/* * Copyright (C) 2010 Kent Overstreet * Copyright (C) 2014 Datera Inc. */ #include "bcachefs.h" #include "alloc.h" #include "bkey_methods.h" #include "btree_locking.h" #include "btree_update_interior.h" #include "btree_io.h" #include "btree_gc.h" #include "buckets.h" #include "clock.h" #include "debug.h" #include "error.h" #include "extents.h" #include "journal.h" #include "keylist.h" #include "move.h" #include "super-io.h" #include #include #include #include #include #include struct range_checks { struct range_level { struct bpos min; struct bpos max; } l[BTREE_MAX_DEPTH]; unsigned depth; }; static void btree_node_range_checks_init(struct range_checks *r, unsigned depth) { unsigned i; for (i = 0; i < BTREE_MAX_DEPTH; i++) r->l[i].min = r->l[i].max = POS_MIN; r->depth = depth; } static void btree_node_range_checks(struct bch_fs *c, struct btree *b, struct range_checks *r) { struct range_level *l = &r->l[b->level]; struct bpos expected_min = bkey_cmp(l->min, l->max) ? btree_type_successor(b->btree_id, l->max) : l->max; bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, expected_min), c, "btree node has incorrect min key: %llu:%llu != %llu:%llu", b->data->min_key.inode, b->data->min_key.offset, expected_min.inode, expected_min.offset); l->max = b->data->max_key; if (b->level > r->depth) { l = &r->l[b->level - 1]; bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, l->min), c, "btree node min doesn't match min of child nodes: %llu:%llu != %llu:%llu", b->data->min_key.inode, b->data->min_key.offset, l->min.inode, l->min.offset); bch2_fs_inconsistent_on(bkey_cmp(b->data->max_key, l->max), c, "btree node max doesn't match max of child nodes: %llu:%llu != %llu:%llu", b->data->max_key.inode, b->data->max_key.offset, l->max.inode, l->max.offset); if (bkey_cmp(b->data->max_key, POS_MAX)) l->min = l->max = btree_type_successor(b->btree_id, b->data->max_key); } } u8 bch2_btree_key_recalc_oldest_gen(struct bch_fs *c, struct bkey_s_c k) { const struct bch_extent_ptr *ptr; u8 max_stale = 0; if (bkey_extent_is_data(k.k)) { struct bkey_s_c_extent e = bkey_s_c_to_extent(k); extent_for_each_ptr(e, ptr) { struct bch_dev *ca = c->devs[ptr->dev]; size_t b = PTR_BUCKET_NR(ca, ptr); if (gen_after(ca->oldest_gens[b], ptr->gen)) ca->oldest_gens[b] = ptr->gen; max_stale = max(max_stale, ptr_stale(ca, ptr)); } } return max_stale; } /* * For runtime mark and sweep: */ static u8 bch2_btree_mark_key(struct bch_fs *c, enum bkey_type type, struct bkey_s_c k, unsigned flags) { switch (type) { case BKEY_TYPE_BTREE: bch2_gc_mark_key(c, k, c->opts.btree_node_size, true, flags); return 0; case BKEY_TYPE_EXTENTS: bch2_gc_mark_key(c, k, k.k->size, false, flags); return bch2_btree_key_recalc_oldest_gen(c, k); default: BUG(); } } int bch2_btree_mark_key_initial(struct bch_fs *c, enum bkey_type type, struct bkey_s_c k) { enum bch_data_type data_type = type == BKEY_TYPE_BTREE ? BCH_DATA_BTREE : BCH_DATA_USER; int ret = 0; switch (k.k->type) { case BCH_EXTENT: case BCH_EXTENT_CACHED: { struct bkey_s_c_extent e = bkey_s_c_to_extent(k); const struct bch_extent_ptr *ptr; if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) || (!c->opts.nofsck && fsck_err_on(!bch2_sb_has_replicas(c, e, data_type), c, "superblock not marked as containing replicas"))) { ret = bch2_check_mark_super(c, e, data_type); if (ret) return ret; } extent_for_each_ptr(e, ptr) { struct bch_dev *ca = c->devs[ptr->dev]; struct