/* * Code for working with individual keys, and sorted sets of keys with in a * btree node * * Copyright 2012 Google, Inc. */ #include "bcachefs.h" #include "bset.h" #include "eytzinger.h" #include "util.h" #include #include #include #include #include /* hack.. */ #include "alloc_types.h" #include struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k) { struct bset_tree *t; for_each_bset(b, t) if (k >= btree_bkey_first(b, t) && k < btree_bkey_last(b, t)) return t; BUG(); } /* * There are never duplicate live keys in the btree - but including keys that * have been flagged as deleted (and will be cleaned up later) we _will_ see * duplicates. * * Thus the sort order is: usual key comparison first, but for keys that compare * equal the deleted key(s) come first, and the (at most one) live version comes * last. * * The main reason for this is insertion: to handle overwrites, we first iterate * over keys that compare equal to our insert key, and then insert immediately * prior to the first key greater than the key we're inserting - our insert * position will be after all keys that compare equal to our insert key, which * by the time we actually do the insert will all be deleted. */ void bch2_dump_bset(struct btree *b, struct bset *i, unsigned set) { struct bkey_packed *_k, *_n; struct bkey k, n; char buf[120]; if (!i->u64s) return; for (_k = i->start, k = bkey_unpack_key(b, _k); _k < vstruct_last(i); _k = _n, k = n) { _n = bkey_next(_k); bch2_bkey_to_text(buf, sizeof(buf), &k); printk(KERN_ERR "block %u key %zi/%u: %s\n", set, _k->_data - i->_data, i->u64s, buf); if (_n == vstruct_last(i)) continue; n = bkey_unpack_key(b, _n); if (bkey_cmp(bkey_start_pos(&n), k.p) < 0) { printk(KERN_ERR "Key skipped backwards\n"); continue; } /* * Weird check for duplicate non extent keys: extents are * deleted iff they have 0 size, so if it has zero size and it's * not deleted these aren't extents: */ if (((!k.size && !bkey_deleted(&k)) || (!n.size && !bkey_deleted(&n))) && !bkey_deleted(&k) && !bkey_cmp(n.p, k.p)) printk(KERN_ERR "Duplicate keys\n"); } } void bch2_dump_btree_node(struct btree *b) { struct bset_tree *t; console_lock(); for_each_bset(b, t) bch2_dump_bset(b, bset(b, t), t - b->set); console_unlock(); } void bch2_dump_btree_node_iter(struct btree *b, struct btree_node_iter *iter) { struct btree_node_iter_set *set; printk(KERN_ERR "btree node iter with %u sets:\n", b->nsets); btree_node_iter_for_each(iter, set) { struct bkey_packed *k = __btree_node_offset_to_key(b, set->k); struct bset_tree *t = bch2_bkey_to_bset(b, k); struct bkey uk = bkey_unpack_key(b, k); char buf[100]; bch2_bkey_to_text(buf, sizeof(buf), &uk); printk(KERN_ERR "set %zu key %zi/%u: %s\n", t - b->set, k->_data - bset(b, t)->_data, bset(b, t)->u64s, buf); } } #ifdef CONFIG_BCACHEFS_DEBUG static bool keys_out_of_order(struct btree *b, const struct bkey_packed *prev, const struct bkey_packed *next, bool is_extents) { struct bkey nextu = bkey_unpack_key(b, next); return bkey_cmp_left_packed_byval(b, prev, bkey_start_pos(&nextu)) > 0 || ((is_extents ? !bkey_deleted(next) : !bkey_deleted(prev)) && !bkey_cmp_packed(b, prev, next)); } void __bch2_verify_btree_nr_keys(struct btree *b) { struct bset_tree *t; struct bkey_packed *k; struct btree_nr_keys nr = { 0 }; for_each_bset(b, t) for (k = btree_bkey_first(b, t); k != btree_bkey_last(b, t); k = bkey_next(k)) if (!bkey_whiteout(k)) btree_keys_account_key_add(&nr, t - b->set, k); BUG_ON(memcmp(&nr, &b->nr, sizeof(nr))); } static void bch2_btree_node_iter_next_check(struct btree_node_iter *iter, struct btree *b, struct bkey_packed *k) { const struct bkey_packed *n = bch2_btree_node_iter_peek_all(iter, b); bkey_unpack_key(b, k); if (n && keys_out_of_order(b, k, n, iter->is_extents)) { struct bkey ku = bkey_unpack_key(b, k); struct bkey nu = bkey_unpack_key(b, n); char buf1[80], buf2[80]; bch2_dump_btree_node(b); bch2_bkey_to_text(buf1, sizeof(buf1), &ku); bch2_bkey_to_text(buf2, sizeof(buf2), &nu); panic("out of order/overlapping:\n%s\n%s\n", buf1, buf2); } } void bch2_btree_node_iter_verify(struct btree_node_iter *iter, struct btree *b) { struct btree_node_iter_set *set; struct bset_tree *t; struct bkey_packed *k, *first; BUG_ON(iter->used > MAX_BSETS); if (!iter->used) return; btree_node_iter_for_each(iter, set) { k = __btree_node_offset_to_key(b, set->k); t = bch2_bkey_to_bset(b, k); BUG_ON(__btree_node_offset_to_key(b, set->end) != btree_bkey_last(b, t)); BUG_ON(set + 1 < iter->data + iter->used && btree_node_iter_cmp(iter, b, set[0], set[1]) > 0); } first = __btree_node_offset_to_key(b, iter->data[0].k); for_each_bset(b, t) if (bch2_btree_node_iter_bset_pos(iter, b, t) == btree_bkey_last(b, t) && (k = bch2_bkey_prev_all(b, t, btree_bkey_last(b, t)))) BUG_ON(__btree_node_iter_cmp(iter->is_extents, b, k, first) > 0); } void bch2_verify_key_order(struct btree *b, struct btree_node_iter *iter, struct bkey_packed *where) { struct bset_tree *t = bch2_bkey_to_bset(b, where); struct bkey_packed *k, *prev; struct bkey uk, uw = bkey_unpack_key(b, where); k = bch2_bkey_prev_all(b, t, where); if (k && keys_out_of_order(b, k, where, iter->is_extents)) { char buf1[100], buf2[100]; bch2_dump_btree_node(b); uk = bkey_unpack_key(b, k); bch2_bkey_to_text(buf1, sizeof(buf1), &uk); bch2_bkey_to_text(buf2, sizeof(buf2), &uw); panic("out of order with prev:\n%s\n%s\n", buf1, buf2); } k = bkey_next(where); BUG_ON(k != btree_bkey_last(b, t) && keys_out_of_order(b, where, k, iter->is_extents)); for_each_bset(b, t) { if (where >= btree_bkey_first(b, t) || where < btree_bkey_last(b, t)) continue; k = bch2_btree_node_iter_bset_pos(iter, b, t); if (k == btree_bkey_last(b, t)) k = bch2_bkey_prev_all(b, t, k); while (bkey_cmp_left_packed_byval(b, k, bkey_start_pos(&uw)) > 0 && (prev = bch2_bkey_prev_all(b, t, k))) k = prev; for (; k != btree_bkey_last(b, t); k = bkey_next(k)) { uk = bkey_unpack_key(b, k); if (iter->is_extents) { BUG_ON(!