#ifndef _LINUX_BCACHE_H #define _LINUX_BCACHE_H /* * Bcache on disk data structures */ #ifdef __cplusplus typedef bool _Bool; extern "C" { #endif #include #include #include #define LE32_BITMASK(name, type, field, offset, end) \ static const unsigned name##_OFFSET = offset; \ static const unsigned name##_BITS = (end - offset); \ static const __u64 name##_MAX = (1ULL << (end - offset)) - 1; \ \ static inline __u64 name(const type *k) \ { \ return (__le32_to_cpu(k->field) >> offset) & \ ~(~0ULL << (end - offset)); \ } \ \ static inline void SET_##name(type *k, __u64 v) \ { \ __u64 new = __le32_to_cpu(k->field); \ \ new &= ~(~(~0ULL << (end - offset)) << offset); \ new |= (v & ~(~0ULL << (end - offset))) << offset; \ k->field = __cpu_to_le32(new); \ } #define LE64_BITMASK(name, type, field, offset, end) \ static const unsigned name##_OFFSET = offset; \ static const unsigned name##_BITS = (end - offset); \ static const __u64 name##_MAX = (1ULL << (end - offset)) - 1; \ \ static inline __u64 name(const type *k) \ { \ return (__le64_to_cpu(k->field) >> offset) & \ ~(~0ULL << (end - offset)); \ } \ \ static inline void SET_##name(type *k, __u64 v) \ { \ __u64 new = __le64_to_cpu(k->field); \ \ new &= ~(~(~0ULL << (end - offset)) << offset); \ new |= (v & ~(~0ULL << (end - offset))) << offset; \ k->field = __cpu_to_le64(new); \ } struct bkey_format { __u8 key_u64s; __u8 nr_fields; /* One unused slot for now: */ __u8 bits_per_field[6]; __le64 field_offset[6]; }; /* Btree keys - all units are in sectors */ struct bpos { /* Word order matches machine byte order */ #if defined(__LITTLE_ENDIAN) __u32 snapshot; __u64 offset; __u64 inode; #elif defined(__BIG_ENDIAN) __u64 inode; __u64 offset; /* Points to end of extent - sectors */ __u32 snapshot; #else #error edit for your odd byteorder. #endif } __attribute__((packed, aligned(4))); #define KEY_INODE_MAX ((__u64)~0ULL) #define KEY_OFFSET_MAX ((__u64)~0ULL) #define KEY_SNAPSHOT_MAX ((__u32)~0U) static inline struct bpos POS(__u64 inode, __u64 offset) { struct bpos ret; ret.inode = inode; ret.offset = offset; ret.snapshot = 0; return ret; } #define POS_MIN POS(0, 0) #define POS_MAX POS(KEY_INODE_MAX, KEY_OFFSET_MAX) /* Empty placeholder struct, for container_of() */ struct bch_val { __u64 __nothing[0]; }; struct bversion { #if defined(__LITTLE_ENDIAN) __u64 lo; __u32 hi; #elif defined(__BIG_ENDIAN) __u32 hi; __u64 lo; #endif } __attribute__((packed, aligned(4))); struct bkey { /* Size of combined key and value, in u64s */ __u8 u64s; /* Format of key (0 for format local to btree node) */ #if defined(__LITTLE_ENDIAN_BITFIELD) __u8 format:7, needs_whiteout:1; #elif defined (__BIG_ENDIAN_BITFIELD) __u8 needs_whiteout:1, format:7; #else #error edit for your odd byteorder. #endif /* Type of the value */ __u8 type; #if defined(__LITTLE_ENDIAN) __u8 pad[1]; struct bversion version; __u32 size; /* extent size, in sectors */ struct bpos p; #elif defined(__BIG_ENDIAN) struct bpos p; __u32 size; /* extent size, in sectors */ struct bversion version; __u8 pad[1]; #endif } __attribute__((packed, aligned(8))); struct bkey_packed { __u64 _data[0]; /* Size of combined key and value, in u64s */ __u8 u64s; /* Format of key (0 for format local to btree node) */ /* * XXX: next incompat on disk format change, switch format and * needs_whiteout - bkey_packed() will be cheaper if format is the high * bits of the bitfield */ #if defined(__LITTLE_ENDIAN_BITFIELD) __u8 format:7, needs_whiteout:1; #elif defined (__BIG_ENDIAN_BITFIELD) __u8 needs_whiteout:1, format:7; #endif /* Type of the value */ __u8 type; __u8 key_start[0]; /* * We copy bkeys with struct assignment in various places, and while * that shouldn't be done with packed bkeys we can't disallow it in C, * and it's legal to cast a bkey to a bkey_packed - so padding it out * to the same size as struct bkey should hopefully be safest. */ __u8 pad[sizeof(struct