#include "bcachefs.h" #include "alloc.h" #include "bkey_methods.h" #include "btree_cache.h" #include "btree_gc.h" #include "btree_update.h" #include "btree_io.h" #include "btree_iter.h" #include "btree_locking.h" #include "buckets.h" #include "extents.h" #include "journal.h" #include "keylist.h" #include "super-io.h" #include #include #include static void btree_interior_update_updated_root(struct bch_fs *, struct btree_interior_update *, enum btree_id); /* Calculate ideal packed bkey format for new btree nodes: */ void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) { struct bkey_packed *k; struct bset_tree *t; struct bkey uk; bch2_bkey_format_add_pos(s, b->data->min_key); for_each_bset(b, t) for (k = btree_bkey_first(b, t); k != btree_bkey_last(b, t); k = bkey_next(k)) if (!bkey_whiteout(k)) { uk = bkey_unpack_key(b, k); bch2_bkey_format_add_key(s, &uk); } } static struct bkey_format bch2_btree_calc_format(struct btree *b) { struct bkey_format_state s; bch2_bkey_format_init(&s); __bch2_btree_calc_format(&s, b); return bch2_bkey_format_done(&s); } static size_t btree_node_u64s_with_format(struct btree *b, struct bkey_format *new_f) { struct bkey_format *old_f = &b->format; /* stupid integer promotion rules */ ssize_t delta = (((int) new_f->key_u64s - old_f->key_u64s) * (int) b->nr.packed_keys) + (((int) new_f->key_u64s - BKEY_U64s) * (int) b->nr.unpacked_keys); BUG_ON(delta + b->nr.live_u64s < 0); return b->nr.live_u64s + delta; } /** * btree_node_format_fits - check if we could rewrite node with a new format * * This assumes all keys can pack with the new format -- it just checks if * the re-packed keys would fit inside the node itself. */ bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, struct bkey_format *new_f) { size_t u64s = btree_node_u64s_with_format(b, new_f); return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); } /* Btree node freeing/allocation: */ /* * We're doing the index update that makes @b unreachable, update stuff to * reflect that: * * Must be called _before_ btree_interior_update_updated_root() or * btree_interior_update_updated_btree: */ static void bch2_btree_node_free_index(struct bch_fs *c, struct btree *b, enum btree_id id, struct bkey_s_c k, struct bch_fs_usage *stats) { struct btree_interior_update *as; struct pending_btree_node_free *d; mutex_lock(&c->btree_interior_update_lock); for_each_pending_btree_node_free(c, as, d) if (!bkey_cmp(k.k->p, d->key.k.p) && bkey_val_bytes(k.k) == bkey_val_bytes(&d->key.k) && !memcmp(k.v, &d->key.v, bkey_val_bytes(k.k))) goto found; BUG(); found: d->index_update_done = true; /* * Btree nodes are accounted as freed in bch_alloc_stats when they're * freed from the index: */ stats->s[S_COMPRESSED][S_META] -= c->sb.btree_node_size; stats->s[S_UNCOMPRESSED][S_META] -= c->sb.btree_node_size; /* * We're dropping @k from the btree, but it's still live until the * index update is persistent so we need to keep a reference around for * mark and sweep to find - that's primarily what the * btree_node_pending_free list is for. * * So here (when we set index_update_done = true), we're moving an * existing reference to a different part of the larger "gc keyspace" - * and the new position comes after the old position, since GC marks * the pending free list after it walks the btree. * * If we move the reference while mark and sweep is _between_ the old * and the new position, mark and sweep will see the reference twice * and it'll get double accounted - so check for that here and subtract * to cancel out one of mark and sweep's markings if necessary: */ /* * bch2_mark_key() compares the current gc pos to the pos we're * moving this reference from, hence one comparison here: */ if (gc_pos_cmp(c->gc_pos, gc_phase(GC_PHASE_PENDING_DELETE)) < 0) { struct bch_fs_usage tmp = { 0 }; bch2_mark_key(c, bkey_i_to_s_c(&d->key), -c->sb.btree_node_size, true, b ? gc_pos_btree_node(b) : gc_pos_btree_root(id), &tmp, 0); /* * Don't apply tmp - pending deletes aren't tracked in * bch_alloc_stats: */ } mutex_unlock(&c->btree_interior_update_lock); } static void __btree_node_free(struct bch_fs *c, struct btree *b, struct btree_iter *iter) { trace_btree_node_free(c, b); BUG_ON(btree_node_dirty(b)); BUG_ON(btree_node_need_write(b)); BUG_ON(b == btree_node_root(c, b)); BUG_ON(b->ob); BUG_ON(!list_empty(&b->write_blocked)); BUG_ON(!list_empty(&b->reachable)); clear_btree_node_noevict(b); six_lock_write(&b->lock); bch2_btree_node_hash_remove(c, b); mutex_lock(&c->btree_cache_lock); list_move(&b->list, &c->btree_cache_freeable); mutex_unlock(&c->btree_cache_lock); /* * By using six_unlock_write() directly instead of * bch2_btree_node_unlock_write(), we don't update the iterator's * sequence numbers and cause future bch2_btree_node_relock() calls to * fail: */ six_unlock_write(&b->lock); } void bch2_btree_node_free_never_inserted(struct bch_fs *c, struct btree *b) { struct open_bucket *ob = b->ob; b->ob = NULL; clear_btree_node_dirty(b); __btree_node_free(c, b, NULL); bch2_open_bucket_put(c, ob); } void bch2_btree_node_free_inmem(struct btree_iter *iter, struct btree *b) { bch2_btree_iter_node_drop_linked(iter, b); __btree_node_free(iter->c, b, iter); bch2_btree_iter_node_drop(iter, b); } static void bch2_btree_node_free_ondisk(struct bch_fs *c, struct pending_btree_node_free *pending) { struct bch_fs_usage stats = { 0 }; BUG_ON(!pending->index_update_done); bch2_mark_key(c, bkey_i_to_s_c(&pending->key), -c->sb.btree_node_size, true, gc_phase(GC_PHASE_PENDING_DELETE), &stats, 0); /* * Don't apply stats - pending deletes aren't tracked in * bch_alloc_stats: */ } void bch2_btree_open_bucket_put(struct bch_fs *c, struct btree *b) { bch2_open_bucket_put(c, b->ob); b->ob = NULL; } static struct btree *__bch2_btree_node_alloc(struct bch_fs *c, bool use_reserve, struct disk_reservation *res, struct closure *cl) { BKEY_PADDED(k) tmp; struct open_bucket *ob; struct btree *b; unsigned reserve = use_reserve ? 0 : BTREE_NODE_RESERVE; mutex_lock(&c->btree_reserve_cache_lock); if (c->btree_reserve_cache_nr > reserve) { struct btree_alloc *a = &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; ob = a->ob; bkey_copy(&tmp.k, &a->k); mutex_unlock(&c->btree_reserve_cache_lock); goto mem_alloc; } mutex_unlock(&c->btree_reserve_cache_lock); retry: /* alloc_sectors is weird, I suppose */ bkey_extent_init(&tmp.k); tmp.k.k.size = c->sb.btree_node_size, ob = bch2_alloc_sectors(c, &c->btree_write_point, bkey_i_to_extent(&tmp.k), res->nr_replicas, c->opts.metadata_replicas_required, use_reserve ? RESERVE_BTREE : RESERVE_NONE, cl); if (IS_ERR(ob)) return ERR_CAST(ob); if (tmp.k.k.size < c->sb.btree_node_size) { bch2_open_bucket_put(c, ob); goto retry; } mem_alloc: b = bch2_btree_node_mem_alloc(c); /* we hold cannibalize_lock: */ BUG_ON(IS_ERR(b)); BUG_ON(b->ob); bkey_copy(&b->key, &tmp.k); b->key.k.size = 0; b->ob = ob; return b; } static struct btree *bch2_btree_node_alloc(struct bch_fs *c, unsigned level, enum btree_id id, struct btree_reserve *reserve) { struct btree *b; BUG_ON(!reserve->nr); b = reserve->b[--reserve->nr]; BUG_ON(bch2_btree_node_hash_insert(c, b, level, id)); set_btree_node_accessed(b); set_btree_node_dirty(b); bch2_bset_init_first(b, &b->data->keys); memset(&b->nr, 0, sizeof(b->nr)); b->data->magic = cpu_to_le64(bset_magic(c)); b->data->flags = 0; SET_BTREE_NODE_ID(b->data, id); SET_BTREE_NODE_LEVEL(b->data, level); b->data->ptr = bkey_i_to_extent(&b->key)->v.start->ptr; bch2_btree_build_aux_trees(b); bch2_check_mark_super(c, &b->key, true); trace_btree_node_alloc(c, b); return b; } struct btree *__bch2_btree_node_alloc_replacement(struct bch_fs *c, struct btree *b, struct bkey_format format, struct btree_reserve *reserve) { struct btree *n; n = bch2_btree_node_alloc(c, b->level, b->btree_id, reserve); n->data->min_key = b->data->min_key; n->data->max_key = b->data->max_key; n->data->format = format; btree_node_set_format(n, format); bch2_btree_sort_into(c, n, b); btree_node_reset_sib_u64s(n); n->key.k.p = b->key.k.p; return n; } static struct btree *bch2_btree_node_alloc_replacement(struct bch_fs *c, struct btree *b, struct btree_reserve *reserve) { struct bkey_format new_f = bch2_btree_calc_format(b); /* * The keys might expand with the new format - if they wouldn't