(bkey_cmp(uw.p, bkey_start_pos(&uk)) <= 0 || bkey_cmp(uk.p, bkey_start_pos(&uw)) <= 0)); } else { BUG_ON(!bkey_cmp(uw.p, uk.p) && !bkey_deleted(&uk)); } if (bkey_cmp(uw.p, bkey_start_pos(&uk)) <= 0) break; } } } #else static void bch2_btree_node_iter_next_check(struct btree_node_iter *iter, struct btree *b, struct bkey_packed *k) {} #endif /* Auxiliary search trees */ #define BFLOAT_FAILED_UNPACKED (U8_MAX - 0) #define BFLOAT_FAILED_PREV (U8_MAX - 1) #define BFLOAT_FAILED_OVERFLOW (U8_MAX - 2) #define BFLOAT_FAILED (U8_MAX - 2) #define KEY_WORDS BITS_TO_LONGS(1 << BKEY_EXPONENT_BITS) struct bkey_float { u8 exponent; u8 key_offset; union { u32 mantissa32; struct { u16 mantissa16; u16 _pad; }; }; } __packed; #define BFLOAT_32BIT_NR 32U static unsigned bkey_float_byte_offset(unsigned idx) { int d = (idx - BFLOAT_32BIT_NR) << 1; d &= ~(d >> 31); return idx * 6 - d; } struct ro_aux_tree { struct bkey_float _d[0]; }; struct rw_aux_tree { u16 offset; struct bpos k; }; /* * BSET_CACHELINE was originally intended to match the hardware cacheline size - * it used to be 64, but I realized the lookup code would touch slightly less * memory if it was 128. * * It definites the number of bytes (in struct bset) per struct bkey_float in * the auxiliar search tree - when we're done searching the bset_float tree we * have this many bytes left that we do a linear search over. * * Since (after level 5) every level of the bset_tree is on a new cacheline, * we're touching one fewer cacheline in the bset tree in exchange for one more * cacheline in the linear search - but the linear search might stop before it * gets to the second cacheline. */ #define BSET_CACHELINE 128 /* Space required for the btree node keys */ static inline size_t btree_keys_bytes(struct btree *b) { return PAGE_SIZE << b->page_order; } static inline size_t btree_keys_cachelines(struct btree *b) { return btree_keys_bytes(b) / BSET_CACHELINE; } static inline size_t btree_aux_data_bytes(struct btree *b) { return btree_keys_cachelines(b) * 8; } static inline size_t btree_aux_data_u64s(struct btree *b) { return btree_aux_data_bytes(b) / sizeof(u64); } static unsigned bset_aux_tree_buf_end(const struct bset_tree *t) { BUG_ON(t->aux_data_offset == U16_MAX); switch (bset_aux_tree_type(t)) { case BSET_NO_AUX_TREE: return t->aux_data_offset; case BSET_RO_AUX_TREE: return t->aux_data_offset + DIV_ROUND_UP(bkey_float_byte_offset(t->size) + sizeof(u8) * t->size, 8); case BSET_RW_AUX_TREE: return t->aux_data_offset + DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8); default: BUG(); } } static unsigned bset_aux_tree_buf_start(const struct btree *b, const struct bset_tree *t) { return t == b->set ? DIV_ROUND_UP(b->unpack_fn_len, 8) : bset_aux_tree_buf_end(t - 1); } static void *__aux_tree_base(const struct btree *b, const struct bset_tree *t) { return b->aux_data + t->aux_data_offset * 8; } static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b, const struct bset_tree *t) { EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); return __aux_tree_base(b, t); } static u8 *ro_aux_tree_prev(const struct btree *b, const struct bset_tree *t) { EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size); } static struct bkey_float *bkey_float_get(struct ro_aux_tree *b, unsigned idx) { return (void *) b + bkey_float_byte_offset(idx); } static struct bkey_float *bkey_float(const struct btree *b, const struct bset_tree *t, unsigned idx) { return bkey_float_get(ro_aux_tree_base(b, t), idx); } static void bset_aux_tree_verify(struct btree *b) { #ifdef CONFIG_BCACHEFS_DEBUG struct bset_tree *t; for_each_bset(b, t) { if (t->aux_data_offset == U16_MAX) continue; BUG_ON(t != b->set && t[-1].aux_data_offset == U16_MAX); BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t)); BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b)); BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b)); } #endif } /* Memory allocation */ void bch2_btree_keys_free(struct btree *b) { vfree(b->aux_data); b->aux_data = NULL; } int bch2_btree_keys_alloc(struct btree *b, unsigned page_order, gfp_t gfp) { b->page_order = page_order; b->aux_data = __vmalloc(btree_aux_data_bytes(b), gfp, PAGE_KERNEL_EXEC); if (!b->aux_data) return -ENOMEM; return 0; } void bch2_btree_keys_init(struct btree *b, bool *expensive_debug_checks) { unsigned i; b->nsets = 0; memset(&b->nr, 0, sizeof(b->nr)); #ifdef CONFIG_BCACHEFS_DEBUG b->expensive_debug_checks = expensive_debug_checks; #endif for (i = 0; i < MAX_BSETS; i++) b->set[i].data_offset = U16_MAX; bch2_bset_set_no_aux_tree(b, b->set); } /* Binary tree stuff for auxiliary search trees */ /* * Cacheline/offset <-> bkey pointer arithmetic: * * t->tree is a binary search tree in an array; each node corresponds to a key * in one cacheline in t->set (BSET_CACHELINE bytes). * * This means we don't have to store the full index of the key that a node in * the binary tree points to; eytzinger_to_inorder() gives us the cacheline, and * then bkey_float->m gives us the offset within that cacheline, in units of 8 * bytes. * * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to * make this work. * * To construct the bfloat for an arbitrary key we need to know what the key * immediately preceding it is: we have to check if the two keys differ in the * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size * of the previous key so we can walk backwards to it from t->tree[j]'s key. */ static inline void *bset_cacheline(const struct btree *b, const struct bset_tree *t, unsigned cacheline) { return (void *) round_down((unsigned long) btree_bkey_first(b, t), L1_CACHE_BYTES) + cacheline * BSET_CACHELINE; } static struct bkey_packed *cacheline_to_bkey(const struct btree *b, const struct bset_tree *t, unsigned cacheline, unsigned offset) { return bset_cacheline(b, t, cacheline) + offset * 8; } static unsigned bkey_to_cacheline(const struct btree *b, const struct bset_tree *t, const struct bkey_packed *k) { return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE; } static ssize_t __bkey_to_cacheline_offset(const struct btree *b, const struct bset_tree *t, unsigned cacheline, const struct bkey_packed *k) { return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline); } static unsigned bkey_to_cacheline_offset(const struct btree *b, const struct bset_tree *t, unsigned cacheline, const struct bkey_packed *k) { size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k); EBUG_ON(m > U8_MAX); return m; } static inline struct bkey_packed *tree_to_bkey(const struct btree *b, const struct bset_tree *t, unsigned j) { return cacheline_to_bkey(b, t, __eytzinger_to_inorder(j, t->size, t->extra), bkey_float(b, t, j)->key_offset); } static struct bkey_packed *tree_to_prev_bkey(const struct btree *b, const struct bset_tree *t, unsigned j) { unsigned prev_u64s = ro_aux_tree_prev(b, t)[j]; return (void *) (tree_to_bkey(b, t, j)->_data - prev_u64s); } static struct rw_aux_tree *rw_aux_tree(const struct btree *b, const struct bset_tree *t) { EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); return __aux_tree_base(b, t); } /* * For the write set - the one we're currently inserting keys into - we don't * maintain a full search tree, we just keep a simple lookup table in t->prev. */ static struct bkey_packed *rw_aux_to_bkey(const struct btree *b, struct bset_tree *t, unsigned j) { return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset); } static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t, unsigned j, struct bkey_packed *k) { BUG_ON(k >= btree_bkey_last(b, t)); rw_aux_tree(b, t)[j] = (struct rw_aux_tree) { .offset = __btree_node_key_to_offset(b, k), .k = bkey_unpack_pos(b, k), }; } static void bch2_bset_verify_rw_aux_tree(struct btree *b, struct bset_tree *t) { struct bkey_packed *k = btree_bkey_first(b, t); unsigned j = 0; if (!btree_keys_expensive_checks(b)) return; BUG_ON(bset_has_ro_aux_tree(t)); if (!bset_has_rw_aux_tree(t)) return; BUG_ON(t->size < 1); BUG_ON(rw_aux_to_bkey(b, t, j) != k); goto start; while (1) { if (rw_aux_to_bkey(b, t, j) == k) { BUG_ON(bkey_cmp(rw_aux_tree(b, t)[j].k, bkey_unpack_pos(b, k))); start: if (++j == t->size) break; BUG_ON(rw_aux_tree(b, t)[j].offset <= rw_aux_tree(b, t)[j - 1].offset); } k = bkey_next(k); BUG_ON(k >= btree_bkey_last(b, t)); } } /* returns idx of first entry >= offset: */ static unsigned rw_aux_tree_bsearch(struct btree *b, struct bset_tree *t, unsigned offset) { unsigned l = 0, r = t->size; BUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); while (l < r) { unsigned m = (l + r) >> 1; if (rw_aux_tree(b, t)[m].offset < offset) l = m + 1; else r = m; } BUG_ON(l < t->size && rw_aux_tree(b, t)[l].offset < offset); BUG_ON(l && rw_aux_tree(b, t)[l - 1].offset >= offset); BUG_ON(l > r); BUG_ON(l > t->size); return l; } static inline unsigned bfloat_mantissa(const struct bkey_float *f, unsigned idx) { return idx < BFLOAT_32BIT_NR ? f->mantissa32 : f->mantissa16; } static inline void bfloat_mantissa_set(struct bkey_float *f, unsigned idx, unsigned mantissa) { if (idx < BFLOAT_32BIT_NR) f->mantissa32 = mantissa; else f->mantissa16 = mantissa; } static inline unsigned bkey_mantissa(const struct bkey_packed *k, const struct bkey_float *f, unsigned idx) { u64 v; EBUG_ON(!bkey_packed(k)); v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3))); /* * In little endian, we're shifting off low bits (and then the bits we * want are at the low end), in big endian we're shifting off high bits * (and then the bits we want are at the high end, so we shift them * back down): */ #ifdef __LITTLE_ENDIAN v >>= f->exponent & 7; #else v >>= 64 - (f->exponent & 7) - (idx < BFLOAT_32BIT_NR ? 32 : 16); #endif return idx < BFLOAT_32BIT_NR ? (u32) v : (u16) v; } static void make_bfloat(struct btree *b, struct bset_tree *t, unsigned j, struct bkey_packed *min_key, struct bkey_packed *max_key) { struct bkey_float *f = bkey_float(b, t, j); struct bkey_packed *m = tree_to_bkey(b, t, j); struct bkey_packed *p = tree_to_prev_bkey(b, t, j); struct bkey_packed *l, *r; unsigned bits = j < BFLOAT_32BIT_NR ? 