// SPDX-License-Identifier: GPL-2.0 /* * Primary bucket allocation code * * Copyright 2012 Google, Inc. * * Allocation in bcache is done in terms of buckets: * * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in * btree pointers - they must match for the pointer to be considered valid. * * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a * bucket simply by incrementing its gen. * * The gens (along with the priorities; it's really the gens are important but * the code is named as if it's the priorities) are written in an arbitrary list * of buckets on disk, with a pointer to them in the journal header. * * When we invalidate a bucket, we have to write its new gen to disk and wait * for that write to complete before we use it - otherwise after a crash we * could have pointers that appeared to be good but pointed to data that had * been overwritten. * * Since the gens and priorities are all stored contiguously on disk, we can * batch this up: We fill up the free_inc list with freshly invalidated buckets, * call prio_write(), and when prio_write() finishes we pull buckets off the * free_inc list and optionally discard them. * * free_inc isn't the only freelist - if it was, we'd often have to sleep while * priorities and gens were being written before we could allocate. c->free is a * smaller freelist, and buckets on that list are always ready to be used. * * If we've got discards enabled, that happens when a bucket moves from the * free_inc list to the free list. * * It's important to ensure that gens don't wrap around - with respect to * either the oldest gen in the btree or the gen on disk. This is quite * difficult to do in practice, but we explicitly guard against it anyways - if * a bucket is in danger of wrapping around we simply skip invalidating it that * time around, and we garbage collect or rewrite the priorities sooner than we * would have otherwise. * * bch2_bucket_alloc() allocates a single bucket from a specific device. * * bch2_bucket_alloc_set() allocates one or more buckets from different devices * in a given filesystem. * * invalidate_buckets() drives all the processes described above. It's called * from bch2_bucket_alloc() and a few other places that need to make sure free * buckets are ready. * * invalidate_buckets_(lru|fifo)() find buckets that are available to be * invalidated, and then invalidate them and stick them on the free_inc list - * in either lru or fifo order. */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "btree_gc.h" #include "buckets.h" #include "clock.h" #include "debug.h" #include "disk_groups.h" #include "ec.h" #include "io.h" #include #include #include #include enum bucket_alloc_ret { ALLOC_SUCCESS, OPEN_BUCKETS_EMPTY, FREELIST_EMPTY, /* Allocator thread not keeping up */ }; /* * Open buckets represent a bucket that's currently being allocated from. They * serve two purposes: * * - They track buckets that have been partially allocated, allowing for * sub-bucket sized allocations - they're used by the sector allocator below * * - They provide a reference to the buckets they own that mark and sweep GC * can find, until the new allocation has a pointer to it inserted into the * btree * * When allocating some space with the sector allocator, the allocation comes * with a reference to an open bucket - the caller is required to put that * reference _after_ doing the index update that makes its allocation reachable. */ void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); if (ob->ec) { bch2_ec_bucket_written(c, ob); return; } percpu_down_read(&c->mark_lock); spin_lock(&ob->lock); bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), false, gc_pos_alloc(c, ob), 0); ob->valid = false; ob->type = 0; spin_unlock(&ob->lock); percpu_up_read(&c->mark_lock); spin_lock(&c->freelist_lock); ob->freelist = c->open_buckets_freelist; c->open_buckets_freelist = ob - c->open_buckets; c->open_buckets_nr_free++; spin_unlock(&c->freelist_lock); closure_wake_up(&c->open_buckets_wait); } void bch2_open_bucket_write_error(struct bch_fs *c, struct open_buckets *obs, unsigned dev) { struct open_bucket *ob; unsigned i; open_bucket_for_each(c, obs, ob, i) if (ob->ptr.dev == dev && ob->ec) bch2_ec_bucket_cancel(c, ob); } static struct open_bucket *bch2_open_bucket_alloc(struct bch_fs *c) { struct open_bucket *ob; BUG_ON(!c->open_buckets_freelist || !c->open_buckets_nr_free); ob = c->open_buckets + c->open_buckets_freelist; c->open_buckets_freelist = ob->freelist; atomic_set(&ob->pin, 1); ob->type = 0; c->open_buckets_nr_free--; return ob; } static void open_bucket_free_unused(struct bch_fs *c, struct open_bucket *ob, bool may_realloc) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); BUG_ON(ca->open_buckets_partial_nr >= ARRAY_SIZE(ca->open_buckets_partial)); if (ca->open_buckets_partial_nr < ARRAY_SIZE(ca->open_buckets_partial) && may_realloc) { spin_lock(&c->freelist_lock); ob->on_partial_list = true; ca->open_buckets_partial[ca->open_buckets_partial_nr++] = ob - c->open_buckets; spin_unlock(&c->freelist_lock); closure_wake_up(&c->open_buckets_wait); closure_wake_up(&c->freelist_wait); } else { bch2_open_bucket_put(c, ob); } } static void verify_not_stale(struct bch_fs *c, const struct open_buckets *obs) { #ifdef CONFIG_BCACHEFS_DEBUG struct open_bucket *ob; unsigned i; open_bucket_for_each(c, obs, ob, i) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); BUG_ON(ptr_stale(ca, &ob->ptr)); } #endif } /* _only_ for allocating the journal on a new device: */ long bch2_bucket_alloc_new_fs(struct bch_dev *ca) { struct bucket_array *buckets; ssize_t b; rcu_read_lock(); buckets = bucket_array(ca); for (b = ca->mi.first_bucket; b < ca->mi.nbuckets; b++) if (is_available_bucket(buckets->b[b].mark)) goto success; b = -1; success: rcu_read_unlock(); return b; } static inline unsigned open_buckets_reserved(enum alloc_reserve reserve) { switch (reserve) { case RESERVE_ALLOC: return 0; case RESERVE_BTREE: return BTREE_NODE_OPEN_BUCKET_RESERVE; default: return BTREE_NODE_OPEN_BUCKET_RESERVE * 2; } } /** * bch_bucket_alloc - allocate a single bucket from a specific device * * Returns index of bucket on success, 0 on failure * */ struct open_bucket *bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca, enum alloc_reserve reserve, bool may_alloc_partial, struct closure *cl) { struct bucket_array *buckets; struct open_bucket *ob; long bucket = 0; spin_lock(&c->freelist_lock); if (may_alloc_partial && ca->open_buckets_partial_nr) { ob = c->open_buckets + ca->open_buckets_partial[--ca->open_buckets_partial_nr]; ob->on_partial_list = false; spin_unlock(&c->freelist_lock); return ob; } if (unlikely(c->open_buckets_nr_free <= open_buckets_reserved(reserve))) { if (cl) closure_wait(&c->open_buckets_wait, cl); if (!c->blocked_allocate_open_bucket) c->blocked_allocate_open_bucket = local_clock(); spin_unlock(&c->freelist_lock); trace_open_bucket_alloc_fail(ca, reserve); return