fit in * the btree node anymore, use the old format for now: */ if (!bch2_btree_node_format_fits(c, b, &new_f)) new_f = b->format; return __bch2_btree_node_alloc_replacement(c, b, new_f, reserve); } static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b, struct btree_reserve *btree_reserve) { struct btree *old = btree_node_root(c, b); /* Root nodes cannot be reaped */ mutex_lock(&c->btree_cache_lock); list_del_init(&b->list); mutex_unlock(&c->btree_cache_lock); mutex_lock(&c->btree_root_lock); btree_node_root(c, b) = b; mutex_unlock(&c->btree_root_lock); if (btree_reserve) { /* * New allocation (we're not being called because we're in * bch2_btree_root_read()) - do marking while holding * btree_root_lock: */ struct bch_fs_usage stats = { 0 }; bch2_mark_key(c, bkey_i_to_s_c(&b->key), c->sb.btree_node_size, true, gc_pos_btree_root(b->btree_id), &stats, 0); if (old) bch2_btree_node_free_index(c, NULL, old->btree_id, bkey_i_to_s_c(&old->key), &stats); bch2_fs_usage_apply(c, &stats, &btree_reserve->disk_res, gc_pos_btree_root(b->btree_id)); } bch2_recalc_btree_reserve(c); } static void bch2_btree_set_root_ondisk(struct bch_fs *c, struct btree *b) { struct btree_root *r = &c->btree_roots[b->btree_id]; mutex_lock(&c->btree_root_lock); BUG_ON(b != r->b); bkey_copy(&r->key, &b->key); r->level = b->level; r->alive = true; mutex_unlock(&c->btree_root_lock); } /* * Only for filesystem bringup, when first reading the btree roots or allocating * btree roots when initializing a new filesystem: */ void bch2_btree_set_root_initial(struct bch_fs *c, struct btree *b, struct btree_reserve *btree_reserve) { BUG_ON(btree_node_root(c, b)); bch2_btree_set_root_inmem(c, b, btree_reserve); bch2_btree_set_root_ondisk(c, b); } /** * bch_btree_set_root - update the root in memory and on disk * * To ensure forward progress, the current task must not be holding any * btree node write locks. However, you must hold an intent lock on the * old root. * * Note: This allocates a journal entry but doesn't add any keys to * it. All the btree roots are part of every journal write, so there * is nothing new to be done. This just guarantees that there is a * journal write. */ static void bch2_btree_set_root(struct btree_iter *iter, struct btree *b, struct btree_interior_update *as, struct btree_reserve *btree_reserve) { struct bch_fs *c = iter->c; struct btree *old; trace_btree_set_root(c, b); BUG_ON(!b->written); old = btree_node_root(c, b); /* * Ensure no one is using the old root while we switch to the * new root: */ bch2_btree_node_lock_write(old, iter); bch2_btree_set_root_inmem(c, b, btree_reserve); btree_interior_update_updated_root(c, as, iter->btree_id); /* * Unlock old root after new root is visible: * * The new root isn't persistent, but that's ok: we still have * an intent lock on the new root, and any updates that would * depend on the new root would have to update the new root. */ bch2_btree_node_unlock_write(old, iter); } static struct btree *__btree_root_alloc(struct bch_fs *c, unsigned level, enum btree_id id, struct btree_reserve *reserve) { struct btree *b = bch2_btree_node_alloc(c, level, id, reserve); b->data->min_key = POS_MIN; b->data->max_key = POS_MAX; b->data->format = bch2_btree_calc_format(b); b->key.k.p = POS_MAX; btree_node_set_format(b, b->data->format); bch2_btree_build_aux_trees(b); six_unlock_write(&b->lock); return b; } void bch2_btree_reserve_put(struct bch_fs *c, struct btree_reserve *reserve) { bch2_disk_reservation_put(c, &reserve->disk_res); mutex_lock(&c->btree_reserve_cache_lock); while (reserve->nr) { struct btree *b = reserve->b[--reserve->nr]; six_unlock_write(&b->lock); if (c->btree_reserve_cache_nr < ARRAY_SIZE(c->btree_reserve_cache)) { struct btree_alloc *a = &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; a->ob = b->ob; b->ob = NULL; bkey_copy(&a->k, &b->key); } else { bch2_open_bucket_put(c, b->ob); b->ob = NULL; } __btree_node_free(c, b, NULL); six_unlock_intent(&b->lock); } mutex_unlock(&c->btree_reserve_cache_lock); mempool_free(reserve, &c->btree_reserve_pool); } static struct btree_reserve *__bch2_btree_reserve_get(struct bch_fs *c, unsigned nr_nodes, unsigned flags, struct closure *cl) { struct btree_reserve *reserve; struct btree *b; struct disk_reservation disk_res = { 0, 0 }; unsigned sectors = nr_nodes * c->sb.btree_node_size; int ret, disk_res_flags = BCH_DISK_RESERVATION_GC_LOCK_HELD| BCH_DISK_RESERVATION_METADATA; if (flags & BTREE_INSERT_NOFAIL) disk_res_flags |= BCH_DISK_RESERVATION_NOFAIL; /* * This check isn't necessary for correctness - it's just to potentially * prevent us from doing a lot of work that'll end up being wasted: */ ret = bch2_journal_error(&c->journal); if (ret) return ERR_PTR(ret); if (bch2_disk_reservation_get(c, &disk_res, sectors, disk_res_flags)) return ERR_PTR(-ENOSPC); BUG_ON(nr_nodes > BTREE_RESERVE_MAX); /* * Protects reaping from the btree node cache and using the btree node * open bucket reserve: */ ret = bch2_btree_node_cannibalize_lock(c, cl); if (ret) { bch2_disk_reservation_put(c, &disk_res); return ERR_PTR(ret); } reserve = mempool_alloc(&c->btree_reserve_pool, GFP_NOIO); reserve->disk_res = disk_res; reserve->nr = 0; while (reserve->nr < nr_nodes) { b = __bch2_btree_node_alloc(c, flags & BTREE_INSERT_USE_RESERVE, &disk_res, cl); if (IS_ERR(b)) { ret = PTR_ERR(b); goto err_free; } reserve->b[reserve->nr++] = b; } bch2_btree_node_cannibalize_unlock(c); return reserve; err_free: bch2_btree_reserve_put(c, reserve); bch2_btree_node_cannibalize_unlock(c); trace_btree_reserve_get_fail(c, nr_nodes, cl); return ERR_PTR(ret); } struct btree_reserve *bch2_btree_reserve_get(struct bch_fs *c, struct btree *b, unsigned extra_nodes, unsigned flags, struct closure *cl) { unsigned depth = btree_node_root(c, b)->level - b->level; unsigned nr_nodes = btree_reserve_required_nodes(depth) + extra_nodes; return __bch2_btree_reserve_get(c, nr_nodes, flags, cl); } int bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id, struct closure *writes) { struct closure cl; struct btree_reserve *reserve; struct btree *b; LIST_HEAD(reachable_list); closure_init_stack(&cl); while (1) { /* XXX haven't calculated capacity yet :/ */ reserve = __bch2_btree_reserve_get(c, 1, 0, &cl); if (!IS_ERR(reserve)) break; if (PTR_ERR(reserve) == -ENOSPC) return PTR_ERR(reserve); closure_sync(&cl); } b = __btree_root_alloc(c, 0, id, reserve); list_add(&b->reachable, &reachable_list); bch2_btree_node_write(c, b, writes, SIX_LOCK_intent); bch2_btree_set_root_initial(c, b, reserve); bch2_btree_open_bucket_put(c, b); list_del_init(&b->reachable); six_unlock_intent(&b->lock); bch2_btree_reserve_put(c, reserve); return 0; } static void bch2_insert_fixup_btree_ptr(struct btree_iter *iter, struct btree *b, struct bkey_i *insert, struct btree_node_iter *node_iter, struct disk_reservation *disk_res) { struct bch_fs *c = iter->c; struct bch_fs_usage stats = { 0 }; struct bkey_packed *k; struct bkey tmp; if (bkey_extent_is_data(&insert->k)) bch2_mark_key(c, bkey_i_to_s_c(insert), c->sb.btree_node_size, true, gc_pos_btree_node(b), &stats, 0); while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && !btree_iter_pos_cmp_packed(b, &insert->k.p, k, false)) bch2_btree_node_iter_advance(node_iter, b); /* * If we're overwriting, look up pending delete and mark so that gc * marks it on the pending delete list: */ if (k && !bkey_cmp_packed(b, k, &insert->k)) bch2_btree_node_free_index(c, b, iter->btree_id, bkey_disassemble(b, k, &tmp), &stats); bch2_fs_usage_apply(c, &stats, disk_res, gc_pos_btree_node(b)); bch2_btree_bset_insert_key(iter, b, node_iter, insert); set_btree_node_dirty(b); set_btree_node_need_write(b); } /* Inserting into a given leaf node (last stage of insert): */ /* Handle overwrites and do insert, for non extents: */ bool bch2_btree_bset_insert_key(struct btree_iter *iter, struct btree *b, struct btree_node_iter *node_iter, struct bkey_i *insert) { const struct bkey_format *f = &b->format; struct bkey_packed *k; struct bset_tree *t; unsigned clobber_u64s; EBUG_ON(btree_node_just_written(b)); EBUG_ON(bset_written(b, btree_bset_last(b))); EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k)); EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 || bkey_cmp(insert->k.p, b->data->max_key) > 