bkey) - 3]; } __attribute__((packed, aligned(8))); #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) #define KEY_PACKED_BITS_START 24 #define KEY_SIZE_MAX ((__u32)~0U) #define KEY_FORMAT_LOCAL_BTREE 0 #define KEY_FORMAT_CURRENT 1 enum bch_bkey_fields { BKEY_FIELD_INODE, BKEY_FIELD_OFFSET, BKEY_FIELD_SNAPSHOT, BKEY_FIELD_SIZE, BKEY_FIELD_VERSION_HI, BKEY_FIELD_VERSION_LO, BKEY_NR_FIELDS, }; #define bkey_format_field(name, field) \ [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) #define BKEY_FORMAT_CURRENT \ ((struct bkey_format) { \ .key_u64s = BKEY_U64s, \ .nr_fields = BKEY_NR_FIELDS, \ .bits_per_field = { \ bkey_format_field(INODE, p.inode), \ bkey_format_field(OFFSET, p.offset), \ bkey_format_field(SNAPSHOT, p.snapshot), \ bkey_format_field(SIZE, size), \ bkey_format_field(VERSION_HI, version.hi), \ bkey_format_field(VERSION_LO, version.lo), \ }, \ }) /* bkey with inline value */ struct bkey_i { __u64 _data[0]; union { struct { /* Size of combined key and value, in u64s */ __u8 u64s; }; struct { struct bkey k; struct bch_val v; }; }; }; #ifndef __cplusplus #define KEY(_inode, _offset, _size) \ ((struct bkey) { \ .u64s = BKEY_U64s, \ .format = KEY_FORMAT_CURRENT, \ .p = POS(_inode, _offset), \ .size = _size, \ }) #else static inline struct bkey KEY(__u64 inode, __u64 offset, __u64 size) { struct bkey ret; memset(&ret, 0, sizeof(ret)); ret.u64s = BKEY_U64s; ret.format = KEY_FORMAT_CURRENT; ret.p.inode = inode; ret.p.offset = offset; ret.size = size; return ret; } #endif static inline void bkey_init(struct bkey *k) { *k = KEY(0, 0, 0); } #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) #define __BKEY_PADDED(key, pad) \ struct { struct bkey_i key; __u64 key ## _pad[pad]; } #define BKEY_VAL_TYPE(name, nr) \ struct bkey_i_##name { \ union { \ struct bkey k; \ struct bkey_i k_i; \ }; \ struct bch_##name v; \ } /* * - DELETED keys are used internally to mark keys that should be ignored but * override keys in composition order. Their version number is ignored. * * - DISCARDED keys indicate that the data is all 0s because it has been * discarded. DISCARDs may have a version; if the version is nonzero the key * will be persistent, otherwise the key will be dropped whenever the btree * node is rewritten (like DELETED keys). * * - ERROR: any read of the data returns a read error, as the data was lost due * to a failing device. Like DISCARDED keys, they can be removed (overridden) * by new writes or cluster-wide GC. Node repair can also overwrite them with * the same or a more recent version number, but not with an older version * number. */ #define KEY_TYPE_DELETED 0 #define KEY_TYPE_DISCARD 1 #define KEY_TYPE_ERROR 2 #define KEY_TYPE_COOKIE 3 #define KEY_TYPE_PERSISTENT_DISCARD 4 #define KEY_TYPE_GENERIC_NR 128 struct bch_cookie { struct bch_val v; __le64 cookie; }; BKEY_VAL_TYPE(cookie, KEY_TYPE_COOKIE); /* Extents */ /* * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally * preceded by checksum/compression information (bch_extent_crc32 or * bch_extent_crc64). * * One major determining factor in the format of extents is how we handle and * represent extents that have been partially overwritten and thus trimmed: * * If an extent is not checksummed or compressed, when the extent is trimmed we * don't have to remember the extent we originally allocated and wrote: we can * merely adjust ptr->offset to point to the start of the start of the data that * is currently live. The size field in struct bkey records the current (live) * size of the extent, and is also used to mean "size of region on disk that we * point to" in this case. * * Thus an extent that is not checksummed or compressed will consist only of a * list of bch_extent_ptrs, with none of the fields in * bch_extent_crc32/bch_extent_crc64. * * When an extent is checksummed or compressed, it's not possible to read only * the data that is currently live: we have to read the entire extent that was * originally written, and then return only the part of the extent that is * currently live. * * Thus, in addition to the current size of the extent in struct bkey, we need * to store the size of the originally allocated space - this is the * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also, * when the extent is trimmed, instead of modifying the offset field of the * pointer, we keep a second smaller offset field - "offset into the original * extent of the currently live region". * * The other major determining factor is replication and data migration: * * Each pointer may have its own bch_extent_crc32/64. When doing a replicated * write, we will initially write all the replicas in the same format, with the * same checksum type and compression format - however, when copygc runs later (or * tiering/cache promotion, anything that moves data), it is not in general * going to rewrite all the pointers at once - one of the replicas may be in a * bucket on one device that has very little fragmentation while another lives * in a bucket that has become heavily fragmented, and thus is being rewritten * sooner than the rest. * * Thus it will only move a subset of the pointers (or in the case of * tiering/cache promotion perhaps add a single pointer without dropping any * current pointers), and if the extent has been partially overwritten it must * write only the currently live portion (or copygc would not be able to reduce * fragmentation!) - which necessitates a different bch_extent_crc format for * the new pointer. * * But in the interests of space efficiency, we don't want to store one * bch_extent_crc for each pointer if we don't have to. * * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and * bch_extent_ptrs appended arbitrarily one after the other. We determine the * type of a given entry with a scheme similar to utf8 (except we're encoding a * type, not a size), encoding the type in the position of the first set bit: * * bch_extent_crc32 - 0b1 * bch_extent_ptr - 0b10 * bch_extent_crc64 - 0b100 * * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and * bch_extent_crc64 is the least constrained). * * Then, each bch_extent_crc32/64 applies to the pointers that follow after it, * until the next bch_extent_crc32/64. * * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer * is neither checksummed nor compressed. */ /* 128 bits, sufficient for cryptographic MACs: */ struct bch_csum { __le64 lo; __le64 hi; } __attribute__((packed, aligned(8))); #define BCH_CSUM_NONE 0U #define BCH_CSUM_CRC32C 1U #define BCH_CSUM_CRC64 2U #define BCH_CSUM_CHACHA20_POLY1305_80 3U #define BCH_CSUM_CHACHA20_POLY1305_128 4U #define BCH_CSUM_NR 5U static inline _Bool bch2_csum_type_is_encryption(unsigned type) { switch (type) { case BCH_CSUM_CHACHA20_POLY1305_80: case BCH_CSUM_CHACHA20_POLY1305_128: return true; default: return false; } } enum bch_extent_entry_type { BCH_EXTENT_ENTRY_ptr = 0, BCH_EXTENT_ENTRY_crc32 = 1, BCH_EXTENT_ENTRY_crc64 = 2, BCH_EXTENT_ENTRY_crc128 = 3, }; #define BCH_EXTENT_ENTRY_MAX 4 /* Compressed/uncompressed size are stored biased by 1: */ struct bch_extent_crc32 { #if defined(__LITTLE_ENDIAN_BITFIELD) __u32 type:2, _compressed_size:7, _uncompressed_size:7, offset:7, _unused:1, csum_type:4, compression_type:4; __u32 csum; #elif defined (__BIG_ENDIAN_BITFIELD) __u32 csum; __u32 compression_type:4, csum_type:4, _unused:1, offset:7, _uncompressed_size:7, _compressed_size:7, type:2; #endif } __attribute__((packed, aligned(8))); #define CRC32_SIZE_MAX (1U << 7) #define CRC32_NONCE_MAX 0 struct bch_extent_crc64 { #if defined(__LITTLE_ENDIAN_BITFIELD) __u64 type:3, _compressed_size:9, _uncompressed_size:9, offset:9, nonce:10, csum_type:4, compression_type:4, csum_hi:16; #elif defined (__BIG_ENDIAN_BITFIELD) __u64 csum_hi:16, compression_type:4, csum_type:4, nonce:10, offset:9, _uncompressed_size:9, _compressed_size:9, type:3; #endif __u64 csum_lo; } __attribute__((packed, aligned(8))); #define CRC64_SIZE_MAX (1U << 9) #define CRC64_NONCE_MAX ((1U << 10) - 1) struct bch_extent_crc128 { #if defined(__LITTLE_ENDIAN_BITFIELD) __u64 type:4, _compressed_size:13, _uncompressed_size:13, offset:13, nonce:13, csum_type:4, compression_type:4; #elif defined (__BIG_ENDIAN_BITFIELD) __u64 compression_type:4, csum_type:4, nonce:14, offset:13, _uncompressed_size:13, _compressed_size:13, type:3; #endif struct bch_csum csum; } __attribute__((packed, aligned(8))); #define CRC128_SIZE_MAX (1U << 13) #define CRC128_NONCE_MAX ((1U << 13) - 1) /* * Max size of an extent that may require bouncing to read or write * (checksummed, compressed): 64k */ #define BCH_ENCODED_EXTENT_MAX 128U /* * @reservation - pointer hasn't been written to, just reserved */ struct bch_extent_ptr { #if defined(__LITTLE_ENDIAN_BITFIELD) __u64 type:1, cached:1, erasure_coded:1, reservation:1, offset:44, /* 8 petabytes */ dev:8, gen:8; #elif defined (__BIG_ENDIAN_BITFIELD) __u64 gen:8, dev:8, offset:44, reservation:1, erasure_coded:1, cached:1, type:1; #endif } __attribute__((packed, aligned(8))); struct bch_extent_reservation { #if defined(__LITTLE_ENDIAN_BITFIELD) __u64 type:5, unused:23, replicas:4, generation:32; #elif defined (__BIG_ENDIAN_BITFIELD) __u64 generation:32, replicas:4, unused:23, type:5; #endif }; union bch_extent_entry { #if defined(__LITTLE_ENDIAN) || __BITS_PER_LONG == 64 unsigned long type; #elif __BITS_PER_LONG == 32 struct { unsigned long pad; unsigned long type; }; #else #error edit for your odd byteorder. #endif struct bch_extent_crc32 crc32; struct bch_extent_crc64 crc64; struct bch_extent_crc128 crc128; struct bch_extent_ptr ptr; }; enum { BCH_EXTENT = 128, /* * This is kind of a hack, we're overloading the type for a boolean that * really should be part of the value - BCH_EXTENT and BCH_EXTENT_CACHED * have the same value type: */ BCH_EXTENT_CACHED = 129, /* * Persistent reservation: */ BCH_RESERVATION = 130, }; struct bch_extent { struct bch_val v; union bch_extent_entry start[0]; __u64 _data[0]; } __attribute__((packed, aligned(8))); BKEY_VAL_TYPE(extent, BCH_EXTENT); struct bch_reservation { struct bch_val v; __le32 generation; __u8 nr_replicas; __u8 pad[3]; } __attribute__((packed, aligned(8))); BKEY_VAL_TYPE(reservation, BCH_RESERVATION); /* Maximum size (in u64s) a single pointer could be: */ #define BKEY_EXTENT_PTR_U64s_MAX\ ((sizeof(struct bch_extent_crc128) + \ sizeof(struct bch_extent_ptr)) / sizeof(u64)) /* Maximum possible size of an entire extent value: */ /* There's a hack in the keylist code that needs to be fixed.. */ #define BKEY_EXTENT_VAL_U64s_MAX \ (BKEY_EXTENT_PTR_U64s_MAX * BCH_REPLICAS_MAX) /* * Maximum possible size of an entire extent, key + value: */ #define BKEY_EXTENT_U64s_MAX (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX) /* Btree pointers don't carry around checksums: */ #define BKEY_BTREE_PTR_VAL_U64s_MAX \ ((sizeof(struct bch_extent_ptr)) / sizeof(u64) * BCH_REPLICAS_MAX) #define BKEY_BTREE_PTR_U64s_MAX \ (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX) /* Inodes */ #define BLOCKDEV_INODE_MAX 4096 #define BCACHE_ROOT_INO 4096 enum bch_inode_types { BCH_INODE_FS = 128, BCH_INODE_BLOCKDEV = 129, }; struct bch_inode { struct bch_val v; __le64 i_hash_seed; __le32 i_flags; __le16 i_mode; __u8 fields[0]; } __attribute__((packed, aligned(8))); BKEY_VAL_TYPE(inode, BCH_INODE_FS); #define BCH_INODE_FIELDS() \ BCH_INODE_FIELD(i_atime, 64) \ BCH_INODE_FIELD(i_ctime, 64) \ BCH_INODE_FIELD(i_mtime, 64) \ BCH_INODE_FIELD(i_otime, 64) \ BCH_INODE_FIELD(i_size, 64) \ BCH_INODE_FIELD(i_sectors, 64) \ BCH_INODE_FIELD(i_uid, 32) \ BCH_INODE_FIELD(i_gid, 32) \ BCH_INODE_FIELD(i_nlink, 32) \ BCH_INODE_FIELD(i_generation, 32) \ BCH_INODE_FIELD(i_dev, 32) enum { /* * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL * flags) */ __BCH_INODE_SYNC = 0, __BCH_INODE_IMMUTABLE = 1, __BCH_INODE_APPEND = 2, __BCH_INODE_NODUMP = 3, __BCH_INODE_NOATIME = 4, __BCH_INODE_I_SIZE_DIRTY= 5, __BCH_INODE_I_SECTORS_DIRTY= 6, /* not implemented yet: */ __BCH_INODE_HAS_XATTRS = 7, /* has xattrs in xattr btree */ /* bits 20+ reserved for packed fields below: */ }; #define BCH_INODE_SYNC (1 << __BCH_INODE_SYNC) #define BCH_INODE_IMMUTABLE (1 << __BCH_INODE_IMMUTABLE) #define BCH_INODE_APPEND (1 << __BCH_INODE_APPEND) #define BCH_INODE_NODUMP (1 << __BCH_INODE_NODUMP) #define BCH_INODE_NOATIME (1 << __BCH_INODE_NOATIME) #define BCH_INODE_I_SIZE_DIRTY (1 << __BCH_INODE_I_SIZE_DIRTY) #define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY) #define BCH_INODE_HAS_XATTRS (1 << __BCH_INODE_HAS_XATTRS) LE32_BITMASK(INODE_STR_HASH, struct bch_inode, i_flags, 20, 24); LE32_BITMASK(INODE_NR_FIELDS, struct bch_inode, i_flags, 24, 32); struct bch_inode_blockdev { struct bch_val v; __le64 i_size; __le64 i_flags; /* Seconds: */ __le64 i_ctime; __le64 i_mtime; uuid_le i_uuid; __u8 i_label[32]; } __attribute__((packed, aligned(8))); BKEY_VAL_TYPE(inode_blockdev, BCH_INODE_BLOCKDEV); /* Thin provisioned volume, or cache for another block device? */ LE64_BITMASK(CACHED_DEV, struct bch_inode_blockdev, i_flags, 0, 1) /* Dirents */ /* * Dirents (and xattrs) have to implement string lookups; since our b-tree * doesn't support arbitrary length strings for the key, we instead index by a * 64 bit hash (currently truncated sha1) of the string, stored in the offset * field of the key - using linear probing to resolve hash collisions. This also * provides us with the readdir cookie posix requires. * * Linear probing requires us to use whiteouts for deletions, in the event of a * collision: */ enum { BCH_DIRENT = 128, BCH_DIRENT_WHITEOUT = 129, }; struct bch_dirent { struct bch_val v; /* Target inode number: */ __le64 d_inum; /* * Copy of mode bits 12-15 from the target inode - so userspace can get * the filetype without having to do a stat() */ __u8 d_type; __u8 d_name[]; } __attribute__((packed, aligned(8))); BKEY_VAL_TYPE(dirent, BCH_DIRENT); /* Xattrs */ enum { BCH_XATTR = 128, BCH_XATTR_WHITEOUT = 129, }; #define BCH_XATTR_INDEX_USER 0 #define BCH_XATTR_INDEX_POSIX_ACL_ACCESS 1 #define BCH_XATTR_INDEX_POSIX_ACL_DEFAULT 2 #define BCH_XATTR_INDEX_TRUSTED 3 #define BCH_XATTR_INDEX_SECURITY 4 struct bch_xattr { struct bch_val v; __u8 x_type; __u8 x_name_len; __le16 x_val_len; __u8 x_name[]; } __attribute__((packed, aligned(8))); BKEY_VAL_TYPE(xattr, BCH_XATTR); /* Superblock */ /* Version 0: Cache device * Version 1: Backing device * Version 2: Seed pointer into btree node checksum * Version 3: Cache device with new UUID format * Version 4: Backing device with data offset * Version 5: All the incompat changes * Version 6: Cache device UUIDs all in superblock, another incompat bset change * Version 7: Encryption (expanded checksum fields), other random things */ #define BCACHE_SB_VERSION_CDEV_V0 0 #define BCACHE_SB_VERSION_BDEV 1 #define BCACHE_SB_VERSION_CDEV_WITH_UUID 3 #define BCACHE_SB_VERSION_BDEV_WITH_OFFSET 4 #define BCACHE_SB_VERSION_CDEV_V2 5 #define BCACHE_SB_VERSION_CDEV_V3 6 #define BCACHE_SB_VERSION_CDEV_V4 7 #define BCACHE_SB_VERSION_CDEV 7 #define BCACHE_SB_MAX_VERSION 7 #define BCH_SB_SECTOR 8 #define BCH_SB_LABEL_SIZE 32 #define BCH_SB_MEMBERS_MAX 64 /* XXX kill */ struct bch_member { uuid_le uuid; __le64 nbuckets; /* device size */ __le16 first_bucket; /* index of first bucket used */ __le16 bucket_size; /* sectors */ __le32 pad; __le64 last_mount; /* time_t */ __le64 flags[2]; }; LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags[0], 0, 4) LE64_BITMASK(BCH_MEMBER_TIER, struct bch_member, flags[0], 4, 8) LE64_BITMASK(BCH_MEMBER_HAS_METADATA, struct bch_member, flags[0], 8, 9) LE64_BITMASK(BCH_MEMBER_HAS_DATA, struct bch_member, flags[0], 