?: BCH_ALLOC_V4_U64s_V0); if (unlikely(d > 0)) { memset((u64 *) out + BCH_ALLOC_V4_BACKPOINTERS_START(out), 0, d * sizeof(u64)); SET_BCH_ALLOC_V4_BACKPOINTERS_START(out, BCH_ALLOC_V4_U64s); } } else { struct bkey_alloc_unpacked u = bch2_alloc_unpack(k); *out = (struct bch_alloc_v4) { .journal_seq = u.journal_seq, .flags = u.need_discard, .gen = u.gen, .oldest_gen = u.oldest_gen, .data_type = u.data_type, .stripe_redundancy = u.stripe_redundancy, .dirty_sectors = u.dirty_sectors, .cached_sectors = u.cached_sectors, .io_time[READ] = u.read_time, .io_time[WRITE] = u.write_time, .stripe = u.stripe, }; SET_BCH_ALLOC_V4_BACKPOINTERS_START(out, BCH_ALLOC_V4_U64s); } } static noinline struct bkey_i_alloc_v4 * __bch2_alloc_to_v4_mut(struct btree_trans *trans, struct bkey_s_c k) { struct bkey_i_alloc_v4 *ret; unsigned bytes = k.k->type == KEY_TYPE_alloc_v4 ? bkey_bytes(k.k) : sizeof(struct bkey_i_alloc_v4); /* * Reserve space for one more backpointer here: * Not sketchy at doing it this way, nope... */ ret = bch2_trans_kmalloc(trans, bytes + sizeof(struct bch_backpointer)); if (IS_ERR(ret)) return ret; if (k.k->type == KEY_TYPE_alloc_v4) { struct bch_backpointer *src, *dst; bkey_reassemble(&ret->k_i, k); src = alloc_v4_backpointers(&ret->v); SET_BCH_ALLOC_V4_BACKPOINTERS_START(&ret->v, BCH_ALLOC_V4_U64s); dst = alloc_v4_backpointers(&ret->v); memmove(dst, src, BCH_ALLOC_V4_NR_BACKPOINTERS(&ret->v) * sizeof(struct bch_backpointer)); memset(src, 0, dst - src); set_alloc_v4_u64s(ret); } else { bkey_alloc_v4_init(&ret->k_i); ret->k.p = k.k->p; bch2_alloc_to_v4(k, &ret->v); } return ret; } static inline struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut_inlined(struct btree_trans *trans, struct bkey_s_c k) { if (likely(k.k->type == KEY_TYPE_alloc_v4) && BCH_ALLOC_V4_BACKPOINTERS_START(bkey_s_c_to_alloc_v4(k).v) == BCH_ALLOC_V4_U64s) { /* * Reserve space for one more backpointer here: * Not sketchy at doing it this way, nope... */ struct bkey_i_alloc_v4 *ret = bch2_trans_kmalloc_nomemzero(trans, bkey_bytes(k.k) + sizeof(struct bch_backpointer)); if (!IS_ERR(ret)) { bkey_reassemble(&ret->k_i, k); memset((void *) ret + bkey_bytes(k.k), 0, sizeof(struct bch_backpointer)); } return ret; } return __bch2_alloc_to_v4_mut(trans, k); } struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut(struct btree_trans *trans, struct bkey_s_c k) { return bch2_alloc_to_v4_mut_inlined(trans, k); } struct bkey_i_alloc_v4 * bch2_trans_start_alloc_update(struct btree_trans *trans, struct btree_iter *iter, struct bpos pos) { struct bkey_s_c k; struct bkey_i_alloc_v4 *a; int ret; bch2_trans_iter_init(trans, iter, BTREE_ID_alloc, pos, BTREE_ITER_WITH_UPDATES| BTREE_ITER_CACHED| BTREE_ITER_INTENT); k = bch2_btree_iter_peek_slot(iter); ret = bkey_err(k); if (unlikely(ret)) goto err; a = bch2_alloc_to_v4_mut_inlined(trans, k); ret = PTR_ERR_OR_ZERO(a); if (unlikely(ret)) goto err; return a; err: bch2_trans_iter_exit(trans, iter); return ERR_PTR(ret); } int bch2_alloc_read(struct bch_fs *c) { struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; struct bch_alloc_v4 a; struct bch_dev *ca; int ret; bch2_trans_init(&trans, c, 0, 0); for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN, BTREE_ITER_PREFETCH, k, ret) { /* * Not a fsck error because this is checked/repaired by * bch2_check_alloc_key() which runs later: */ if (!bch2_dev_bucket_exists(c, k.k->p)) continue; ca = bch_dev_bkey_exists(c, k.k->p.inode); *bucket_gen(ca, k.k->p.offset) = bch2_alloc_to_v4(k, &a)->gen; } bch2_trans_iter_exit(&trans, &iter); bch2_trans_exit(&trans); if (ret) bch_err(c, "error reading alloc info: %s", bch2_err_str(ret)); return