ERR_PTR(-OPEN_BUCKETS_EMPTY); } if (likely(fifo_pop(&ca->free[RESERVE_NONE], bucket))) goto out; switch (reserve) { case RESERVE_ALLOC: if (fifo_pop(&ca->free[RESERVE_BTREE], bucket)) goto out; break; case RESERVE_BTREE: if (fifo_used(&ca->free[RESERVE_BTREE]) * 2 >= ca->free[RESERVE_BTREE].size && fifo_pop(&ca->free[RESERVE_BTREE], bucket)) goto out; break; case RESERVE_MOVINGGC: if (fifo_pop(&ca->free[RESERVE_MOVINGGC], bucket)) goto out; break; default: break; } if (cl) closure_wait(&c->freelist_wait, cl); if (!c->blocked_allocate) c->blocked_allocate = local_clock(); spin_unlock(&c->freelist_lock); trace_bucket_alloc_fail(ca, reserve); return ERR_PTR(-FREELIST_EMPTY); out: verify_not_on_freelist(c, ca, bucket); ob = bch2_open_bucket_alloc(c); spin_lock(&ob->lock); buckets = bucket_array(ca); ob->valid = true; ob->sectors_free = ca->mi.bucket_size; ob->ptr = (struct bch_extent_ptr) { .type = 1 << BCH_EXTENT_ENTRY_ptr, .gen = buckets->b[bucket].mark.gen, .offset = bucket_to_sector(ca, bucket), .dev = ca->dev_idx, }; bucket_io_clock_reset(c, ca, bucket, READ); bucket_io_clock_reset(c, ca, bucket, WRITE); spin_unlock(&ob->lock); if (c->blocked_allocate_open_bucket) { bch2_time_stats_update( &c->times[BCH_TIME_blocked_allocate_open_bucket], c->blocked_allocate_open_bucket); c->blocked_allocate_open_bucket = 0; } if (c->blocked_allocate) { bch2_time_stats_update( &c->times[BCH_TIME_blocked_allocate], c->blocked_allocate); c->blocked_allocate = 0; } spin_unlock(&c->freelist_lock); bch2_wake_allocator(ca); trace_bucket_alloc(ca, reserve); return ob; } static int __dev_stripe_cmp(struct dev_stripe_state *stripe, unsigned l, unsigned r) { return ((stripe->next_alloc[l] > stripe->next_alloc[r]) - (stripe->next_alloc[l] < stripe->next_alloc[r])); } #define dev_stripe_cmp(l, r) __dev_stripe_cmp(stripe, l, r) struct dev_alloc_list bch2_dev_alloc_list(struct bch_fs *c, struct dev_stripe_state *stripe, struct bch_devs_mask *devs) { struct dev_alloc_list ret = { .nr = 0 }; struct bch_dev *ca; unsigned i; for_each_member_device_rcu(ca, c, i, devs) ret.devs[ret.nr++] = i; bubble_sort(ret.devs, ret.nr, dev_stripe_cmp); return ret; } void bch2_dev_stripe_increment(struct bch_fs *c, struct bch_dev *ca, struct dev_stripe_state *stripe) { u64 *v = stripe->next_alloc + ca->dev_idx; u64 free_space = dev_buckets_free(c, ca); u64 free_space_inv = free_space ? div64_u64(1ULL << 48, free_space) : 1ULL << 48; u64 scale = *v / 4; if (*v + free_space_inv >= *v) *v += free_space_inv; else *v = U64_MAX; for (v = stripe->next_alloc; v < stripe->next_alloc + ARRAY_SIZE(stripe->next_alloc); v++) *v = *v < scale ? 0 : *v - scale; } #define BUCKET_MAY_ALLOC_PARTIAL (1 << 0) #define BUCKET_ALLOC_USE_DURABILITY (1 << 1) static void add_new_bucket(struct bch_fs *c, struct open_buckets *ptrs, struct bch_devs_mask *devs_may_alloc, unsigned *nr_effective, bool *have_cache, unsigned flags, struct open_bucket *ob) { unsigned durability = bch_dev_bkey_exists(c, ob->ptr.dev)->mi.durability; __clear_bit(ob->ptr.dev, devs_may_alloc->d); *nr_effective += (flags & BUCKET_ALLOC_USE_DURABILITY) ? durability : 1; *have_cache |= !durability; ob_push(c, ptrs, ob); } static int bch2_bucket_alloc_set(struct bch_fs *c, struct open_buckets *ptrs, struct dev_stripe_state *stripe, struct bch_devs_mask *devs_may_alloc, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, enum alloc_reserve reserve, unsigned flags, struct closure *cl) { struct dev_alloc_list devs_sorted = bch2_dev_alloc_list(c, stripe, devs_may_alloc); struct bch_dev *ca; bool alloc_failure = false; unsigned i; BUG_ON(*nr_effective >= nr_replicas); for (i = 0; i < devs_sorted.nr; i++) { struct open_bucket *ob; ca = rcu_dereference(c->devs[devs_sorted.devs[i]]); if (!ca) continue; if (!ca->mi.durability && *have_cache) continue; ob = bch2_bucket_alloc(c, ca, reserve, flags & BUCKET_MAY_ALLOC_PARTIAL, cl); if (IS_ERR(ob)) { enum bucket_alloc_ret ret = -PTR_ERR(ob); WARN_ON(reserve == RESERVE_MOVINGGC && ret != OPEN_BUCKETS_EMPTY); if (cl) return -EAGAIN; if (ret == OPEN_BUCKETS_EMPTY) return -ENOSPC; alloc_failure = true; continue; } add_new_bucket(c, ptrs, devs_may_alloc, nr_effective, have_cache, flags, ob); bch2_dev_stripe_increment(c, ca, stripe); if (*nr_effective >= nr_replicas) return 0; } return alloc_failure ? -ENOSPC : -EROFS; } /* Allocate from stripes: */ /* * XXX: use a higher watermark for allocating open buckets here: */ static int ec_stripe_alloc(struct bch_fs *c, struct ec_stripe_head *h) { struct bch_devs_mask devs; struct open_bucket *ob; unsigned i, nr_have = 0, nr_data = min_t(unsigned, h->nr_active_devs, EC_STRIPE_MAX) - h->redundancy; bool have_cache = true; int ret = 0; BUG_ON(h->blocks.nr > nr_data); BUG_ON(h->parity.nr > h->redundancy); devs = h->devs; open_bucket_for_each(c, &h->parity, ob, i) __clear_bit(ob->ptr.dev, devs.d); open_bucket_for_each(c, &h->blocks, ob, i) __clear_bit(ob->ptr.dev, devs.d); percpu_down_read(&c->mark_lock); rcu_read_lock(); if (h->parity.nr < h->redundancy) { nr_have = h->parity.nr; ret = bch2_bucket_alloc_set(c, &h->parity, &h->parity_stripe, &devs, h->redundancy, &nr_have, &have_cache, RESERVE_NONE, 0, NULL); if (ret) goto err; } if (h->blocks.nr < nr_data) { nr_have = h->blocks.nr; ret = bch2_bucket_alloc_set(c, &h->blocks, &h->block_stripe, &devs, nr_data, &nr_have, &have_cache, RESERVE_NONE, 0, NULL); if (ret) goto err; } rcu_read_unlock(); percpu_up_read(&c->mark_lock); return bch2_ec_stripe_new_alloc(c, h); err: rcu_read_unlock(); percpu_up_read(&c->mark_lock); return -1; } /* * if we can't allocate a new stripe because there are already too many * partially filled stripes, force allocating from an existing stripe even when * it's to a device we don't want: */ static void bucket_alloc_from_stripe(struct bch_fs *c, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_mask *devs_may_alloc, u16 target, unsigned erasure_code, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, unsigned flags) { struct dev_alloc_list devs_sorted; struct ec_stripe_head *h; struct open_bucket *ob; struct bch_dev *ca; unsigned i, ec_idx; if (!erasure_code) return; if (nr_replicas < 2) return; if (ec_open_bucket(c, ptrs)) return; h = bch2_ec_stripe_head_get(c, target, erasure_code, nr_replicas - 1); if (!h) return; if (!h->s && ec_stripe_alloc(c, h)) goto out_put_head; rcu_read_lock(); devs_sorted = bch2_dev_alloc_list(c, &wp->stripe, devs_may_alloc); rcu_read_unlock(); for (i = 0; i < devs_sorted.nr; i++) open_bucket_for_each(c, &h->s->blocks, ob, ec_idx) if (ob->ptr.dev == devs_sorted.devs[i] && !test_and_set_bit(ec_idx, h->s->blocks_allocated)) goto got_bucket; goto out_put_head; got_bucket: ca = bch_dev_bkey_exists(c, ob->ptr.dev); ob->ec_idx = ec_idx; ob->ec = h->s; add_new_bucket(c, ptrs, devs_may_alloc, nr_effective, have_cache, flags, ob); atomic_inc(&h->s->pin); out_put_head: bch2_ec_stripe_head_put(h); } /* Sector