0); BUG_ON(insert->k.u64s > bch_btree_keys_u64s_remaining(iter->c, b)); k = bch2_btree_node_iter_peek_all(node_iter, b); if (k && !bkey_cmp_packed(b, k, &insert->k)) { BUG_ON(bkey_whiteout(k)); t = bch2_bkey_to_bset(b, k); if (bset_unwritten(b, bset(b, t)) && bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k)) { BUG_ON(bkey_whiteout(k) != bkey_whiteout(&insert->k)); k->type = insert->k.type; memcpy_u64s(bkeyp_val(f, k), &insert->v, bkey_val_u64s(&insert->k)); return true; } insert->k.needs_whiteout = k->needs_whiteout; btree_keys_account_key_drop(&b->nr, t - b->set, k); if (t == bset_tree_last(b)) { clobber_u64s = k->u64s; /* * If we're deleting, and the key we're deleting doesn't * need a whiteout (it wasn't overwriting a key that had * been written to disk) - just delete it: */ if (bkey_whiteout(&insert->k) && !k->needs_whiteout) { bch2_bset_delete(b, k, clobber_u64s); bch2_btree_node_iter_fix(iter, b, node_iter, t, k, clobber_u64s, 0); return true; } goto overwrite; } k->type = KEY_TYPE_DELETED; bch2_btree_node_iter_fix(iter, b, node_iter, t, k, k->u64s, k->u64s); if (bkey_whiteout(&insert->k)) { reserve_whiteout(b, t, k); return true; } else { k->needs_whiteout = false; } } else { /* * Deleting, but the key to delete wasn't found - nothing to do: */ if (bkey_whiteout(&insert->k)) return false; insert->k.needs_whiteout = false; } t = bset_tree_last(b); k = bch2_btree_node_iter_bset_pos(node_iter, b, t); clobber_u64s = 0; overwrite: bch2_bset_insert(b, node_iter, k, insert, clobber_u64s); if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k)) bch2_btree_node_iter_fix(iter, b, node_iter, t, k, clobber_u64s, k->u64s); return true; } static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin, unsigned i, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct btree_write *w = container_of(pin, struct btree_write, journal); struct btree *b = container_of(w, struct btree, writes[i]); six_lock_read(&b->lock); bch2_btree_node_write_dirty(c, b, NULL, (btree_current_write(b) == w && w->journal.pin_list == journal_seq_pin(j, seq))); six_unlock_read(&b->lock); } static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq) { return __btree_node_flush(j, pin, 0, seq); } static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq) { return __btree_node_flush(j, pin, 1, seq); } void bch2_btree_journal_key(struct btree_insert *trans, struct btree_iter *iter, struct bkey_i *insert) { struct bch_fs *c = trans->c; struct journal *j = &c->journal; struct btree *b = iter->nodes[0]; struct btree_write *w = btree_current_write(b); EBUG_ON(iter->level || b->level); EBUG_ON(!trans->journal_res.ref && test_bit(JOURNAL_REPLAY_DONE, &j->flags)); if (!journal_pin_active(&w->journal)) bch2_journal_pin_add(j, &trans->journal_res, &w->journal, btree_node_write_idx(b) == 0 ? btree_node_flush0 : btree_node_flush1); if (trans->journal_res.ref) { u64 seq = trans->journal_res.seq; bool needs_whiteout = insert->k.needs_whiteout; /* ick */ insert->k.needs_whiteout = false; bch2_journal_add_keys(j, &trans->journal_res, b->btree_id, insert); insert->k.needs_whiteout = needs_whiteout; if (trans->journal_seq) *trans->journal_seq = seq; btree_bset_last(b)->journal_seq = cpu_to_le64(seq); } if (!btree_node_dirty(b)) set_btree_node_dirty(b); } static enum btree_insert_ret bch2_insert_fixup_key(struct btree_insert *trans, struct btree_insert_entry *insert) { struct btree_iter *iter = insert->iter; BUG_ON(iter->level); if (bch2_btree_bset_insert_key(iter, iter->nodes[0], &iter->node_iters[0], insert->k)) bch2_btree_journal_key(trans, iter, insert->k); trans->did_work = true; return BTREE_INSERT_OK; } static void verify_keys_sorted(struct keylist *l) { #ifdef CONFIG_BCACHEFS_DEBUG struct bkey_i *k; for_each_keylist_key(l, k) BUG_ON(bkey_next(k) != l->top && bkey_cmp(k->k.p, bkey_next(k)->k.p) >= 0); #endif } static void btree_node_lock_for_insert(struct btree *b, struct btree_iter *iter) { struct bch_fs *c = iter->c; bch2_btree_node_lock_write(b, iter); if (btree_node_just_written(b) && bch2_btree_post_write_cleanup(c, b)) bch2_btree_iter_reinit_node(iter, b); /* * If the last