ret; } /* Free space/discard btree: */ static int bch2_bucket_do_index(struct btree_trans *trans, struct bkey_s_c alloc_k, const struct bch_alloc_v4 *a, bool set) { struct bch_fs *c = trans->c; struct bch_dev *ca = bch_dev_bkey_exists(c, alloc_k.k->p.inode); struct btree_iter iter; struct bkey_s_c old; struct bkey_i *k; enum btree_id btree; enum bch_bkey_type old_type = !set ? KEY_TYPE_set : KEY_TYPE_deleted; enum bch_bkey_type new_type = set ? KEY_TYPE_set : KEY_TYPE_deleted; struct printbuf buf = PRINTBUF; int ret; if (a->data_type != BCH_DATA_free && a->data_type != BCH_DATA_need_discard) return 0; k = bch2_trans_kmalloc_nomemzero(trans, sizeof(*k)); if (IS_ERR(k)) return PTR_ERR(k); bkey_init(&k->k); k->k.type = new_type; switch (a->data_type) { case BCH_DATA_free: btree = BTREE_ID_freespace; k->k.p = alloc_freespace_pos(alloc_k.k->p, *a); bch2_key_resize(&k->k, 1); break; case BCH_DATA_need_discard: btree = BTREE_ID_need_discard; k->k.p = alloc_k.k->p; break; default: return 0; } bch2_trans_iter_init(trans, &iter, btree, bkey_start_pos(&k->k), BTREE_ITER_INTENT); old = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(old); if (ret) goto err; if (ca->mi.freespace_initialized && bch2_trans_inconsistent_on(old.k->type != old_type, trans, "incorrect key when %s %s btree (got %s should be %s)\n" " for %s", set ? "setting" : "clearing", bch2_btree_ids[btree], bch2_bkey_types[old.k->type], bch2_bkey_types[old_type], (bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) { ret = -EIO; goto err; } ret = bch2_trans_update(trans, &iter, k, 0); err: bch2_trans_iter_exit(trans, &iter); printbuf_exit(&buf); return ret; } int bch2_trans_mark_alloc(struct btree_trans *trans, enum btree_id btree_id, unsigned level, struct bkey_s_c old, struct bkey_i *new, unsigned flags) { struct bch_fs *c = trans->c; struct bch_alloc_v4 old_a_convert, *new_a; const struct bch_alloc_v4 *old_a; u64 old_lru, new_lru; int ret = 0; /* * Deletion only happens in the device removal path, with * BTREE_TRIGGER_NORUN: */ BUG_ON(new->k.type != KEY_TYPE_alloc_v4); old_a = bch2_alloc_to_v4(old, &old_a_convert); new_a = &bkey_i_to_alloc_v4(new)->v; new_a->data_type = alloc_data_type(*new_a, new_a->data_type); if (new_a->dirty_sectors > old_a->dirty_sectors || new_a->cached_sectors > old_a->cached_sectors) { new_a->io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now)); new_a->io_time[WRITE]= max_t(u64, 1, atomic64_read(&c->io_clock[WRITE].now)); SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, true); SET_BCH_ALLOC_V4_NEED_DISCARD(new_a, true); } if (data_type_is_empty(new_a->data_type) && BCH_ALLOC_V4_NEED_INC_GEN(new_a) && !bch2_bucket_is_open_safe(c, new->k.p.inode, new->k.p.offset)) { new_a->gen++; SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, false); } if (old_a->data_type != new_a->data_type || (new_a->data_type == BCH_DATA_free && alloc_freespace_genbits(*old_a) != alloc_freespace_genbits(*new_a))) { ret = bch2_bucket_do_index(trans, old, old_a, false) ?: bch2_bucket_do_index(trans, bkey_i_to_s_c(new), new_a, true); if (ret) return ret; } if (new_a->data_type == BCH_DATA_cached && !new_a->io_time[READ]) new_a->io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now)); old_lru = alloc_lru_idx(*old_a); new_lru = alloc_lru_idx(*new_a); if (old_lru != new_lru) { ret = bch2_lru_change(trans, new->k.p.inode, new->k.p.offset, old_lru, &new_lru, old); if (ret) return ret; if (new_a->data_type == BCH_DATA_cached) new_a->io_time[READ] = new_lru; } return 0; } static int bch2_check_alloc_key(struct btree_trans *trans, struct btree_iter *alloc_iter, struct btree_iter *discard_iter, struct btree_iter *freespace_iter) { struct bch_fs *c = trans->c; struct bch_dev *ca; struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a; unsigned discard_key_type, freespace_key_type; struct bkey_s_c alloc_k, k; struct printbuf buf = PRINTBUF; int ret; alloc_k = bch2_dev_bucket_exists(c, alloc_iter->pos) ? bch2_btree_iter_peek_slot(alloc_iter) : bch2_btree_iter_peek(alloc_iter); if (!alloc_k.k) return 1; ret = bkey_err(alloc_k); if (ret) return ret; if (fsck_err_on(!bch2_dev_bucket_exists(c, alloc_k.k->p), c, "alloc key for invalid device:bucket %llu:%llu", alloc_k.k->p.inode, alloc_k.k->p.offset)) return bch2_btree_delete_at(trans, alloc_iter, 0); ca = bch_dev_bkey_exists(c, alloc_k.k->p.inode); if (!ca->mi.freespace_initialized) return 0; a = bch2_alloc_to_v4(alloc_k, &a_convert); discard_key_type = a->data_type == BCH_DATA_need_discard ? KEY_TYPE_set : 0; freespace_key_type = a->data_type == BCH_DATA_free ? KEY_TYPE_set : 0; bch2_btree_iter_set_pos(discard_iter, alloc_k.k->p); bch2_btree_iter_set_pos(freespace_iter, alloc_freespace_pos(alloc_k.k->p, *a)); k = bch2_btree_iter_peek_slot(discard_iter); ret = bkey_err(k); if (ret) goto err; if (k.k->type != discard_key_type && (c->opts.reconstruct_alloc || fsck_err(c, "incorrect key in need_discard btree (got %s should be %s)\n" " %s", bch2_bkey_types[k.k->type], bch2_bkey_types[discard_key_type], (bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)))) { struct bkey_i *update = bch2_trans_kmalloc(trans, sizeof(*update)); ret = PTR_ERR_OR_ZERO(update); if (ret) goto err; bkey_init(&update->k); update->k.type = discard_key_type; update->k.p = discard_iter->pos; ret = bch2_trans_update(trans, discard_iter, update, 0); if (ret) goto err; } k = bch2_btree_iter_peek_slot(freespace_iter); ret = bkey_err(k); if (ret) goto err; if (k.k->type != freespace_key_type && (c->opts.reconstruct_alloc || fsck_err(c, "incorrect key in freespace btree (got %s should be %s)\n" " %s", bch2_bkey_types[k.k->type], bch2_bkey_types[freespace_key_type], (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)))) { struct bkey_i *update = bch2_trans_kmalloc(trans, sizeof(*update)); ret = PTR_ERR_OR_ZERO(update); if (ret) goto err; bkey_init(&update->k); update->k.type = freespace_key_type; update->k.p = freespace_iter->pos; bch2_key_resize(&update->k, 1); ret = bch2_trans_update(trans, freespace_iter, update, 0); if (ret) goto err; } err: fsck_err: printbuf_exit(&buf); return ret; } static int bch2_check_discard_freespace_key(struct btree_trans *trans, struct btree_iter *iter) { struct bch_fs *c = trans->c; struct btree_iter alloc_iter; struct bkey_s_c alloc_k; struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a; u64 genbits; struct bpos pos; enum bch_data_type state = iter->btree_id == BTREE_ID_need_discard ? BCH_DATA_need_discard : BCH_DATA_free; struct printbuf buf = PRINTBUF; int ret; pos = iter->pos; pos.offset &= ~(~0ULL << 56); genbits = iter->pos.offset & (~0ULL << 56); bch2_trans_iter_init(trans, &alloc_iter, BTREE_ID_alloc, pos, 0); if (fsck_err_on(!bch2_dev_bucket_exists(c, pos), c, "entry in %s btree for nonexistant dev:bucket %llu:%llu", bch2_btree_ids[iter->btree_id], pos.inode, pos.offset)) goto delete; alloc_k = bch2_btree_iter_peek_slot(&alloc_iter); ret = bkey_err(alloc_k); if (ret) goto err; a = bch2_alloc_to_v4(alloc_k, &a_convert); if (fsck_err_on(a->data_type != state || (state == BCH_DATA_free && genbits != alloc_freespace_genbits(*a)), c, "%s\n incorrectly set in %s index (free %u, genbits %llu should be %llu)", (bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf), bch2_btree_ids[iter->btree_id], a->data_type == state, genbits >> 56, alloc_freespace_genbits(*a) >> 56)) goto delete; out: err: fsck_err: bch2_trans_iter_exit(trans, &alloc_iter); printbuf_exit(&buf); return ret; delete: ret = bch2_btree_delete_extent_at(trans, iter, iter->btree_id == BTREE_ID_freespace ? 