32 : 16; unsigned mantissa; int shift, exponent; EBUG_ON(bkey_next(p) != m); if (is_power_of_2(j)) { l = min_key; if (!l->u64s) { if (!bkey_pack_pos(l, b->data->min_key, b)) { struct bkey_i tmp; bkey_init(&tmp.k); tmp.k.p = b->data->min_key; bkey_copy(l, &tmp); } } } else { l = tree_to_prev_bkey(b, t, j >> ffs(j)); EBUG_ON(m < l); } if (is_power_of_2(j + 1)) { r = max_key; if (!r->u64s) { if (!bkey_pack_pos(r, t->max_key, b)) { struct bkey_i tmp; bkey_init(&tmp.k); tmp.k.p = t->max_key; bkey_copy(r, &tmp); } } } else { r = tree_to_bkey(b, t, j >> (ffz(j) + 1)); EBUG_ON(m > r); } /* * for failed bfloats, the lookup code falls back to comparing against * the original key. */ if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(p) || !bkey_packed(m)) { f->exponent = BFLOAT_FAILED_UNPACKED; return; } /* * The greatest differing bit of l and r is the first bit we must * include in the bfloat mantissa we're creating in order to do * comparisons - that bit always becomes the high bit of * bfloat->mantissa, and thus the exponent we're calculating here is * the position of what will become the low bit in bfloat->mantissa: * * Note that this may be negative - we may be running off the low end * of the key: we handle this later: */ exponent = (int) bch2_bkey_greatest_differing_bit(b, l, r) - (bits - 1); /* * Then we calculate the actual shift value, from the start of the key * (k->_data), to get the key bits starting at exponent: */ #ifdef __LITTLE_ENDIAN shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent; EBUG_ON(shift + bits > b->format.key_u64s * 64); #else shift = high_bit_offset + b->nr_key_bits - exponent - bits; EBUG_ON(shift < KEY_PACKED_BITS_START); #endif EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED); f->exponent = shift; mantissa = bkey_mantissa(m, f, j); /* * If we've got garbage bits, set them to all 1s - it's legal for the * bfloat to compare larger than the original key, but not smaller: */ if (exponent < 0) mantissa |= ~(~0U << -exponent); bfloat_mantissa_set(f, j, mantissa); /* * The bfloat must be able to tell its key apart from the previous key - * if its key and the previous key don't differ in the required bits, * flag as failed - unless the keys are actually equal, in which case * we aren't required to return a specific one: */ if (exponent > 0 && bfloat_mantissa(f, j) == bkey_mantissa(p, f, j) && bkey_cmp_packed(b, p, m)) { f->exponent = BFLOAT_FAILED_PREV; return; } /* * f->mantissa must compare >= the original key - for transitivity with * the comparison in bset_search_tree. If we're dropping set bits, * increment it: */ if (exponent > (int) bch2_bkey_ffs(b, m)) { if (j < BFLOAT_32BIT_NR ? f->mantissa32 == U32_MAX : f->mantissa16 == U16_MAX) f->exponent = BFLOAT_FAILED_OVERFLOW; if (j < BFLOAT_32BIT_NR) f->mantissa32++; else f->mantissa16++; } } /* bytes remaining - only valid for last bset: */ static unsigned __bset_tree_capacity(struct btree *b, struct bset_tree *t) { bset_aux_tree_verify(b); return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64); } static unsigned bset_ro_tree_capacity(struct btree *b, struct bset_tree *t) { unsigned bytes = __bset_tree_capacity(b, t); if (bytes < 7 * BFLOAT_32BIT_NR) return bytes / 7; bytes -= 7 * BFLOAT_32BIT_NR; return BFLOAT_32BIT_NR + bytes / 5; } static unsigned bset_rw_tree_capacity(struct btree *b, struct bset_tree *t) { return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree); } static void __build_rw_aux_tree(struct btree *b, struct bset_tree *t) { struct bkey_packed *k; t->size = 1; t->extra = BSET_RW_AUX_TREE_VAL; rw_aux_tree(b, t)[0].offset = __btree_node_key_to_offset(b, btree_bkey_first(b, t)); for (k = btree_bkey_first(b, t); k != btree_bkey_last(b, t); k = bkey_next(k)) { if (t->size == bset_rw_tree_capacity(b, t)) break; if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) > L1_CACHE_BYTES) rw_aux_tree_set(b, t, t->size++, k); } } static void __build_ro_aux_tree(struct btree *b, struct bset_tree *t) { struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t); struct bkey_packed min_key, max_key; unsigned j, cacheline = 1; /* signal to make_bfloat() that they're uninitialized: */ min_key.u64s = max_key.u64s = 0; t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)), bset_ro_tree_capacity(b, t)); retry: if (t->size < 2) { t->size = 0; t->extra = BSET_NO_AUX_TREE_VAL; return; } t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; /* First we figure out where the first key in each cacheline is */ eytzinger_for_each(j, t->size) { while (bkey_to_cacheline(b, t, k) < cacheline) prev = k, k = bkey_next(k); if (k >= btree_bkey_last(b, t)) { t->size--; goto retry; } ro_aux_tree_prev(b, t)[j] = prev->u64s; bkey_float(b, t, j)->key_offset = bkey_to_cacheline_offset(b, t, cacheline++, k); BUG_ON(tree_to_prev_bkey(b, t, j) != prev); BUG_ON(tree_to_bkey(b, t, j) != k); } while (bkey_next(k) != btree_bkey_last(b, t)) k = bkey_next(k); t->max_key = bkey_unpack_pos(b, k); /* Then we build the tree */ eytzinger_for_each(j, t->size) make_bfloat(b, t, j, &min_key, &max_key); } static void bset_alloc_tree(struct btree *b, struct bset_tree *t) { struct bset_tree *i; for (i = b->set; i != t; i++) BUG_ON(bset_has_rw_aux_tree(i)); bch2_bset_set_no_aux_tree(b, t); /* round up to next cacheline: */ t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t), SMP_CACHE_BYTES / sizeof(u64)); bset_aux_tree_verify(b); } void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t, bool writeable) { if (writeable ? bset_has_rw_aux_tree(t) : bset_has_ro_aux_tree(t)) return; bset_alloc_tree(b, t); if (!