bset has been written, or if it's gotten too big - start * a new bset to insert into: */ if (want_new_bset(c, b)) bch2_btree_init_next(c, b, iter); } /* Asynchronous interior node update machinery */ struct btree_interior_update * bch2_btree_interior_update_alloc(struct bch_fs *c) { struct btree_interior_update *as; as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOIO); memset(as, 0, sizeof(*as)); closure_init(&as->cl, &c->cl); as->c = c; as->mode = BTREE_INTERIOR_NO_UPDATE; INIT_LIST_HEAD(&as->write_blocked_list); INIT_LIST_HEAD(&as->reachable_list); bch2_keylist_init(&as->parent_keys, as->inline_keys, ARRAY_SIZE(as->inline_keys)); mutex_lock(&c->btree_interior_update_lock); list_add(&as->list, &c->btree_interior_update_list); mutex_unlock(&c->btree_interior_update_lock); return as; } static void btree_interior_update_free(struct closure *cl) { struct btree_interior_update *as = container_of(cl, struct btree_interior_update, cl); mempool_free(as, &as->c->btree_interior_update_pool); } static void btree_interior_update_nodes_reachable(struct closure *cl) { struct btree_interior_update *as = container_of(cl, struct btree_interior_update, cl); struct bch_fs *c = as->c; unsigned i; bch2_journal_pin_drop(&c->journal, &as->journal); mutex_lock(&c->btree_interior_update_lock); while (!list_empty(&as->reachable_list)) { struct btree *b = list_first_entry(&as->reachable_list, struct btree, reachable); list_del_init(&b->reachable); mutex_unlock(&c->btree_interior_update_lock); six_lock_read(&b->lock); bch2_btree_node_write_dirty(c, b, NULL, btree_node_need_write(b)); six_unlock_read(&b->lock); mutex_lock(&c->btree_interior_update_lock); } for (i = 0; i < as->nr_pending; i++) bch2_btree_node_free_ondisk(c, &as->pending[i]); as->nr_pending = 0; list_del(&as->list); mutex_unlock(&c->btree_interior_update_lock); closure_wake_up(&as->wait); closure_return_with_destructor(cl, btree_interior_update_free); } static void btree_interior_update_nodes_written(struct closure *cl) { struct btree_interior_update *as = container_of(cl, struct btree_interior_update, cl); struct bch_fs *c = as->c; struct btree *b; if (bch2_journal_error(&c->journal)) { /* XXX what? */ /* we don't want to free the nodes on disk, that's what */ } /* XXX: missing error handling, damnit */ /* check for journal error, bail out if we flushed */ /* * We did an update to a parent node where the pointers we added pointed * to child nodes that weren't written yet: now, the child nodes have * been written so we can write out the update to the interior node. */ retry: mutex_lock(&c->btree_interior_update_lock); switch (as->mode) { case BTREE_INTERIOR_NO_UPDATE: BUG(); case BTREE_INTERIOR_UPDATING_NODE: /* The usual case: */ b = READ_ONCE(as->b); if (!six_trylock_read(&b->lock)) { mutex_unlock(&c->btree_interior_update_lock); six_lock_read(&b->lock); six_unlock_read(&b->lock); goto retry; } BUG_ON(!btree_node_dirty(b)); closure_wait(&btree_current_write(b)->wait, cl); list_del(&as->write_blocked_list); mutex_unlock(&c->btree_interior_update_lock); bch2_btree_node_write_dirty(c, b, NULL, btree_node_need_write(b)); six_unlock_read(&b->lock); break; case BTREE_INTERIOR_UPDATING_AS: /* * The btree node we originally updated has been freed and is * being rewritten - so we need to write anything here, we just * need to signal to that btree_interior_update that it's ok to make the * new replacement node visible: */ closure_put(&as->parent_as->cl); /* * and then we have to wait on that btree_interior_update to finish: */ closure_wait(&as->parent_as->wait, cl); mutex_unlock(&c->btree_interior_update_lock); break; case BTREE_INTERIOR_UPDATING_ROOT: /* b is the new btree root: */ b = READ_ONCE(as->b); if (!six_trylock_read(&b->lock)) { mutex_unlock(&c->btree_interior_update_lock); six_lock_read(&b->lock); six_unlock_read(&b->lock); goto retry; } BUG_ON(c->btree_roots[b->btree_id].as != as); c->btree_roots[b->btree_id].as = NULL; bch2_btree_set_root_ondisk(c, b); /* * We don't have to wait anything anything here (before * btree_interior_update_nodes_reachable frees the old nodes * ondisk) - we've ensured that the