1 : 0, 0); goto out; } int bch2_check_alloc_info(struct bch_fs *c) { struct btree_trans trans; struct btree_iter iter, discard_iter, freespace_iter; struct bkey_s_c k; int ret = 0; bch2_trans_init(&trans, c, 0, 0); bch2_trans_iter_init(&trans, &iter, BTREE_ID_alloc, POS_MIN, BTREE_ITER_PREFETCH); bch2_trans_iter_init(&trans, &discard_iter, BTREE_ID_need_discard, POS_MIN, BTREE_ITER_PREFETCH); bch2_trans_iter_init(&trans, &freespace_iter, BTREE_ID_freespace, POS_MIN, BTREE_ITER_PREFETCH); while (1) { ret = commit_do(&trans, NULL, NULL, BTREE_INSERT_NOFAIL| BTREE_INSERT_LAZY_RW, bch2_check_alloc_key(&trans, &iter, &discard_iter, &freespace_iter)); if (ret) break; bch2_btree_iter_advance(&iter); } bch2_trans_iter_exit(&trans, &freespace_iter); bch2_trans_iter_exit(&trans, &discard_iter); bch2_trans_iter_exit(&trans, &iter); if (ret < 0) goto err; ret = for_each_btree_key_commit(&trans, iter, BTREE_ID_need_discard, POS_MIN, BTREE_ITER_PREFETCH, k, NULL, NULL, BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW, bch2_check_discard_freespace_key(&trans, &iter)) ?: for_each_btree_key_commit(&trans, iter, BTREE_ID_freespace, POS_MIN, BTREE_ITER_PREFETCH, k, NULL, NULL, BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW, bch2_check_discard_freespace_key(&trans, &iter)); err: bch2_trans_exit(&trans); return ret < 0 ? ret : 0; } static int bch2_check_alloc_to_lru_ref(struct btree_trans *trans, struct btree_iter *alloc_iter) { struct bch_fs *c = trans->c; struct btree_iter lru_iter; struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a; struct bkey_s_c alloc_k, k; struct printbuf buf = PRINTBUF; struct printbuf buf2 = PRINTBUF; int ret; alloc_k = bch2_btree_iter_peek(alloc_iter); if (!alloc_k.k) return 0; ret = bkey_err(alloc_k); if (ret) return ret; a = bch2_alloc_to_v4(alloc_k, &a_convert); if (a->data_type != BCH_DATA_cached) return 0; bch2_trans_iter_init(trans, &lru_iter, BTREE_ID_lru, POS(alloc_k.k->p.inode, a->io_time[READ]), 0); k = bch2_btree_iter_peek_slot(&lru_iter); ret = bkey_err(k); if (ret) goto err; if (fsck_err_on(!a->io_time[READ], c, "cached bucket with read_time 0\n" " %s", (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)) || fsck_err_on(k.k->type != KEY_TYPE_lru || le64_to_cpu(bkey_s_c_to_lru(k).v->idx) != alloc_k.k->p.offset, c, "incorrect/missing lru entry\n" " %s\n" " %s", (printbuf_reset(&buf), bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf), (bch2_bkey_val_to_text(&buf2, c, k), buf2.buf))) { u64 read_time = a->io_time[READ] ?: atomic64_read(&c->io_clock[READ].now); ret = bch2_lru_set(trans, alloc_k.k->p.inode, alloc_k.k->p.offset, &read_time); if (ret) goto err; if (a->io_time[READ] != read_time) { struct bkey_i_alloc_v4 *a_mut = bch2_alloc_to_v4_mut(trans, alloc_k); ret = PTR_ERR_OR_ZERO(a_mut); if (ret) goto err; a_mut->v.io_time[READ] = read_time; ret = bch2_trans_update(trans, alloc_iter, &a_mut->k_i, BTREE_TRIGGER_NORUN); if (ret) goto err; } } err: fsck_err: bch2_trans_iter_exit(trans, &lru_iter); printbuf_exit(&buf2); printbuf_exit(&buf); return ret; } int bch2_check_alloc_to_lru_refs(struct bch_fs *c) { struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; int ret = 0; bch2_trans_init(&trans, c, 0, 0); for_each_btree_key_commit(&trans, iter, BTREE_ID_alloc, POS_MIN, BTREE_ITER_PREFETCH, k, NULL, NULL, BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW, bch2_check_alloc_to_lru_ref(&trans, &iter)); bch2_trans_exit(&trans); return