9, 10) LE64_BITMASK(BCH_MEMBER_REPLACEMENT, struct bch_member, flags[0], 10, 14) LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags[0], 14, 15); #if 0 LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20); LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40); #endif enum bch_member_state { BCH_MEMBER_STATE_RW = 0, BCH_MEMBER_STATE_RO = 1, BCH_MEMBER_STATE_FAILED = 2, BCH_MEMBER_STATE_SPARE = 3, BCH_MEMBER_STATE_NR = 4, }; #define BCH_TIER_MAX 4U enum cache_replacement { CACHE_REPLACEMENT_LRU = 0, CACHE_REPLACEMENT_FIFO = 1, CACHE_REPLACEMENT_RANDOM = 2, CACHE_REPLACEMENT_NR = 3, }; struct bch_sb_layout { uuid_le magic; /* bcachefs superblock UUID */ __u8 layout_type; __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ __u8 nr_superblocks; __u8 pad[5]; __u64 sb_offset[61]; } __attribute__((packed, aligned(8))); #define BCH_SB_LAYOUT_SECTOR 7 struct bch_sb_field { __u64 _data[0]; __le32 u64s; __le32 type; }; enum bch_sb_field_type { BCH_SB_FIELD_journal = 0, BCH_SB_FIELD_members = 1, BCH_SB_FIELD_crypt = 2, BCH_SB_FIELD_NR = 3, }; struct bch_sb_field_journal { struct bch_sb_field field; __le64 buckets[0]; }; struct bch_sb_field_members { struct bch_sb_field field; struct bch_member members[0]; }; /* Crypto: */ struct nonce { __le32 d[4]; }; struct bch_key { __le64 key[4]; }; #define BCH_KEY_MAGIC \ (((u64) 'b' << 0)|((u64) 'c' << 8)| \ ((u64) 'h' << 16)|((u64) '*' << 24)| \ ((u64) '*' << 32)|((u64) 'k' << 40)| \ ((u64) 'e' << 48)|((u64) 'y' << 56)) struct bch_encrypted_key { __le64 magic; struct bch_key key; }; /* * If this field is present in the superblock, it stores an encryption key which * is used encrypt all other data/metadata. The key will normally be encrypted * with the key userspace provides, but if encryption has been turned off we'll * just store the master key unencrypted in the superblock so we can access the * previously encrypted data. */ struct bch_sb_field_crypt { struct bch_sb_field field; __le64 flags; __le64 kdf_flags; struct bch_encrypted_key key; }; LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); enum bch_kdf_types { BCH_KDF_SCRYPT = 0, BCH_KDF_NR = 1, }; /* stored as base 2 log of scrypt params: */ LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); struct bch_sb_field_replication { struct bch_sb_field field; }; /* * @offset - sector where this sb was written * @version - on disk format version * @magic - identifies as a bcachefs superblock (BCACHE_MAGIC) * @seq - incremented each time superblock is written * @uuid - used for generating various magic numbers and identifying * member devices, never changes * @user_uuid - user visible UUID, may be changed * @label - filesystem label * @seq - identifies most recent superblock, incremented each time * superblock is written * @features - enabled incompatible features */ struct bch_sb { struct bch_csum csum; __le64 version; uuid_le magic; uuid_le uuid; uuid_le user_uuid; __u8 label[BCH_SB_LABEL_SIZE]; __le64 offset; __le64 seq; __le16 block_size; __u8 dev_idx; __u8 nr_devices; __le32 u64s; __le64 time_base_lo; __le32 time_base_hi; __le32 time_precision; __le64 flags[8]; __le64 features[2]; __le64 compat[2]; struct bch_sb_layout layout; union { struct bch_sb_field start[0]; __le64 _data[0]; }; } __attribute__((packed, aligned(8))); /* * Flags: * BCH_SB_INITALIZED - set on first mount * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect * behaviour of mount/recovery path: * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides * DATA/META_CSUM_TYPE. Also indicates encryption * algorithm in use, if/when we get more than one */ LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); LE64_BITMASK(BCH_SB_META_REPLICAS_HAVE, struct bch_sb, flags[0], 56, 60); LE64_BITMASK(BCH_SB_DATA_REPLICAS_HAVE, struct bch_sb, flags[0], 60, 64); LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); LE64_BITMASK(BCH_SB_COMPRESSION_TYPE, struct