bucket *g = PTR_BUCKET(ca, ptr); if (mustfix_fsck_err_on(!g->mark.gen_valid, c, "found ptr with missing gen in alloc btree,\n" "type %s gen %u", bch2_data_types[data_type], ptr->gen)) { g->_mark.gen = ptr->gen; g->_mark.gen_valid = 1; set_bit(g - ca->buckets, ca->bucket_dirty); } if (mustfix_fsck_err_on(gen_cmp(ptr->gen, g->mark.gen) > 0, c, "%s ptr gen in the future: %u > %u", bch2_data_types[data_type], ptr->gen, g->mark.gen)) { g->_mark.gen = ptr->gen; g->_mark.gen_valid = 1; set_bit(g - ca->buckets, ca->bucket_dirty); set_bit(BCH_FS_FIXED_GENS, &c->flags); } } break; } } atomic64_set(&c->key_version, max_t(u64, k.k->version.lo, atomic64_read(&c->key_version))); bch2_btree_mark_key(c, type, k, BCH_BUCKET_MARK_NOATOMIC); fsck_err: return ret; } static unsigned btree_gc_mark_node(struct bch_fs *c, struct btree *b) { enum bkey_type type = btree_node_type(b); struct btree_node_iter iter; struct bkey unpacked; struct bkey_s_c k; u8 stale = 0; if (btree_node_has_ptrs(b)) for_each_btree_node_key_unpack(b, k, &iter, btree_node_is_extents(b), &unpacked) { bch2_bkey_debugcheck(c, b, k); stale = max(stale, bch2_btree_mark_key(c, type, k, 0)); } return stale; } static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) { write_seqcount_begin(&c->gc_pos_lock); c->gc_pos = new_pos; write_seqcount_end(&c->gc_pos_lock); } static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) { BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0); __gc_pos_set(c, new_pos); } static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id) { struct btree_iter iter; struct btree *b; struct range_checks r; unsigned depth = btree_id == BTREE_ID_EXTENTS ? 0 : 1; unsigned max_stale; int ret = 0; /* * if expensive_debug_checks is on, run range_checks on all leaf nodes: */ if (expensive_debug_checks(c)) depth = 0; btree_node_range_checks_init(&r, depth); __for_each_btree_node(&iter, c, btree_id, POS_MIN, 0, depth, BTREE_ITER_PREFETCH, b) { btree_node_range_checks(c, b, &r); bch2_verify_btree_nr_keys(b); max_stale = btree_gc_mark_node(c, b); gc_pos_set(c, gc_pos_btree_node(b)); if (max_stale > 32) bch2_btree_node_rewrite(c, &iter, b->data->keys.seq, BTREE_INSERT_USE_RESERVE| BTREE_INSERT_GC_LOCK_HELD); else if (!btree_gc_rewrite_disabled(c) && (btree_gc_always_rewrite(c) || max_stale > 16)) bch2_btree_node_rewrite(c, &iter, b->data->keys.seq, BTREE_INSERT_NOWAIT| BTREE_INSERT_GC_LOCK_HELD); bch2_btree_iter_cond_resched(&iter); } ret = bch2_btree_iter_unlock(&iter); if (ret) return ret; mutex_lock(&c->btree_root_lock); b = c->btree_roots[btree_id].b; bch2_btree_mark_key(c, BKEY_TYPE_BTREE, bkey_i_to_s_c(&b->key), 0); gc_pos_set(c, gc_pos_btree_root(b->btree_id)); mutex_unlock(&c->btree_root_lock); return 0; } static void bch2_mark_allocator_buckets(struct bch_fs *c) { struct bch_dev *ca; struct open_bucket *ob; size_t i, j, iter; unsigned ci; for_each_member_device(ca, c, ci) { spin_lock(&ca->freelist_lock); fifo_for_each_entry(i, &ca->free_inc, iter) bch2_mark_alloc_bucket(ca, &ca->buckets[i], true); for (j = 0; j < RESERVE_NR; j++) fifo_for_each_entry(i, &ca->free[j], iter) bch2_mark_alloc_bucket(ca, &ca->buckets[i], true); spin_unlock(&ca->freelist_lock); } for (ob = c->open_buckets; ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { const struct bch_extent_ptr *ptr; mutex_lock(&ob->lock); open_bucket_for_each_ptr(ob, ptr) { ca = c->devs[ptr->dev]; bch2_mark_alloc_bucket(ca, PTR_BUCKET(ca, ptr), true); } mutex_unlock(&ob->lock); } } static void mark_metadata_sectors(struct bch_dev *ca, u64 start, u64 end, enum bucket_data_type type) { u64 b = sector_to_bucket(ca, start); do { bch2_mark_metadata_bucket(ca, ca->buckets + b, type, true); b++; } while (b < sector_to_bucket(ca, end)); } static void bch2_dev_mark_superblocks(struct bch_dev *ca) { struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; unsigned i; for (i = 0; i < layout->nr_superblocks; i++) { if (layout->sb_offset[i] == BCH_SB_SECTOR) mark_metadata_sectors(ca, 0, BCH_SB_SECTOR, BUCKET_SB); mark_metadata_sectors(ca, layout->sb_offset[i], layout->sb_offset[i] + (1 << layout->sb_max_size_bits), BUCKET_SB); } } /* * Mark non btree metadata - prios, journal */ void bch2_mark_dev_metadata(struct bch_fs *c, struct bch_dev *ca) { unsigned i; u64 b; lockdep_assert_held(&c->sb_lock); bch2_dev_mark_superblocks(ca); spin_lock(&c->journal.lock); for (i = 0; i < ca->journal.nr; i++) { b = ca->journal.buckets[i]; bch2_mark_metadata_bucket(ca, ca->buckets + b, BUCKET_JOURNAL, true); } spin_unlock(&c->journal.lock); } static void bch2_mark_metadata(struct bch_fs *c) { struct bch_dev *ca; unsigned i; mutex_lock(&c->sb_lock); gc_pos_set(c, gc_phase(GC_PHASE_SB_METADATA)); for_each_online_member(ca, c, i) bch2_mark_dev_metadata(c, ca); mutex_unlock(&c->sb_lock); } /* Also see bch2_pending_btree_node_free_insert_done() */ static void bch2_mark_pending_btree_node_frees(struct bch_fs *c) { struct bch_fs_usage stats = { 0 }; struct btree_update *as; struct pending_btree_node_free *d; mutex_lock(&c->btree_interior_update_lock); gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE)); for_each_pending_btree_node_free(c, as, d) if (d->index_update_done) __bch2_mark_key(c, bkey_i_to_s_c(&d->key), c->opts.btree_node_size, true, &stats, 0, BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE); /* * Don't apply stats - pending deletes aren't tracked in * bch_alloc_stats: */ mutex_unlock(&c->btree_interior_update_lock); } void bch2_gc_start(struct bch_fs *c) { struct bch_dev *ca; struct bucket *g; struct bucket_mark new; unsigned i; int cpu; lg_global_lock(&c->usage_lock); /* * Indicates to buckets code that gc is now in progress - done under * usage_lock to avoid racing with bch2_mark_key(): */ __gc_pos_set(c, GC_POS_MIN); /* Save a copy of the existing bucket stats while we recompute them: */ for_each_member_device(ca, c, i) { ca->usage_cached = __bch2_dev_usage_read(ca); for_each_possible_cpu(cpu) { struct bch_dev_usage *p = per_cpu_ptr(ca->usage_percpu, cpu); memset(p, 0, sizeof(*p)); } } c->usage_cached = __bch2_fs_usage_read(c); for_each_possible_cpu(cpu) { struct bch_fs_usage *p = per_cpu_ptr(c->usage_percpu, cpu); memset(p->s, 0, sizeof(p->s)); } lg_global_unlock(&c->usage_lock); /* Clear bucket marks: */ for_each_member_device(ca, c, i) for_each_bucket(g, ca) { bucket_cmpxchg(g, new, ({ new.owned_by_allocator = 0; new.data_type = 0; new.cached_sectors = 0; new.dirty_sectors = 0; })); ca->oldest_gens[g - ca->buckets] = new.gen; } } /** * bch_gc - recompute bucket marks and oldest_gen, rewrite btree nodes */ void bch2_gc(struct bch_fs *c) { struct bch_dev *ca; u64 start_time = local_clock(); unsigned i; /* * Walk _all_ references to buckets, and recompute them: * * Order matters here: * - Concurrent GC relies on the fact that we have a total ordering for * everything that GC walks - see gc_will_visit_node(), * gc_will_visit_root() * * - also, references move around in the course of index updates and * various other crap: everything needs to agree on the ordering * references are allowed to move around in - e.g., we're allowed to * start with a reference owned by an open_bucket (the allocator) and * move it to the btree, but not the reverse. * * This is necessary to ensure that gc doesn't miss references that * move around - if references move backwards in the ordering GC * uses, GC could skip past them */ trace_gc_start(c); /* * Do this before taking gc_lock - bch2_disk_reservation_get() blocks on * gc_lock if sectors_available goes to 0: */ bch2_recalc_sectors_available(c); down_write(&c->gc_lock); if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) goto out; bch2_gc_start(c); /* Walk allocator's references: */ bch2_mark_allocator_buckets(c); /* Walk btree: */ while (c->gc_pos.phase < (int) BTREE_ID_NR) { int ret = c->btree_roots[c->gc_pos.phase].b ? bch2_gc_btree(c, (int) c->gc_pos.phase) : 0; if (ret) { bch_err(c, "btree gc failed: %d", ret); set_bit(BCH_FS_GC_FAILURE, &c->flags); goto out; } gc_pos_set(c, gc_phase(c->gc_pos.phase + 1)); } bch2_mark_metadata(c); bch2_mark_pending_btree_node_frees(c); for_each_member_device(ca, c, i) atomic_long_set(&ca->saturated_count, 0); /* Indicates that gc is no longer in progress: */ gc_pos_set(c, gc_phase(GC_PHASE_DONE)); c->gc_count++; out: up_write(&c->gc_lock); trace_gc_end(c); bch2_time_stats_update(&c->btree_gc_time, start_time); /* * Wake up allocator in case it was waiting for buckets * because of not being able to inc gens */ for_each_member_device(ca, c, i) bch2_wake_allocator(ca); /* * At startup, allocations can happen directly instead of via the * allocator thread - issue wakeup in case they blocked on gc_lock: */ closure_wake_up(&c->freelist_wait); } /* Btree coalescing */ static void recalc_packed_keys(struct btree *b) { struct bkey_packed *k; memset(&b->nr, 0, sizeof(b->nr)); BUG_ON(b->nsets != 1); for (k = btree_bkey_first(b, b->set); k != btree_bkey_last(b, b->set); k = bkey_next(k)) btree_keys_account_key_add(&b->nr, 0, k); } static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter, struct btree *old_nodes[GC_MERGE_NODES]) { struct btree *parent = iter->nodes[old_nodes[0]->level + 1]; unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0; unsigned blocks = btree_blocks(c) * 2 / 3; struct btree *new_nodes[GC_MERGE_NODES]; struct btree_update *as; struct keylist keylist; struct bkey_format_state format_state; struct bkey_format new_format; memset(new_nodes, 0, sizeof(new_nodes)); bch2_keylist_init(&keylist, NULL, 0); /* Count keys that are not deleted */ for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++) u64s += old_nodes[i]->nr.live_u64s; nr_old_nodes = nr_new_nodes = i; /* Check if all keys in @old_nodes could fit in one fewer node */ if (nr_old_nodes <= 1 || __vstruct_blocks(struct btree_node, c->block_bits, DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks) return; /* Find a format that all keys in @old_nodes can pack into */ bch2_bkey_format_init(&format_state); for (i = 0; i < nr_old_nodes; i++) __bch2_btree_calc_format(&format_state, old_nodes[i]); new_format = bch2_bkey_format_done(&format_state); /* Check if repacking would make any nodes too big to fit */ for (i = 0; i < nr_old_nodes; i++) if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) { trace_btree_gc_coalesce_fail(c, BTREE_GC_COALESCE_FAIL_FORMAT_FITS); return; } if (bch2_keylist_realloc(&keylist, NULL, 0, (BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) { trace_btree_gc_coalesce_fail(c, BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC); return; } as = bch2_btree_update_start(c, iter->btree_id, btree_update_reserve_required(c, parent) + nr_old_nodes, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE, NULL); if (IS_ERR(as)) { trace_btree_gc_coalesce_fail(c, BTREE_GC_COALESCE_FAIL_RESERVE_GET); bch2_keylist_free(&keylist, NULL); return; } trace_btree_gc_coalesce(c, old_nodes[0]); for (i = 0; i < nr_old_nodes; i++) bch2_btree_interior_update_will_free_node(as, old_nodes[i]); /* Repack everything with @new_format and sort down to one bset */ for (i = 0; i < nr_old_nodes; i++) new_nodes[i] = __bch2_btree_node_alloc_replacement(as, old_nodes[i], new_format); /* * Conceptually we concatenate the nodes together and slice them * up at different boundaries. */ for (i = nr_new_nodes - 1; i > 0; --i) { struct btree *n1 = new_nodes[i]; struct btree *n2 = new_nodes[i - 1]; struct bset *s1 = btree_bset_first(n1); struct bset *s2 = btree_bset_first(n2); struct bkey_packed *k, *last = NULL; /* Calculate how many keys from @n2 we could fit inside @n1 */ u64s = 0; for (k = s2->start; k < vstruct_last(s2) && vstruct_blocks_plus(n1->data, c->block_bits, u64s + k->u64s) <= blocks; k = bkey_next(k)) { last = k; u64s += k->u64s; } if (u64s == le16_to_cpu(s2->u64s)) { /* n2 fits entirely in n1 */ n1->key.k.p = n1->data->max_key = n2->data->max_key; memcpy_u64s(vstruct_last(s1), s2->start, le16_to_cpu(s2->u64s)); le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s)); set_btree_bset_end(n1, n1->set); six_unlock_write(&n2->lock); bch2_btree_node_free_never_inserted(c, n2); six_unlock_intent(&n2->lock); memmove(new_nodes + i - 1, new_nodes + i, sizeof(new_nodes[0]) * (nr_new_nodes - i)); new_nodes[--nr_new_nodes] = NULL; } else if (u64s) { /* move part of n2 into n1 */ n1->key.k.p = n1->data->max_key = bkey_unpack_pos(n1, last); n2->data->min_key = btree_type_successor(iter->btree_id, n1->data->max_key); memcpy_u64s(vstruct_last(s1), s2->start, u64s); le16_add_cpu(&s1->u64s, u64s); memmove(s2->start, vstruct_idx(s2, u64s), (le16_to_cpu(s2->u64s) - u64s) * sizeof(u64)); s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s); set_btree_bset_end(n1, n1->set); set_btree_bset_end(n2, n2->set); } } for (i = 0; i < nr_new_nodes; i++) { struct btree *n = new_nodes[i]; recalc_packed_keys(n); btree_node_reset_sib_u64s(n); bch2_btree_build_aux_trees(n); six_unlock_write(&n->lock); bch2_btree_node_write(c, n, &as->cl, SIX_LOCK_intent); } /* * The keys for the old nodes get deleted. We don't want to insert keys * that compare equal to the keys for the new nodes we'll also be * inserting - we can't because keys on a keylist must be strictly * greater than the previous keys, and we also don't need to since the * key for the new node will serve the same purpose (overwriting the key * for the old node). */ for (i = 0; i < nr_old_nodes; i++) { struct bkey_i delete; unsigned j; for (j = 0; j < nr_new_nodes; j++) if (!bkey_cmp(old_nodes[i]->key.k.p, new_nodes[j]->key.k.p)) goto next; bkey_init(&delete.k); delete.k.p = old_nodes[i]->key.k.p; bch2_keylist_add_in_order(&keylist, &delete); next: i = i; } /* * Keys