__bset_tree_capacity(b, t)) return; if (writeable) __build_rw_aux_tree(b, t); else __build_ro_aux_tree(b, t); bset_aux_tree_verify(b); } void bch2_bset_init_first(struct btree *b, struct bset *i) { struct bset_tree *t; BUG_ON(b->nsets); memset(i, 0, sizeof(*i)); get_random_bytes(&i->seq, sizeof(i->seq)); SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); t = &b->set[b->nsets++]; set_btree_bset(b, t, i); } void bch2_bset_init_next(struct btree *b, struct bset *i) { struct bset_tree *t; BUG_ON(b->nsets >= MAX_BSETS); memset(i, 0, sizeof(*i)); i->seq = btree_bset_first(b)->seq; SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); t = &b->set[b->nsets++]; set_btree_bset(b, t, i); } static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { struct bkey_packed *p; unsigned offset; int j; EBUG_ON(k < btree_bkey_first(b, t) || k > btree_bkey_last(b, t)); if (k == btree_bkey_first(b, t)) return NULL; switch (bset_aux_tree_type(t)) { case BSET_NO_AUX_TREE: p = btree_bkey_first(b, t); break; case BSET_RO_AUX_TREE: j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k)); do { p = j ? tree_to_bkey(b, t, __inorder_to_eytzinger(j--, t->size, t->extra)) : btree_bkey_first(b, t); } while (p >= k); break; case BSET_RW_AUX_TREE: offset = __btree_node_key_to_offset(b, k); j = rw_aux_tree_bsearch(b, t, offset); p = j ? rw_aux_to_bkey(b, t, j - 1) : btree_bkey_first(b, t); break; } return p; } struct bkey_packed *bch2_bkey_prev_all(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { struct bkey_packed *p; p = __bkey_prev(b, t, k); if (!p) return NULL; while (bkey_next(p) != k) p = bkey_next(p); return p; } struct bkey_packed *bch2_bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { while (1) { struct bkey_packed *p, *i, *ret = NULL; p = __bkey_prev(b, t, k); if (!p) return NULL; for (i = p; i != k; i = bkey_next(i)) if (!bkey_deleted(i)) ret = i; if (ret) return ret; k = p; } } /* Insert */ static void rw_aux_tree_fix_invalidated_key(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { unsigned offset = __btree_node_key_to_offset(b, k); unsigned j = rw_aux_tree_bsearch(b, t, offset); if (j < t->size && rw_aux_tree(b, t)[j].offset == offset) rw_aux_tree_set(b, t, j, k); bch2_bset_verify_rw_aux_tree(b, t); } static void ro_aux_tree_fix_invalidated_key(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { struct bkey_packed min_key, max_key; unsigned inorder, j; BUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); /* signal to make_bfloat() that they're uninitialized: */ min_key.u64s = max_key.u64s = 0; if (bkey_next(k) == btree_bkey_last(b, t)) { t->max_key = bkey_unpack_pos(b, k); for (j = 1; j < t->size; j = j * 2 + 1) make_bfloat(b, t, j, &min_key, &max_key); } inorder = bkey_to_cacheline(b, t, k); if (inorder && inorder < t->size) { j = __inorder_to_eytzinger(inorder, t->size, t->extra); if (k == tree_to_bkey(b, t, j)) { /* Fix the node this key corresponds to */ make_bfloat(b, t, j, &min_key, &max_key); /* Children for which this key is the right boundary */ for (j = eytzinger_left_child(j); j < t->size; j = eytzinger_right_child(j)) make_bfloat(b, t, j, &min_key, &max_key); } } if (inorder + 1 < t->size) { j = __inorder_to_eytzinger(inorder + 1, t->size, t->extra); if (k == tree_to_prev_bkey(b, t, j)) { make_bfloat(b, t, j, &min_key, &max_key); /* Children for which this key is the left boundary */ for (j = eytzinger_right_child(j); j < t->size; j = eytzinger_left_child(j)) make_bfloat(b, t, j, &min_key, &max_key); } } } /** * bch2_bset_fix_invalidated_key() - given an existing key @k that has been * modified, fix any auxiliary search tree by remaking all the nodes in the * auxiliary search tree that @k corresponds to */ void bch2_bset_fix_invalidated_key(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { switch (bset_aux_tree_type(t)) { case BSET_NO_AUX_TREE: break; case BSET_RO_AUX_TREE: ro_aux_tree_fix_invalidated_key(b, t, k); break; case BSET_RW_AUX_TREE: rw_aux_tree_fix_invalidated_key(b, t, k); break; } } static void bch2_bset_fix_lookup_table(struct btree *b, struct bset_tree *t, struct bkey_packed *_where, unsigned clobber_u64s, unsigned new_u64s) { int shift = new_u64s - clobber_u64s; unsigned l, j, where = __btree_node_key_to_offset(b, _where); BUG_ON(bset_has_ro_aux_tree(t)); if (!bset_has_rw_aux_tree(t)) return; l = rw_aux_tree_bsearch(b, t, where); /* l is first >= than @where */ BUG_ON(l < t->size && rw_aux_tree(b, t)[l].offset < where); BUG_ON(l && rw_aux_tree(b, t)[l - 1].offset >= where); if (!l) /* never delete first entry */ l++; else if (l < t->size && where < t->end_offset && rw_aux_tree(b, t)[l].offset == where) rw_aux_tree_set(b, t, l++, _where); /* l now > where */ for (j = l; j < t->size && rw_aux_tree(b, t)[j].offset < where + clobber_u64s; j++) ; if (j < t->size && rw_aux_tree(b, t)[j].offset + shift == rw_aux_tree(b, t)[l - 1].offset) j++; memmove(&rw_aux_tree(b, t)[l], &rw_aux_tree(b, t)[j], (void *) &rw_aux_tree(b, t)[t->size] - (void *) &rw_aux_tree(b, t)[j]); t->size -= j - l; for (j = l; j < t->size; j++) rw_aux_tree(b, t)[j].offset += shift; BUG_ON(l < t->size && rw_aux_tree(b, t)[l].offset == rw_aux_tree(b, t)[l - 1].offset); if (t->size < bset_rw_tree_capacity(b, t) && (l < t->size ? rw_aux_tree(b, t)[l].offset : t->end_offset) - rw_aux_tree(b, t)[l - 1].offset > L1_CACHE_BYTES / sizeof(u64)) { struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1); struct bkey_packed *end = l < t->size ? rw_aux_to_bkey(b, t, l) : btree_bkey_last(b, t); struct bkey_packed *k = start; while (1) { k = bkey_next(k); if (k == end) break; if ((void *) k - (void *) start >= L1_CACHE_BYTES) { memmove(&rw_aux_tree(b, t)[l + 1], &rw_aux_tree(b, t)[l], (void *) &rw_aux_tree(b, t)[t->size] - (void *) &rw_aux_tree(b, t)[l]); t->size++; rw_aux_tree_set(b, t, l, k); break; } } } bch2_bset_verify_rw_aux_tree(b, t); bset_aux_tree_verify(b); } void bch2_bset_insert(struct btree *b, struct btree_node_iter *iter, struct bkey_packed *where, struct bkey_i *insert, unsigned clobber_u64s) { struct bkey_format *f = &b->format; struct bset_tree *t = bset_tree_last(b); struct bkey_packed packed, *src = bkey_to_packed(insert); bch2_bset_verify_rw_aux_tree(b, t); if (bch2_bkey_pack_key(&packed, &insert->k, f)) src = &packed; if (!bkey_whiteout(&insert->k)) btree_keys_account_key_add(&b->nr, t - b->set, src); if (src->u64s != clobber_u64s) { u64 *src_p = where->_data + clobber_u64s; u64 *dst_p = where->_data + src->u64s; BUG_ON((int) le16_to_cpu(bset(b, t)->u64s) < (int) clobber_u64s - src->u64s); memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s); set_btree_bset_end(b, t); } memcpy_u64s(where, src, bkeyp_key_u64s(f, src)); memcpy_u64s(bkeyp_val(f, where), &insert->v, bkeyp_val_u64s(f, src)); bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s); bch2_verify_key_order(b, iter, where); bch2_verify_btree_nr_keys(b); } void bch2_bset_delete(struct btree *b, struct bkey_packed *where, unsigned clobber_u64s) { struct bset_tree *t = bset_tree_last(b); u64 *src_p = where->_data + clobber_u64s; u64 *dst_p = where->_data; bch2_bset_verify_rw_aux_tree(b, t); BUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s); memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s); set_btree_bset_end(b, t); bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0); } /* Lookup */ __flatten static struct bkey_packed *bset_search_write_set(const struct btree *b, struct bset_tree *t, struct bpos search, const struct bkey_packed *packed_search) { unsigned l = 0, r = t->size; while (l + 1 != r) { unsigned m = (l + r) >> 1; if (bkey_cmp(rw_aux_tree(b, t)[m].k, search) < 0) l = m; else r = m; } return rw_aux_to_bkey(b, t, l); } noinline static int bset_search_tree_slowpath(const struct btree *b, struct bset_tree *t, struct bpos *search, const struct bkey_packed *packed_search, unsigned n) { return bkey_cmp_p_or_unp(b, tree_to_bkey(b, t, n), packed_search, search) < 0; } __flatten static struct bkey_packed *bset_search_tree(const struct btree *b, struct bset_tree *t, struct bpos search, const struct bkey_packed *packed_search) { struct ro_aux_tree *base = ro_aux_tree_base(b, t); struct bkey_float *f = bkey_float_get(base, 1); void *p; unsigned inorder, n = 1; while (1) { if (likely(n << 4 < t->size)) { p = bkey_float_get(base, n << 4); prefetch(p); } else if (n << 3 < t->size) { inorder = __eytzinger_to_inorder(n, t->size, t->extra); p = bset_cacheline(b, t, inorder); #ifdef CONFIG_X86_64 asm(".intel_syntax noprefix;" "prefetcht0 [%0 - 127 + 64 * 0];" "prefetcht0 [%0 - 127 + 64 * 1];" "prefetcht0 [%0 - 127 + 64 * 2];" "prefetcht0 [%0 - 127 + 64 * 3];" ".att_syntax prefix;" : : "r" (p + 127)); #else prefetch(p + L1_CACHE_BYTES * 0); prefetch(p + L1_CACHE_BYTES * 1); prefetch(p + L1_CACHE_BYTES * 2); prefetch(p + L1_CACHE_BYTES * 3); #endif } else if (n >= t->size) break; f = bkey_float_get(base, n); if (packed_search && likely(f->exponent < BFLOAT_FAILED)) n = n * 2 + (bfloat_mantissa(f, n) < bkey_mantissa(packed_search, f, n)); else n = n * 2 + bset_search_tree_slowpath(b, t, &search, packed_search, n); } while (n < t->size); inorder = __eytzinger_to_inorder(n >> 1, t->size, t->extra); /* * n would have been the node we recursed to - the low bit tells us if * we recursed left or recursed right. */ if (n & 1) { return cacheline_to_bkey(b, t, inorder, f->key_offset); } else { if (--inorder) { n = eytzinger_prev(n >> 1, t->size); f = bkey_float_get(base, n); return cacheline_to_bkey(b, t, inorder, f->key_offset); } else return btree_bkey_first(b, t); } } /* * Returns the first key greater than or equal to @search */ __always_inline __flatten static struct bkey_packed *bch2_bset_search(struct btree *b, struct bset_tree *t, struct bpos search, struct bkey_packed *packed_search, const struct bkey_packed *lossy_packed_search, bool strictly_greater) { struct bkey_packed *m; /* * First, we search for a cacheline, then lastly we do a linear search * within that cacheline. * * To search for the cacheline, there's three different possibilities: * * The set is too small to have a search tree, so we just do a linear * search over the whole set. * * The set is the one we're currently inserting into; keeping a full * auxiliary search tree up to date would be