bch_sb, flags[1], 4, 8); LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); /* 14-20 unused, was JOURNAL_ENTRY_SIZE */ LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); /* Features: */ enum bch_sb_features { BCH_FEATURE_LZ4 = 0, BCH_FEATURE_GZIP = 1, }; /* options: */ #define BCH_REPLICAS_MAX 4U #if 0 #define BCH_ERROR_ACTIONS() \ x(BCH_ON_ERROR_CONTINUE, 0, "continue") \ x(BCH_ON_ERROR_RO, 1, "remount-ro") \ x(BCH_ON_ERROR_PANIC, 2, "panic") \ x(BCH_NR_ERROR_ACTIONS, 3, NULL) enum bch_error_actions { #define x(_opt, _nr, _str) _opt = _nr, BCH_ERROR_ACTIONS() #undef x }; #endif enum bch_error_actions { BCH_ON_ERROR_CONTINUE = 0, BCH_ON_ERROR_RO = 1, BCH_ON_ERROR_PANIC = 2, BCH_NR_ERROR_ACTIONS = 3, }; enum bch_csum_opts { BCH_CSUM_OPT_NONE = 0, BCH_CSUM_OPT_CRC32C = 1, BCH_CSUM_OPT_CRC64 = 2, BCH_CSUM_OPT_NR = 3, }; enum bch_str_hash_opts { BCH_STR_HASH_CRC32C = 0, BCH_STR_HASH_CRC64 = 1, BCH_STR_HASH_SIPHASH = 2, BCH_STR_HASH_NR = 3, }; enum bch_compression_opts { BCH_COMPRESSION_NONE = 0, BCH_COMPRESSION_LZ4 = 1, BCH_COMPRESSION_GZIP = 2, BCH_COMPRESSION_NR = 3, }; /* backing device specific stuff: */ struct backingdev_sb { __le64 csum; __le64 offset; /* sector where this sb was written */ __le64 version; /* of on disk format */ uuid_le magic; /* bcachefs superblock UUID */ uuid_le disk_uuid; /* * Internal cache set UUID - xored with various magic numbers and thus * must never change: */ union { uuid_le set_uuid; __le64 set_magic; }; __u8 label[BCH_SB_LABEL_SIZE]; __le64 flags; /* Incremented each time superblock is written: */ __le64 seq; /* * User visible UUID for identifying the cache set the user is allowed * to change: * * XXX hooked up? */ uuid_le user_uuid; __le64 pad1[6]; __le64 data_offset; __le16 block_size; /* sectors */ __le16 pad2[3]; __le32 last_mount; /* time_t */ __le16 pad3; /* size of variable length portion - always 0 for backingdev superblock */ __le16 u64s; __u64 _data[0]; }; LE64_BITMASK(BDEV_CACHE_MODE, struct backingdev_sb, flags, 0, 4); #define CACHE_MODE_WRITETHROUGH 0U #define CACHE_MODE_WRITEBACK 1U #define CACHE_MODE_WRITEAROUND 2U #define CACHE_MODE_NONE 3U LE64_BITMASK(BDEV_STATE, struct backingdev_sb, flags, 61, 63); #define BDEV_STATE_NONE 0U #define BDEV_STATE_CLEAN 1U #define BDEV_STATE_DIRTY 2U #define BDEV_STATE_STALE 3U #define BDEV_DATA_START_DEFAULT 16 /* sectors */ static inline _Bool __SB_IS_BDEV(__u64 version) { return version == BCACHE_SB_VERSION_BDEV || version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET; } static inline _Bool SB_IS_BDEV(const struct bch_sb *sb) { return __SB_IS_BDEV(sb->version); } /* * Magic numbers * * The various other data structures have their own magic numbers, which are * xored with the first part of the cache set's UUID */ #define BCACHE_MAGIC \ UUID_LE(0xf67385c6, 0x1a4e, 0xca45, \ 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) #define BCACHE_STATFS_MAGIC 0xca451a4e #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) #define PSET_MAGIC __cpu_to_le64(0x6750e15f87337f91ULL) #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) static inline __le64 __bch2_sb_magic(struct bch_sb *sb) { __le64 ret; memcpy(&ret, &sb->uuid, sizeof(ret)); return ret; } static inline __u64 __jset_magic(struct bch_sb *sb) { return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); } static inline __u64 __pset_magic(struct bch_sb *sb) { return __le64_to_cpu(__bch2_sb_magic(sb) ^ PSET_MAGIC); } static inline __u64 __bset_magic(struct bch_sb *sb) { return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); } /* Journal */ #define BCACHE_JSET_VERSION_UUIDv1 1 #define BCACHE_JSET_VERSION_UUID 1 /* Always latest UUID format */ #define BCACHE_JSET_VERSION_JKEYS 2 #define BCACHE_JSET_VERSION 2 struct jset_entry { __le16 u64s; __u8 btree_id; __u8 level; __le32 flags; /* designates what this jset holds */ union { struct bkey_i