for the new nodes get inserted: bch2_btree_insert_keys() only * does the lookup once and thus expects the keys to be in sorted order * so we have to make sure the new keys are correctly ordered with * respect to the deleted keys added in the previous loop */ for (i = 0; i < nr_new_nodes; i++) bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key); /* Insert the newly coalesced nodes */ bch2_btree_insert_node(as, parent, iter, &keylist); BUG_ON(!bch2_keylist_empty(&keylist)); BUG_ON(iter->nodes[old_nodes[0]->level] != old_nodes[0]); BUG_ON(!bch2_btree_iter_node_replace(iter, new_nodes[0])); for (i = 0; i < nr_new_nodes; i++) bch2_btree_open_bucket_put(c, new_nodes[i]); /* Free the old nodes and update our sliding window */ for (i = 0; i < nr_old_nodes; i++) { bch2_btree_node_free_inmem(c, old_nodes[i], iter); six_unlock_intent(&old_nodes[i]->lock); /* * the index update might have triggered a split, in which case * the nodes we coalesced - the new nodes we just created - * might not be sibling nodes anymore - don't add them to the * sliding window (except the first): */ if (!i) { old_nodes[i] = new_nodes[i]; } else { old_nodes[i] = NULL; if (new_nodes[i]) six_unlock_intent(&new_nodes[i]->lock); } } bch2_btree_update_done(as); bch2_keylist_free(&keylist, NULL); } static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id) { struct btree_iter iter; struct btree *b; unsigned i; /* Sliding window of adjacent btree nodes */ struct btree *merge[GC_MERGE_NODES]; u32 lock_seq[GC_MERGE_NODES]; /* * XXX: We don't have a good way of positively matching on sibling nodes * that have the same parent - this code works by handling the cases * where they might not have the same parent, and is thus fragile. Ugh. * * Perhaps redo this to use multiple linked iterators? */ memset(merge, 0, sizeof(merge)); __for_each_btree_node(&iter, c, btree_id, POS_MIN, BTREE_MAX_DEPTH, 0, BTREE_ITER_PREFETCH, b) { memmove(merge + 1, merge, sizeof(merge) - sizeof(merge[0])); memmove(lock_seq + 1, lock_seq, sizeof(lock_seq) - sizeof(lock_seq[0])); merge[0] = b; for (i = 1; i < GC_MERGE_NODES; i++) { if (!merge[i] || !six_relock_intent(&merge[i]->lock, lock_seq[i])) break; if (merge[i]->level != merge[0]->level) { six_unlock_intent(&merge[i]->lock); break; } } memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0])); bch2_coalesce_nodes(c, &iter, merge); for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) { lock_seq[i] = merge[i]->lock.state.seq; six_unlock_intent(&merge[i]->lock); } lock_seq[0] = merge[0]->lock.state.seq; if (test_bit(BCH_FS_GC_STOPPING, &c->flags)) { bch2_btree_iter_unlock(&iter); return -ESHUTDOWN; } bch2_btree_iter_cond_resched(&iter); /* * If the parent node wasn't relocked, it might have been split * and the nodes in our sliding window might not have the same * parent anymore - blow away the sliding window: */ if (iter.nodes[iter.level + 1] && !btree_node_intent_locked(&iter, iter.level + 1)) memset(merge + 1, 0, (GC_MERGE_NODES - 1) * sizeof(merge[0])); } return bch2_btree_iter_unlock(&iter); } /** * bch_coalesce - coalesce adjacent nodes with low occupancy */ void bch2_coalesce(struct bch_fs *c) { enum btree_id id; if (test_bit(BCH_FS_GC_FAILURE, &c->flags)) return; down_read(&c->gc_lock); trace_gc_coalesce_start(c); for (id = 0; id < BTREE_ID_NR; id++) { int ret = c->btree_roots[id].b ? bch2_coalesce_btree(c, id) : 0; if (ret) { if (ret != -ESHUTDOWN) bch_err(c, "btree coalescing failed: %d", ret); set_bit(BCH_FS_GC_FAILURE, &c->flags); return; } } trace_gc_coalesce_end(c); up_read(&c->gc_lock); } static int bch2_gc_thread(void *arg) { struct bch_fs *c = arg; struct io_clock *clock = &c->io_clock[WRITE]; unsigned long last = atomic_long_read(&clock->now); unsigned last_kick = atomic_read(&c->kick_gc); set_freezable(); while (1) { while (1) { set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); return 0; } if (atomic_read(&c->kick_gc) != last_kick) break; if (c->btree_gc_periodic) { unsigned long next = last + c->capacity / 16; if (atomic_long_read(&clock->now) >= next) break; bch2_io_clock_schedule_timeout(clock, next); } else { schedule(); } try_to_freeze(); } __set_current_state(TASK_RUNNING); last = atomic_long_read(&clock->now); last_kick = atomic_read(&c->kick_gc); bch2_gc(c); debug_check_no_locks_held(); } return 0; } void bch2_gc_thread_stop(struct bch_fs *c) { set_bit(BCH_FS_GC_STOPPING, &c->flags); if (c->gc_thread) kthread_stop(c->gc_thread); c->gc_thread = NULL; clear_bit(BCH_FS_GC_STOPPING, &c->flags); } int bch2_gc_thread_start(struct bch_fs *c) { struct task_struct *p; BUG_ON(c->gc_thread); p = kthread_create(bch2_gc_thread, c, "bcache_gc"); if (IS_ERR(p)) return PTR_ERR(p); c->gc_thread = p; wake_up_process(c->gc_thread); return 0; } /* Initial GC computes bucket marks during startup */ static int bch2_initial_gc_btree(struct bch_fs *c, enum btree_id id) { struct btree_iter iter; struct btree *b; struct range_checks r; int ret = 0; btree_node_range_checks_init(&r, 0); if (!c->btree_roots[id].b) return 0; ret = bch2_btree_mark_key_initial(c, BKEY_TYPE_BTREE, bkey_i_to_s_c(&c->btree_roots[id].b->key)); if (ret) return ret; /* * We have to hit every btree node before starting journal replay, in * order for the journal seq blacklist machinery to work: */ for_each_btree_node(&iter, c, id, POS_MIN, BTREE_ITER_PREFETCH, b) { btree_node_range_checks(c, b, &r); if (btree_node_has_ptrs(b)) { struct btree_node_iter node_iter; struct bkey unpacked; struct bkey_s_c k; for_each_btree_node_key_unpack(b, k, &node_iter, btree_node_is_extents(b), &unpacked) { ret = bch2_btree_mark_key_initial(c, btree_node_type(b), k); if (ret) goto err; } } bch2_btree_iter_cond_resched(&iter); } err: return bch2_btree_iter_unlock(&iter) ?: ret; } int bch2_initial_gc(struct bch_fs *c, struct list_head *journal) { unsigned iter = 0; enum btree_id id; int ret; mutex_lock(&c->sb_lock); if (!bch2_sb_get_replicas(c->disk_sb)) { if (BCH_SB_INITIALIZED(c->disk_sb)) bch_info(c, "building replicas info"); set_bit(BCH_FS_REBUILD_REPLICAS, &c->flags); } mutex_unlock(&c->sb_lock); again: bch2_gc_start(c); for (id = 0; id < BTREE_ID_NR; id++) { ret = bch2_initial_gc_btree(c, id); if (ret) return ret; } ret = bch2_journal_mark(c, journal); if (ret) return ret; bch2_mark_metadata(c); if (test_bit(BCH_FS_FIXED_GENS, &c->flags)) { if (iter++ > 2) { bch_info(c, "Unable to fix bucket gens, looping"); return -EINVAL; } bch_info(c, "Fixed gens, restarting initial mark and sweep:"); clear_bit(BCH_FS_FIXED_GENS, &c->flags); goto again; } /* * Skip past versions that might have possibly been used (as nonces), * but hadn't had their pointers written: */ if (c->sb.encryption_type) atomic64_add(1 << 16, &c->key_version); gc_pos_set(c, gc_phase(GC_PHASE_DONE)); set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags); return 0; }