ret < 0 ? ret : 0; } static int bch2_discard_one_bucket(struct btree_trans *trans, struct btree_iter *need_discard_iter, struct bpos *discard_pos_done, u64 *seen, u64 *open, u64 *need_journal_commit, u64 *discarded) { struct bch_fs *c = trans->c; struct bpos pos = need_discard_iter->pos; struct btree_iter iter = { NULL }; struct bkey_s_c k; struct bch_dev *ca; struct bkey_i_alloc_v4 *a; struct printbuf buf = PRINTBUF; bool did_discard = false; int ret = 0; ca = bch_dev_bkey_exists(c, pos.inode); if (!percpu_ref_tryget(&ca->io_ref)) { bch2_btree_iter_set_pos(need_discard_iter, POS(pos.inode + 1, 0)); return 0; } if (bch2_bucket_is_open_safe(c, pos.inode, pos.offset)) { (*open)++; goto out; } if (bch2_bucket_needs_journal_commit(&c->buckets_waiting_for_journal, c->journal.flushed_seq_ondisk, pos.inode, pos.offset)) { (*need_journal_commit)++; goto out; } bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, need_discard_iter->pos, BTREE_ITER_CACHED); k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) goto out; a = bch2_alloc_to_v4_mut(trans, k); ret = PTR_ERR_OR_ZERO(a); if (ret) goto out; if (BCH_ALLOC_V4_NEED_INC_GEN(&a->v)) { a->v.gen++; SET_BCH_ALLOC_V4_NEED_INC_GEN(&a->v, false); goto write; } if (bch2_trans_inconsistent_on(a->v.journal_seq > c->journal.flushed_seq_ondisk, trans, "clearing need_discard but journal_seq %llu > flushed_seq %llu\n" "%s", a->v.journal_seq, c->journal.flushed_seq_ondisk, (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ret = -EIO; goto out; } if (bch2_trans_inconsistent_on(a->v.data_type != BCH_DATA_need_discard, trans, "bucket incorrectly set in need_discard btree\n" "%s", (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ret = -EIO; goto out; } if (!bkey_eq(*discard_pos_done, iter.pos) && ca->mi.discard && !c->opts.nochanges) { /* * This works without any other locks because this is the only * thread that removes items from the need_discard tree */ bch2_trans_unlock(trans); blkdev_issue_discard(ca->disk_sb.bdev, k.k->p.offset * ca->mi.bucket_size, ca->mi.bucket_size, GFP_KERNEL); ret = bch2_trans_relock(trans); if (ret) goto out; } *discard_pos_done = iter.pos; did_discard = true; SET_BCH_ALLOC_V4_NEED_DISCARD(&a->v, false); a->v.data_type = alloc_data_type(a->v, a->v.data_type); write: ret = bch2_trans_update(trans, &iter, &a->k_i, 0) ?: bch2_trans_commit(trans, NULL, NULL, BTREE_INSERT_USE_RESERVE|BTREE_INSERT_NOFAIL); if (ret) goto out; if (did_discard) { this_cpu_inc(c->counters[BCH_COUNTER_bucket_discard]); (*discarded)++; } out: bch2_trans_iter_exit(trans, &iter); percpu_ref_put(&ca->io_ref); printbuf_exit(&buf); return ret; } static void bch2_do_discards_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, discard_work); struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; u64 seen = 0, open = 0, need_journal_commit = 0, discarded = 0; struct bpos discard_pos_done = POS_MAX; int ret; bch2_trans_init(&trans, c, 0, 0); /* * We're doing the commit in bch2_discard_one_bucket instead of using * for_each_btree_key_commit() so that we can increment counters after * successful commit: */ ret = for_each_btree_key2(&trans, iter, BTREE_ID_need_discard, POS_MIN, 0, k, bch2_discard_one_bucket(&trans, &iter, &discard_pos_done, &seen, &open, &need_journal_commit, &discarded)); bch2_trans_exit(&trans); if (need_journal_commit * 2 > seen) bch2_journal_flush_async(&c->journal, NULL); percpu_ref_put(&c->writes); trace_discard_buckets(c, seen, open, need_journal_commit, discarded, bch2_err_str(ret)); } void bch2_do_discards(struct bch_fs *c) { if (percpu_ref_tryget_live(&c->writes) && !queue_work(system_long_wq, &c->discard_work)) percpu_ref_put(&c->writes); } static