very next journal write will * have the pointer to the new root, and before the allocator * can reuse the old nodes it'll have to do a journal commit: */ six_unlock_read(&b->lock); mutex_unlock(&c->btree_interior_update_lock); break; } continue_at(cl, btree_interior_update_nodes_reachable, system_wq); } /* * We're updating @b with pointers to nodes that haven't finished writing yet: * block @b from being written until @as completes */ static void btree_interior_update_updated_btree(struct bch_fs *c, struct btree_interior_update *as, struct btree *b) { mutex_lock(&c->btree_interior_update_lock); BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); BUG_ON(!btree_node_dirty(b)); as->mode = BTREE_INTERIOR_UPDATING_NODE; as->b = b; list_add(&as->write_blocked_list, &b->write_blocked); mutex_unlock(&c->btree_interior_update_lock); bch2_journal_wait_on_seq(&c->journal, as->journal_seq, &as->cl); continue_at(&as->cl, btree_interior_update_nodes_written, system_freezable_wq); } static void btree_interior_update_reparent(struct btree_interior_update *as, struct btree_interior_update *child) { child->b = NULL; child->mode = BTREE_INTERIOR_UPDATING_AS; child->parent_as = as; closure_get(&as->cl); } static void btree_interior_update_updated_root(struct bch_fs *c, struct btree_interior_update *as, enum btree_id btree_id) { struct btree_root *r = &c->btree_roots[btree_id]; mutex_lock(&c->btree_interior_update_lock); BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); /* * Old root might not be persistent yet - if so, redirect its * btree_interior_update operation to point to us: */ if (r->as) btree_interior_update_reparent(as, r->as); as->mode = BTREE_INTERIOR_UPDATING_ROOT; as->b = r->b; r->as = as; mutex_unlock(&c->btree_interior_update_lock); continue_at(&as->cl, btree_interior_update_nodes_written, system_freezable_wq); } static void interior_update_flush(struct journal *j, struct journal_entry_pin *pin, u64 seq) { struct btree_interior_update *as = container_of(pin, struct btree_interior_update, journal); bch2_journal_flush_seq_async(j, as->journal_seq, NULL); } /* * @b is being split/rewritten: it may have pointers to not-yet-written btree * nodes and thus outstanding btree_interior_updates - redirect @b's * btree_interior_updates to point to this btree_interior_update: */ void bch2_btree_interior_update_will_free_node(struct bch_fs *c, struct btree_interior_update *as, struct btree *b) { struct closure *cl, *cl_n; struct btree_interior_update *p, *n; struct pending_btree_node_free *d; struct btree_write *w; struct bset_tree *t; /* * Does this node have data that hasn't been written in the journal? * * If so, we have to wait for the corresponding journal entry to be * written before making the new nodes reachable - we can't just carry * over the bset->journal_seq tracking, since we'll be mixing those keys * in with keys that aren't in the journal anymore: */ for_each_bset(b, t) as->journal_seq = max(as->journal_seq, bset(b, t)->journal_seq); mutex_lock(&c->btree_interior_update_lock); /* Add this node to the list of nodes being freed: */ BUG_ON(as->nr_pending >= ARRAY_SIZE(as->pending)); d = &as->pending[as->nr_pending++]; d->index_update_done = false; d->seq = b->data->keys.seq; d->btree_id = b->btree_id; d->level = b->level; bkey_copy(&d->key, &b->key); /* * Does this node have any btree_interior_update operations preventing * it from being written? * * If so, redirect them to point to this btree_interior_update: we can * write out our new nodes, but we won't make them visible until those * operations complete */ list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { list_del(&p->write_blocked_list); btree_interior_update_reparent(as, p); } clear_btree_node_dirty(b); clear_btree_node_need_write(b); w = btree_current_write(b); llist_for_each_entry_safe(cl, cl_n, llist_del_all(&w->wait.list), list) llist_add(&cl->list, &as->wait.list); /* * Does this node have unwritten data that has a pin on the journal? * * If so, transfer that pin to the btree_interior_update operation - * note that if we're freeing multiple nodes, we only need to keep the * oldest pin of any of the nodes we're freeing. We'll release the pin * when the new nodes are persistent and reachable on disk: */ bch2_journal_pin_add_if_older(&c->journal, &w->journal, &as->journal, interior_update_flush); bch2_journal_pin_drop(&c->journal, &w->journal); if (!list_empty(&b->reachable)) list_del_init(&b->reachable); mutex_unlock(&c->btree_interior_update_lock); } static void btree_node_interior_verify(struct btree *b) { struct btree_node_iter iter; struct bkey_packed *k; BUG_ON(!b->level); bch2_btree_node_iter_init(&iter, b, b->key.k.p, false, false); #if 1 BUG_ON(!