allocator */ static void get_buckets_from_writepoint(struct bch_fs *c, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_mask *devs_may_alloc, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, unsigned flags, bool need_ec) { struct open_buckets ptrs_skip = { .nr = 0 }; struct open_bucket *ob; unsigned i; open_bucket_for_each(c, &wp->ptrs, ob, i) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); if (*nr_effective < nr_replicas && test_bit(ob->ptr.dev, devs_may_alloc->d) && (ca->mi.durability || (wp->type == BCH_DATA_USER && !*have_cache)) && (ob->ec || !need_ec)) { add_new_bucket(c, ptrs, devs_may_alloc, nr_effective, have_cache, flags, ob); } else { ob_push(c, &ptrs_skip, ob); } } wp->ptrs = ptrs_skip; } static int open_bucket_add_buckets(struct bch_fs *c, struct open_buckets *ptrs, struct write_point *wp, struct bch_devs_list *devs_have, u16 target, unsigned erasure_code, unsigned nr_replicas, unsigned *nr_effective, bool *have_cache, enum alloc_reserve reserve, unsigned flags, struct closure *_cl) { struct bch_devs_mask devs; struct open_bucket *ob; struct closure *cl = NULL; unsigned i; int ret; rcu_read_lock(); devs = target_rw_devs(c, wp->type, target); rcu_read_unlock(); /* Don't allocate from devices we already have pointers to: */ for (i = 0; i < devs_have->nr; i++) __clear_bit(devs_have->devs[i], devs.d); open_bucket_for_each(c, ptrs, ob, i) __clear_bit(ob->ptr.dev, devs.d); if (erasure_code) { get_buckets_from_writepoint(c, ptrs, wp, &devs, nr_replicas, nr_effective, have_cache, flags, true); if (*nr_effective >= nr_replicas) return 0; bucket_alloc_from_stripe(c, ptrs, wp, &devs, target, erasure_code, nr_replicas, nr_effective, have_cache, flags); if (*nr_effective >= nr_replicas) return 0; } get_buckets_from_writepoint(c, ptrs, wp, &devs, nr_replicas, nr_effective, have_cache, flags, false); if (*nr_effective >= nr_replicas) return 0; percpu_down_read(&c->mark_lock); rcu_read_lock(); retry_blocking: /* * Try nonblocking first, so that if one device is full we'll try from * other devices: */ ret = bch2_bucket_alloc_set(c, ptrs, &wp->stripe, &devs, nr_replicas, nr_effective, have_cache, reserve, flags, cl); if (ret && ret != -EROFS && !cl && _cl) { cl = _cl; goto retry_blocking; } rcu_read_unlock(); percpu_up_read(&c->mark_lock); return ret; } void bch2_open_buckets_stop_dev(struct bch_fs *c, struct bch_dev *ca, struct open_buckets *obs, enum bch_data_type data_type) { struct open_buckets ptrs = { .nr = 0 }; struct open_bucket *ob, *ob2; unsigned i, j; open_bucket_for_each(c, obs, ob, i) { bool drop = !ca || ob->ptr.dev == ca->dev_idx; if (!drop && ob->ec) { mutex_lock(&ob->ec->lock); open_bucket_for_each(c, &ob->ec->blocks, ob2, j) drop |= ob2->ptr.dev == ca->dev_idx; open_bucket_for_each(c, &ob->ec->parity, ob2, j) drop |= ob2->ptr.dev == ca->dev_idx; mutex_unlock(&ob->ec->lock); } if (drop) bch2_open_bucket_put(c, ob); else ob_push(c, &ptrs, ob); } *obs = ptrs; } void bch2_writepoint_stop(struct bch_fs *c, struct bch_dev *ca, struct write_point *wp) { mutex_lock(&wp->lock); bch2_open_buckets_stop_dev(c, ca, &wp->ptrs, wp->type); mutex_unlock(&wp->lock); } static inline struct hlist_head *writepoint_hash(struct bch_fs *c, unsigned long write_point) { unsigned hash = hash_long(write_point, ilog2(ARRAY_SIZE(c->write_points_hash))); return &c->write_points_hash[hash]; } static struct write_point *__writepoint_find(struct hlist_head *head, unsigned long write_point) { struct