int invalidate_one_bucket(struct btree_trans *trans, struct btree_iter *lru_iter, struct bkey_s_c k, unsigned dev_idx, s64 *nr_to_invalidate) { struct bch_fs *c = trans->c; struct btree_iter alloc_iter = { NULL }; struct bkey_i_alloc_v4 *a; struct bpos bucket; struct printbuf buf = PRINTBUF; unsigned cached_sectors; int ret = 0; if (*nr_to_invalidate <= 0 || k.k->p.inode != dev_idx) return 1; if (k.k->type != KEY_TYPE_lru) { prt_printf(&buf, "non lru key in lru btree:\n "); bch2_bkey_val_to_text(&buf, c, k); if (!test_bit(BCH_FS_CHECK_LRUS_DONE, &c->flags)) { bch_err(c, "%s", buf.buf); } else { bch2_trans_inconsistent(trans, "%s", buf.buf); ret = -EINVAL; } goto out; } bucket = POS(dev_idx, le64_to_cpu(bkey_s_c_to_lru(k).v->idx)); a = bch2_trans_start_alloc_update(trans, &alloc_iter, bucket); ret = PTR_ERR_OR_ZERO(a); if (ret) goto out; if (k.k->p.offset != alloc_lru_idx(a->v)) { prt_printf(&buf, "alloc key does not point back to lru entry when invalidating bucket:\n "); bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&a->k_i)); prt_printf(&buf, "\n "); bch2_bkey_val_to_text(&buf, c, k); if (!test_bit(BCH_FS_CHECK_LRUS_DONE, &c->flags)) { bch_err(c, "%s", buf.buf); } else { bch2_trans_inconsistent(trans, "%s", buf.buf); ret = -EINVAL; } goto out; } if (!a->v.cached_sectors) bch_err(c, "invalidating empty bucket, confused"); cached_sectors = a->v.cached_sectors; SET_BCH_ALLOC_V4_NEED_INC_GEN(&a->v, false); a->v.gen++; a->v.data_type = 0; a->v.dirty_sectors = 0; a->v.cached_sectors = 0; a->v.io_time[READ] = atomic64_read(&c->io_clock[READ].now); a->v.io_time[WRITE] = atomic64_read(&c->io_clock[WRITE].now); ret = bch2_trans_update(trans, &alloc_iter, &a->k_i, BTREE_TRIGGER_BUCKET_INVALIDATE) ?: bch2_trans_commit(trans, NULL, NULL, BTREE_INSERT_USE_RESERVE|BTREE_INSERT_NOFAIL); if (ret) goto out; trace_and_count(c, bucket_invalidate, c, bucket.inode, bucket.offset, cached_sectors); --*nr_to_invalidate; out: bch2_trans_iter_exit(trans, &alloc_iter); printbuf_exit(&buf); return ret; } static void bch2_do_invalidates_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, invalidate_work); struct bch_dev *ca; struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; unsigned i; int ret = 0; bch2_trans_init(&trans, c, 0, 0); for_each_member_device(ca, c, i) { s64 nr_to_invalidate = should_invalidate_buckets(ca, bch2_dev_usage_read(ca)); ret = for_each_btree_key2(&trans, iter, BTREE_ID_lru, POS(ca->dev_idx, 0), BTREE_ITER_INTENT, k, invalidate_one_bucket(&trans, &iter, k, ca->dev_idx, &nr_to_invalidate)); if (ret < 0) { percpu_ref_put(&ca->ref); break; } } bch2_trans_exit(&trans); percpu_ref_put(&c->writes); } void bch2_do_invalidates(struct bch_fs *c) { if (percpu_ref_tryget_live(&c->writes) && !queue_work(system_long_wq, &c->invalidate_work)) percpu_ref_put(&c->writes); } static int bch2_dev_freespace_init(struct bch_fs *c, struct bch_dev *ca) { struct btree_trans trans; struct btree_iter iter; struct bkey_s_c k; struct bpos end = POS(ca->dev_idx, ca->mi.nbuckets); struct bch_member *m; int ret; bch2_trans_init(&trans, c, 0, 0); bch2_trans_iter_init(&trans, &iter, BTREE_ID_alloc, POS(ca->dev_idx, ca->mi.first_bucket), BTREE_ITER_PREFETCH); /* * Scan the alloc btree for every bucket on @ca, and add buckets to the * freespace/need_discard/need_gc_gens btrees as needed: */ while (1) { bch2_trans_begin(&trans); ret = 0; if (bkey_ge(iter.pos, end)) break; k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) goto bkey_err; if (k.k->type) { /* * We process live keys in the alloc btree one at a * time: */ struct bch_alloc_v4 