start[0]; __u64 _data[0]; }; }; #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) LE32_BITMASK(JOURNAL_ENTRY_TYPE, struct jset_entry, flags, 0, 8); enum { JOURNAL_ENTRY_BTREE_KEYS = 0, JOURNAL_ENTRY_BTREE_ROOT = 1, JOURNAL_ENTRY_PRIO_PTRS = 2, /* * Journal sequence numbers can be blacklisted: bsets record the max * sequence number of all the journal entries they contain updates for, * so that on recovery we can ignore those bsets that contain index * updates newer that what made it into the journal. * * This means that we can't reuse that journal_seq - we have to skip it, * and then record that we skipped it so that the next time we crash and * recover we don't think there was a missing journal entry. */ JOURNAL_ENTRY_JOURNAL_SEQ_BLACKLISTED = 3, }; /* * On disk format for a journal entry: * seq is monotonically increasing; every journal entry has its own unique * sequence number. * * last_seq is the oldest journal entry that still has keys the btree hasn't * flushed to disk yet. * * version is for on disk format changes. */ struct jset { struct bch_csum csum; __le64 magic; __le64 seq; __le32 version; __le32 flags; __le32 u64s; /* size of d[] in u64s */ __u8 encrypted_start[0]; __le16 read_clock; __le16 write_clock; /* Sequence number of oldest dirty journal entry */ __le64 last_seq; union { struct jset_entry start[0]; __u64 _data[0]; }; } __attribute__((packed, aligned(8))); LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); #define BCH_JOURNAL_BUCKETS_MIN 20 /* Bucket prios/gens */ struct prio_set { struct bch_csum csum; __le64 magic; __le32 nonce[3]; __le16 version; __le16 flags; __u8 encrypted_start[0]; __le64 next_bucket; struct bucket_disk { __le16 read_prio; __le16 write_prio; __u8 gen; } __attribute__((packed)) data[]; } __attribute__((packed, aligned(8))); LE32_BITMASK(PSET_CSUM_TYPE, struct prio_set, flags, 0, 4); /* Btree: */ #define DEFINE_BCH_BTREE_IDS() \ DEF_BTREE_ID(EXTENTS, 0, "extents") \ DEF_BTREE_ID(INODES, 1, "inodes") \ DEF_BTREE_ID(DIRENTS, 2, "dirents") \ DEF_BTREE_ID(XATTRS, 3, "xattrs") #define DEF_BTREE_ID(kwd, val, name) BTREE_ID_##kwd = val, enum btree_id { DEFINE_BCH_BTREE_IDS() BTREE_ID_NR }; #undef DEF_BTREE_ID #define BTREE_MAX_DEPTH 4U /* Btree nodes */ /* Version 1: Seed pointer into btree node checksum */ #define BCACHE_BSET_CSUM 1 #define BCACHE_BSET_KEY_v1 2 #define BCACHE_BSET_JOURNAL_SEQ 3 #define BCACHE_BSET_VERSION 3 /* * Btree nodes * * On disk a btree node is a list/log of these; within each set the keys are * sorted */ struct bset { __le64 seq; /* * Highest journal entry this bset contains keys for. * If on recovery we don't see that journal entry, this bset is ignored: * this allows us to preserve the order of all index updates after a * crash, since the journal records a total order of all index updates * and anything that didn't make it to the journal doesn't get used. */ __le64 journal_seq; __le32 flags; __le16 version; __le16 u64s; /* count of d[] in u64s */ union { struct bkey_packed start[0]; __u64 _data[0]; }; } __attribute__((packed, aligned(8))); LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, struct bset, flags, 5, 6); struct btree_node { struct bch_csum csum; __le64 magic; /* this flags field is encrypted, unlike bset->flags: */ __le64 flags; /* Closed interval: */ struct bpos min_key; struct bpos max_key; struct bch_extent_ptr ptr; struct bkey_format format; union { struct bset keys; struct { __u8 pad[22]; __le16 u64s; __u64 _data[0]; }; }; } __attribute__((packed, aligned(8))); LE64_BITMASK(BTREE_NODE_ID, struct btree_node, flags, 0, 4); LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); struct btree_node_entry { struct bch_csum csum; union { struct bset keys; struct { __u8 pad[22]; __le16 u64s; __u64 _data[0]; }; }; } __attribute__((packed, aligned(8))); #ifdef __cplusplus } #endif #endif /* _LINUX_BCACHE_H */ /* vim: set foldnestmax=2: */