write_point *wp; hlist_for_each_entry_rcu(wp, head, node) if (wp->write_point == write_point) return wp; return NULL; } static inline bool too_many_writepoints(struct bch_fs *c, unsigned factor) { u64 stranded = c->write_points_nr * c->bucket_size_max; u64 free = bch2_fs_usage_read_short(c).free; return stranded * factor > free; } static bool try_increase_writepoints(struct bch_fs *c) { struct write_point *wp; if (c->write_points_nr == ARRAY_SIZE(c->write_points) || too_many_writepoints(c, 32)) return false; wp = c->write_points + c->write_points_nr++; hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point)); return true; } static bool try_decrease_writepoints(struct bch_fs *c, unsigned old_nr) { struct write_point *wp; mutex_lock(&c->write_points_hash_lock); if (c->write_points_nr < old_nr) { mutex_unlock(&c->write_points_hash_lock); return true; } if (c->write_points_nr == 1 || !too_many_writepoints(c, 8)) { mutex_unlock(&c->write_points_hash_lock); return false; } wp = c->write_points + --c->write_points_nr; hlist_del_rcu(&wp->node); mutex_unlock(&c->write_points_hash_lock); bch2_writepoint_stop(c, NULL, wp); return true; } static struct write_point *writepoint_find(struct bch_fs *c, unsigned long write_point) { struct write_point *wp, *oldest; struct hlist_head *head; if (!(write_point & 1UL)) { wp = (struct write_point *) write_point; mutex_lock(&wp->lock); return wp; } head = writepoint_hash(c, write_point); restart_find: wp = __writepoint_find(head, write_point); if (wp) { lock_wp: mutex_lock(&wp->lock); if (wp->write_point == write_point) goto out; mutex_unlock(&wp->lock); goto restart_find; } restart_find_oldest: oldest = NULL; for (wp = c->write_points; wp < c->write_points + c->write_points_nr; wp++) if (!oldest || time_before64(wp->last_used, oldest->last_used)) oldest = wp; mutex_lock(&oldest->lock); mutex_lock(&c->write_points_hash_lock); if (oldest >= c->write_points + c->write_points_nr || try_increase_writepoints(c)) { mutex_unlock(&c->write_points_hash_lock); mutex_unlock(&oldest->lock); goto restart_find_oldest; } wp = __writepoint_find(head, write_point); if (wp && wp != oldest) { mutex_unlock(&c->write_points_hash_lock); mutex_unlock(&oldest->lock); goto lock_wp; } wp = oldest; hlist_del_rcu(&wp->node); wp->write_point = write_point; hlist_add_head_rcu(&wp->node, head); mutex_unlock(&c->write_points_hash_lock); out: wp->last_used = sched_clock(); return wp; } /* * Get us an open_bucket we can allocate from, return with it locked: */ struct write_point *bch2_alloc_sectors_start(struct bch_fs *c, unsigned target, unsigned erasure_code, struct write_point_specifier write_point, struct bch_devs_list *devs_have, unsigned nr_replicas, unsigned nr_replicas_required, enum alloc_reserve reserve, unsigned flags, struct closure *cl) { struct write_point *wp; struct open_bucket *ob; struct open_buckets ptrs; unsigned nr_effective, write_points_nr; unsigned ob_flags = 0; bool have_cache; int ret, i; if (!(flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)) ob_flags |= BUCKET_ALLOC_USE_DURABILITY; BUG_ON(!nr_replicas || !nr_replicas_required); retry: ptrs.nr = 0; nr_effective = 0; write_points_nr = c->write_points_nr; have_cache = false; wp = writepoint_find(c, write_point.v); if (wp->type == BCH_DATA_USER) ob_flags |= BUCKET_MAY_ALLOC_PARTIAL; /* metadata may not allocate on cache devices: */ if (wp->type != BCH_DATA_USER) have_cache = true; if (!target || (flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)) { ret = open_bucket_add_buckets(c, &ptrs, wp, devs_have, target, erasure_code, nr_replicas, &nr_effective, &have_cache, reserve, ob_flags, cl); } else { ret = open_bucket_add_buckets(c, &ptrs, wp, devs_have, target, erasure_code, nr_replicas, &nr_effective, &have_cache, reserve, ob_flags, NULL); if (!ret) goto alloc_done; ret = open_bucket_add_buckets(c, &ptrs, wp, devs_have, 0, erasure_code, nr_replicas, &nr_effective, &have_cache, reserve, ob_flags, cl); } alloc_done: BUG_ON(!ret && nr_effective < nr_replicas); if (erasure_code && !ec_open_bucket(c, &ptrs)) pr_debug("failed to get ec bucket: ret %u", ret); if (ret == -EROFS && nr_effective >= nr_replicas_required) ret = 0; if (ret) goto err; /* Free buckets we didn't use: */ open_bucket_for_each(c, &wp->ptrs, ob, i) open_bucket_free_unused(c, ob, wp->type == BCH_DATA_USER); wp->ptrs = ptrs; wp->sectors_free = UINT_MAX; open_bucket_for_each(c, &wp->ptrs, ob, i) wp->sectors_free = min(wp->sectors_free, ob->sectors_free); BUG_ON(!wp->sectors_free || wp->sectors_free == UINT_MAX); verify_not_stale(c, &wp->ptrs); return wp; err: open_bucket_for_each(c, &wp->ptrs, ob, i) if (ptrs.nr < ARRAY_SIZE(ptrs.v)) ob_push(c, &ptrs, ob); else open_bucket_free_unused(c, ob, wp->type == BCH_DATA_USER); wp->ptrs = ptrs; mutex_unlock(&wp->lock); if (ret == -ENOSPC && try_decrease_writepoints(c, write_points_nr)) goto retry; return ERR_PTR(ret); } /* * Append pointers to the space we just allocated to @k, and mark @sectors space * as allocated out of @ob */ void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct write_point *wp, struct bkey_i *k, unsigned sectors) { struct open_bucket *ob; unsigned i; BUG_ON(sectors > wp->sectors_free); wp->sectors_free -= sectors; open_bucket_for_each(c, &wp->ptrs, ob, i) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->ptr.dev); struct bch_extent_ptr tmp = ob->ptr; tmp.cached = !ca->mi.durability && wp->type == BCH_DATA_USER; tmp.offset += ca->mi.bucket_size - ob->sectors_free; bch2_bkey_append_ptr(k, tmp); BUG_ON(sectors > ob->sectors_free); ob->sectors_free -= sectors; } } /* * Append pointers to the space we just allocated to @k, and mark @sectors space * as allocated out of @ob */ void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp) { struct open_buckets ptrs = { .nr = 0 }, keep = { .nr = 0 }; struct open_bucket *ob; unsigned i; open_bucket_for_each(c, &wp->ptrs, ob, i) ob_push(c, !ob->sectors_free ? &ptrs : &keep, ob); wp->ptrs = keep; mutex_unlock(&wp->lock); bch2_open_buckets_put(c, &ptrs); } void bch2_fs_allocator_foreground_init(struct bch_fs *c) { struct open_bucket *ob; struct write_point *wp; mutex_init(&c->write_points_hash_lock); c->write_points_nr = ARRAY_SIZE(c->write_points); /* open bucket 0 is a sentinal NULL: */ spin_lock_init(&c->open_buckets[0].lock); for (ob = c->open_buckets + 1; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { spin_lock_init(&ob->lock); c->open_buckets_nr_free++; ob->freelist = c->open_buckets_freelist; c->open_buckets_freelist = ob - c->open_buckets; } writepoint_init(&c->btree_write_point, BCH_DATA_BTREE); writepoint_init(&c->rebalance_write_point, BCH_DATA_USER); for (wp = c->write_points; wp < c->write_points + c->write_points_nr; wp++) { writepoint_init(wp, BCH_DATA_USER); wp->last_used = sched_clock(); wp->write_point = (unsigned long) wp; hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point)); } }