a_convert; const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert); ret = bch2_bucket_do_index(&trans, k, a, true) ?: bch2_trans_commit(&trans, NULL, NULL, BTREE_INSERT_LAZY_RW| BTREE_INSERT_NOFAIL); if (ret) goto bkey_err; bch2_btree_iter_advance(&iter); } else { /* * When there's a hole, process a whole range of keys * all at once: * * This is similar to how extent btree iterators in * slots mode will synthesize a whole range - a * KEY_TYPE_deleted extent. * * But alloc keys aren't extents (they have zero size), * so we're open coding it here: */ struct btree_iter iter2; struct bkey_i *freespace; struct bpos next; bch2_trans_copy_iter(&iter2, &iter); k = bch2_btree_iter_peek_upto(&iter2, bkey_min(bkey_min(end, iter.path->l[0].b->key.k.p), POS(iter.pos.inode, iter.pos.offset + U32_MAX - 1))); next = iter2.pos; ret = bkey_err(k); bch2_trans_iter_exit(&trans, &iter2); BUG_ON(next.offset >= iter.pos.offset + U32_MAX); if (ret) goto bkey_err; freespace = bch2_trans_kmalloc(&trans, sizeof(*freespace)); ret = PTR_ERR_OR_ZERO(freespace); if (ret) goto bkey_err; bkey_init(&freespace->k); freespace->k.type = KEY_TYPE_set; freespace->k.p = iter.pos; bch2_key_resize(&freespace->k, next.offset - iter.pos.offset); ret = __bch2_btree_insert(&trans, BTREE_ID_freespace, freespace) ?: bch2_trans_commit(&trans, NULL, NULL, BTREE_INSERT_LAZY_RW| BTREE_INSERT_NOFAIL); if (ret) goto bkey_err; bch2_btree_iter_set_pos(&iter, next); } bkey_err: if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) continue; if (ret) break; } bch2_trans_iter_exit(&trans, &iter); bch2_trans_exit(&trans); if (ret < 0) { bch_err(ca, "error initializing free space: %s", bch2_err_str(ret)); return ret; } mutex_lock(&c->sb_lock); m = bch2_sb_get_members(c->disk_sb.sb)->members + ca->dev_idx; SET_BCH_MEMBER_FREESPACE_INITIALIZED(m, true); mutex_unlock(&c->sb_lock); return 0; } int bch2_fs_freespace_init(struct bch_fs *c) { struct bch_dev *ca; unsigned i; int ret = 0; bool doing_init = false; /* * We can crash during the device add path, so we need to check this on * every mount: */ for_each_member_device(ca, c, i) { if (ca->mi.freespace_initialized) continue; if (!doing_init) { bch_info(c, "initializing freespace"); doing_init = true; } ret = bch2_dev_freespace_init(c, ca); if (ret) { percpu_ref_put(&ca->ref); return ret; } } if (doing_init) { mutex_lock(&c->sb_lock); bch2_write_super(c); mutex_unlock(&c->sb_lock); bch_verbose(c, "done initializing freespace"); } return ret; } /* Bucket IO clocks: */ int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev, size_t bucket_nr, int rw) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_i_alloc_v4 *a; u64 now; int ret = 0; a = bch2_trans_start_alloc_update(trans, &iter, POS(dev, bucket_nr)); ret = PTR_ERR_OR_ZERO(a); if (ret) return ret; now = atomic64_read(&c->io_clock[rw].now); if (a->v.io_time[rw] == now) goto out; a->v.io_time[rw] = now; ret = bch2_trans_update(trans, &iter, &a->k_i, 0) ?: bch2_trans_commit(trans, NULL, NULL, 0); out: bch2_trans_iter_exit(trans, &iter); return ret; } /* Startup/shutdown (ro/rw): */ void bch2_recalc_capacity(struct bch_fs *c) { struct bch_dev *ca; u64 capacity = 0, reserved_sectors = 0, gc_reserve; unsigned bucket_size_max = 0; unsigned long ra_pages = 0; unsigned i; lockdep_assert_held(&c->state_lock); for_each_online_member(ca, c, i) { struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi; ra_pages += bdi->ra_pages; } bch2_set_ra_pages(c, ra_pages); for_each_rw_member(ca, c, i) { u64 dev_reserve = 0; /* * We need to reserve buckets (from the number * of currently available buckets) against * foreground writes so that mainly copygc can * make forward