too expensive, so we * use a much simpler lookup table to do a binary search - * bset_search_write_set(). * * Or we use the auxiliary search tree we constructed earlier - * bset_search_tree() */ switch (bset_aux_tree_type(t)) { case BSET_NO_AUX_TREE: m = btree_bkey_first(b, t); break; case BSET_RW_AUX_TREE: m = bset_search_write_set(b, t, search, lossy_packed_search); break; case BSET_RO_AUX_TREE: /* * Each node in the auxiliary search tree covers a certain range * of bits, and keys above and below the set it covers might * differ outside those bits - so we have to special case the * start and end - handle that here: */ if (bkey_cmp(search, t->max_key) > 0) return btree_bkey_last(b, t); m = bset_search_tree(b, t, search, lossy_packed_search); break; } if (lossy_packed_search) while (m != btree_bkey_last(b, t) && !btree_iter_pos_cmp_p_or_unp(b, search, lossy_packed_search, m, strictly_greater)) m = bkey_next(m); if (!packed_search) while (m != btree_bkey_last(b, t) && !btree_iter_pos_cmp_packed(b, &search, m, strictly_greater)) m = bkey_next(m); if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) { struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m); BUG_ON(prev && btree_iter_pos_cmp_p_or_unp(b, search, packed_search, prev, strictly_greater)); } return m; } /* Btree node iterator */ void bch2_btree_node_iter_push(struct btree_node_iter *iter, struct btree *b, const struct bkey_packed *k, const struct bkey_packed *end) { if (k != end) { struct btree_node_iter_set *pos, n = ((struct btree_node_iter_set) { __btree_node_key_to_offset(b, k), __btree_node_key_to_offset(b, end) }); btree_node_iter_for_each(iter, pos) if (btree_node_iter_cmp(iter, b, n, *pos) <= 0) break; memmove(pos + 1, pos, (void *) (iter->data + iter->used) - (void *) pos); iter->used++; *pos = n; } } noinline __flatten __attribute__((cold)) static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter, struct btree *b, struct bpos search, bool strictly_greater, bool is_extents) { struct bset_tree *t; trace_bkey_pack_pos_fail(search); for_each_bset(b, t) __bch2_btree_node_iter_push(iter, b, bch2_bset_search(b, t, search, NULL, NULL, strictly_greater), btree_bkey_last(b, t)); bch2_btree_node_iter_sort(iter, b); } /** * bch_btree_node_iter_init - initialize a btree node iterator, starting from a * given position * * Main entry point to the lookup code for individual btree nodes: * * NOTE: * * When you don't filter out deleted keys, btree nodes _do_ contain duplicate * keys. This doesn't matter for most code, but it does matter for lookups. * * Some adjacent keys with a string of equal keys: * i j k k k k l m * * If you search for k, the lookup code isn't guaranteed to return you any * specific k. The lookup code is conceptually doing a binary search and * iterating backwards is very expensive so if the pivot happens to land at the * last k that's what you'll get. * * This works out ok, but it's something to be aware of: * * - For non extents, we guarantee that the live key comes last - see * btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't * see will only be deleted keys you don't care about. * * - For extents, deleted keys sort last (see the comment at the top of this * file). But when you're searching for extents, you actually want the first * key strictly greater than your search key - an extent that compares equal * to the search key is going to have 0 sectors after the search key. * * But this does mean that we can't just search for * bkey_successor(start_of_range) to get the first extent that overlaps with * the range we want - if we're unlucky and there's an extent that ends * exactly where we searched, then there could be a deleted key at the same * position and we'd get that when we search instead of the preceding extent * we needed. * * So we've got to search for start_of_range, then after the lookup iterate * past any extents that compare equal to the position we searched for. */ void bch2_btree_node_iter_init(struct btree_node_iter *iter, struct btree *b, struct bpos search, bool strictly_greater, bool is_extents) { struct bset_tree *t; struct bkey_packed p, *packed_search = NULL; EBUG_ON(bkey_cmp(search, b->data->min_key) < 0); bset_aux_tree_verify(b); __bch2_btree_node_iter_init(iter, is_extents); //if (bkey_cmp(search, b->curr_max_key) > 0) // return; switch (bch2_bkey_pack_pos_lossy(&p, search, b)) { case BKEY_PACK_POS_EXACT: packed_search = &p; break; case BKEY_PACK_POS_SMALLER: packed_search = NULL; break; case BKEY_PACK_POS_FAIL: btree_node_iter_init_pack_failed(iter, b, search, strictly_greater, is_extents); return; } for_each_bset(b, t) __bch2_btree_node_iter_push(iter, b, bch2_bset_search(b, t, search, packed_search, &p, strictly_greater), btree_bkey_last(b, t)); bch2_btree_node_iter_sort(iter, b); } void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter, struct btree *b, bool is_extents) { struct bset_tree *t; __bch2_btree_node_iter_init(iter, is_extents); for_each_bset(b, t) __bch2_btree_node_iter_push(iter, b, btree_bkey_first(b, t), btree_bkey_last(b, t)); bch2_btree_node_iter_sort(iter, b); } struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter, struct btree *b, struct bset_tree *t) { struct btree_node_iter_set *set; BUG_ON(iter->used > MAX_BSETS); btree_node_iter_for_each(iter, set) if (set->end == t->end_offset) return __btree_node_offset_to_key(b, set->k); return btree_bkey_last(b, t); } static inline void btree_node_iter_sift(struct btree_node_iter *iter, struct btree *b, unsigned start) { unsigned i; EBUG_ON(iter->used > MAX_BSETS); for (i = start; i + 1 < iter->used && btree_node_iter_cmp(iter, b, iter->data[i], iter->data[i + 1]) > 0; i++) swap(iter->data[i], iter->data[i + 1]); } static inline void btree_node_iter_sort_two(struct btree_node_iter *iter, struct btree *b, unsigned first) { if (btree_node_iter_cmp(iter, b, iter->data[first], iter->data[first + 1]) > 0) swap(iter->data[first], iter->data[first + 1]); } void bch2_btree_node_iter_sort(struct btree_node_iter *iter, struct btree *b) { EBUG_ON(iter->used > 3); /* unrolled bubble sort: */ if (iter->used > 2) { btree_node_iter_sort_two(iter, b, 0); btree_node_iter_sort_two(iter, b, 1); } if (iter->used > 1) btree_node_iter_sort_two(iter, b, 0); } /** * bch_btree_node_iter_advance - advance @iter by one key * * Doesn't do debugchecks - for cases where (insert_fixup_extent()) a bset might * momentarily have out of order extents. */ void bch2_btree_node_iter_advance(struct btree_node_iter *iter, struct btree *b) { struct bkey_packed *k = bch2_btree_node_iter_peek_all(iter, b); iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s; BUG_ON(iter->data->k > iter->data->end); if (iter->data->k == iter->data->end) { BUG_ON(iter->used == 0); iter->data[0] = iter->data[--iter->used]; } btree_node_iter_sift(iter, b, 0); bch2_btree_node_iter_next_check(iter, b, k); } /* * Expensive: */ struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter, struct btree *b) { struct bkey_packed *k, *prev = NULL; struct btree_node_iter_set *set; struct bset_tree *t; struct bset_tree *prev_t; unsigned end; bch2_btree_node_iter_verify(iter, b); for_each_bset(b, t) { k = bch2_bkey_prev_all(b, t, bch2_btree_node_iter_bset_pos(iter, b, t)); if (k && (!prev || __btree_node_iter_cmp(iter->is_extents, b, k, prev) > 0)) { prev = k; prev_t = t; } } if (!prev) return NULL; /* * We're manually memmoving instead of just calling sort() to ensure the * prev we picked ends up in slot 0 - sort won't necessarily put it * there because of duplicate deleted keys: */ end = __btree_node_key_to_offset(b, btree_bkey_last(b, prev_t)); btree_node_iter_for_each(iter, set) if (set->end == end) { memmove(&iter->data[1], &iter->data[0], (void *) set - (void *) &iter->data[0]); goto out; } memmove(&iter->data[1], &iter->data[0], (void *) &iter->data[iter->used] - (void *) &iter->data[0]); iter->used++; out: iter->data[0].k = __btree_node_key_to_offset(b, prev); iter->data[0].end = end; return prev; } struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter, struct btree *b) { struct bkey_packed *k; do { k = bch2_btree_node_iter_prev_all(iter, b); } while (k && bkey_deleted(k)); return k; } struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter, struct btree *b, struct bkey *u) { struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b); return k ? bkey_disassemble(b, k, u) : bkey_s_c_null; } /* Mergesort */ void bch2_btree_keys_stats(struct btree *b, struct bset_stats *stats) { struct bset_tree *t; for_each_bset(b, t) { enum bset_aux_tree_type type = bset_aux_tree_type(t); size_t j; stats->sets[type].nr++; stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) * sizeof(u64); if (bset_has_ro_aux_tree(t)) { stats->floats += t->size - 1; for (j = 1; j < t->size; j++) switch (bkey_float(b, t, j)->exponent) { case BFLOAT_FAILED_UNPACKED: stats->failed_unpacked++; break; case BFLOAT_FAILED_PREV: stats->failed_prev++; break; case BFLOAT_FAILED_OVERFLOW: stats->failed_overflow++; break; } } } } int bch2_bkey_print_bfloat(struct btree *b, struct bkey_packed *k, char *buf, size_t size) { struct bset_tree *t = bch2_bkey_to_bset(b, k); struct bkey_packed *l, *r, *p; struct bkey uk, up; char buf1[200], buf2[200]; unsigned j; if (!size) return 0; if (!bset_has_ro_aux_tree(t)) goto out; j = __inorder_to_eytzinger(bkey_to_cacheline(b, t, k), t->size, t->extra); if (j && j < t->size && k == tree_to_bkey(b, t, j)) switch (bkey_float(b, t, j)->exponent) { case BFLOAT_FAILED_UNPACKED: uk = bkey_unpack_key(b, k); return scnprintf(buf, size, " failed unpacked at depth %u\n" "\t%llu:%llu\n", ilog2(j), uk.p.inode, uk.p.offset); case BFLOAT_FAILED_PREV: p = tree_to_prev_bkey(b, t, j); l = is_power_of_2(j) ? btree_bkey_first(b, t) : tree_to_prev_bkey(b, t, j >> ffs(j)); r = is_power_of_2(j + 1) ? bch2_bkey_prev_all(b, t, btree_bkey_last(b, t)) : tree_to_bkey(b, t, j >> (ffz(j) + 1)); up = bkey_unpack_key(b, p); uk = bkey_unpack_key(b, k); bch2_to_binary(buf1, high_word(&b->format, p), b->nr_key_bits); bch2_to_binary(buf2, high_word(&b->format, k), b->nr_key_bits); return scnprintf(buf, size, " failed prev at depth %u\n" "\tkey starts at bit %u but first differing bit at %u\n" "\t%llu:%llu\n" "\t%llu:%llu\n" "\t%s\n" "\t%s\n", ilog2(j), bch2_bkey_greatest_differing_bit(b, l, r), bch2_bkey_greatest_differing_bit(b, p, k), uk.p.inode, uk.p.offset, up.p.inode, up.p.offset, buf1, buf2); case BFLOAT_FAILED_OVERFLOW: uk = bkey_unpack_key(b, k); return scnprintf(buf, size, " failed overflow at depth %u\n" "\t%llu:%llu\n", ilog2(j), uk.p.inode, uk.p.offset); } out: *buf = '\0'; return 0; }