progress. * * We need enough to refill the various reserves * from scratch - copygc will use its entire * reserve all at once, then run against when * its reserve is refilled (from the formerly * available buckets). * * This reserve is just used when considering if * allocations for foreground writes must wait - * not -ENOSPC calculations. */ dev_reserve += ca->nr_btree_reserve * 2; dev_reserve += ca->mi.nbuckets >> 6; /* copygc reserve */ dev_reserve += 1; /* btree write point */ dev_reserve += 1; /* copygc write point */ dev_reserve += 1; /* rebalance write point */ dev_reserve *= ca->mi.bucket_size; capacity += bucket_to_sector(ca, ca->mi.nbuckets - ca->mi.first_bucket); reserved_sectors += dev_reserve * 2; bucket_size_max = max_t(unsigned, bucket_size_max, ca->mi.bucket_size); } gc_reserve = c->opts.gc_reserve_bytes ? c->opts.gc_reserve_bytes >> 9 : div64_u64(capacity * c->opts.gc_reserve_percent, 100); reserved_sectors = max(gc_reserve, reserved_sectors); reserved_sectors = min(reserved_sectors, capacity); c->capacity = capacity - reserved_sectors; c->bucket_size_max = bucket_size_max; /* Wake up case someone was waiting for buckets */ closure_wake_up(&c->freelist_wait); } static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca) { struct open_bucket *ob; bool ret = false; for (ob = c->open_buckets; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock(&ob->lock); if (ob->valid && !ob->on_partial_list && ob->dev == ca->dev_idx) ret = true; spin_unlock(&ob->lock); } return ret; } /* device goes ro: */ void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca) { unsigned i; /* First, remove device from allocation groups: */ for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) clear_bit(ca->dev_idx, c->rw_devs[i].d); /* * Capacity is calculated based off of devices in allocation groups: */ bch2_recalc_capacity(c); /* Next, close write points that point to this device... */ for (i = 0; i < ARRAY_SIZE(c->write_points); i++) bch2_writepoint_stop(c, ca, &c->write_points[i]); bch2_writepoint_stop(c, ca, &c->copygc_write_point); bch2_writepoint_stop(c, ca, &c->rebalance_write_point); bch2_writepoint_stop(c, ca, &c->btree_write_point); mutex_lock(&c->btree_reserve_cache_lock); while (c->btree_reserve_cache_nr) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; bch2_open_buckets_put(c, &a->ob); } mutex_unlock(&c->btree_reserve_cache_lock); while (1) { struct open_bucket *ob; spin_lock(&c->freelist_lock); if (!ca->open_buckets_partial_nr) { spin_unlock(&c->freelist_lock); break; } ob = c->open_buckets + ca->open_buckets_partial[--ca->open_buckets_partial_nr]; ob->on_partial_list = false; spin_unlock(&c->freelist_lock); bch2_open_bucket_put(c, ob); } bch2_ec_stop_dev(c, ca); /* * Wake up threads that were blocked on allocation, so they can notice * the device can no longer be removed and the capacity has changed: */ closure_wake_up(&c->freelist_wait); /* * journal_res_get() can block waiting for free space in the journal - * it needs to notice there may not be devices to allocate from anymore: */ wake_up(&c->journal.wait); /* Now wait for any in flight writes: */ closure_wait_event(&c->open_buckets_wait, !bch2_dev_has_open_write_point(c, ca)); } /* device goes rw: */ void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca) { unsigned i; for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) if (ca->mi.data_allowed & (1 << i)) set_bit(ca->dev_idx, c->rw_devs[i].d); } void bch2_fs_allocator_background_init(struct bch_fs *c) { spin_lock_init(&c->freelist_lock); INIT_WORK(&c->discard_work, bch2_do_discards_work); INIT_WORK(&c->invalidate_work, bch2_do_invalidates_work); }