(k = bch2_btree_node_iter_peek(&iter, b)) || bkey_cmp_left_packed(b, k, &b->key.k.p)); BUG_ON((bch2_btree_node_iter_advance(&iter, b), !bch2_btree_node_iter_end(&iter))); #else const char *msg; msg = "not found"; k = bch2_btree_node_iter_peek(&iter, b); if (!k) goto err; msg = "isn't what it should be"; if (bkey_cmp_left_packed(b, k, &b->key.k.p)) goto err; bch2_btree_node_iter_advance(&iter, b); msg = "isn't last key"; if (!bch2_btree_node_iter_end(&iter)) goto err; return; err: bch2_dump_btree_node(b); printk(KERN_ERR "last key %llu:%llu %s\n", b->key.k.p.inode, b->key.k.p.offset, msg); BUG(); #endif } static enum btree_insert_ret bch2_btree_insert_keys_interior(struct btree *b, struct btree_iter *iter, struct keylist *insert_keys, struct btree_interior_update *as, struct btree_reserve *res) { struct bch_fs *c = iter->c; struct btree_iter *linked; struct btree_node_iter node_iter; struct bkey_i *insert = bch2_keylist_front(insert_keys); struct bkey_packed *k; BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level)); BUG_ON(!b->level); BUG_ON(!as || as->b); verify_keys_sorted(insert_keys); btree_node_lock_for_insert(b, iter); if (bch_keylist_u64s(insert_keys) > bch_btree_keys_u64s_remaining(c, b)) { bch2_btree_node_unlock_write(b, iter); return BTREE_INSERT_BTREE_NODE_FULL; } /* Don't screw up @iter's position: */ node_iter = iter->node_iters[b->level]; /* * btree_split(), btree_gc_coalesce() will insert keys before * the iterator's current position - they know the keys go in * the node the iterator points to: */ while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && (bkey_cmp_packed(b, k, &insert->k) >= 0)) ; while (!bch2_keylist_empty(insert_keys)) { insert = bch2_keylist_front(insert_keys); bch2_insert_fixup_btree_ptr(iter, b, insert, &node_iter, &res->disk_res); bch2_keylist_pop_front(insert_keys); } btree_interior_update_updated_btree(c, as, b); for_each_linked_btree_node(iter, b, linked) bch2_btree_node_iter_peek(&linked->node_iters[b->level], b); bch2_btree_node_iter_peek(&iter->node_iters[b->level], b); bch2_btree_iter_verify(iter, b); if (bch2_maybe_compact_whiteouts(c, b)) bch2_btree_iter_reinit_node(iter, b); bch2_btree_node_unlock_write(b, iter); btree_node_interior_verify(b); return BTREE_INSERT_OK; } /* * Move keys from n1 (original replacement node, now lower node) to n2 (higher * node) */ static struct btree *__btree_split_node(struct btree_iter *iter, struct btree *n1, struct btree_reserve *reserve, struct btree_interior_update *as) { size_t nr_packed = 0, nr_unpacked = 0; struct btree *n2; struct bset *set1, *set2; struct bkey_packed *k, *prev = NULL; n2 = bch2_btree_node_alloc(iter->c, n1->level, iter->btree_id, reserve); list_add(&n2->reachable, &as->reachable_list); n2->data->max_key = n1->data->max_key; n2->data->format = n1->format; n2->key.k.p = n1->key.k.p; btree_node_set_format(n2, n2->data->format); set1 = btree_bset_first(n1); set2 = btree_bset_first(n2); /* * Has to be a linear search because we don't have an auxiliary * search tree yet */ k = set1->start; while (1) { if (bkey_next(k) == vstruct_last(set1)) break; if (k->_data - set1->_data >= (le16_to_cpu(set1->u64s) * 3) / 5) break; if (bkey_packed(k)) nr_packed++; else nr_unpacked++; prev = k; k = bkey_next(k); } BUG_ON(!prev); n1->key.k.p = bkey_unpack_pos(n1, prev); n1->data->max_key = n1->key.k.p; n2->data->min_key = btree_type_successor(n1->btree_id, n1->key.k.p); set2->u64s = cpu_to_le16((u64 *) vstruct_end(set1) - (u64 *) k); set1->u64s = cpu_to_le16(le16_to_cpu(set1->u64s) - le16_to_cpu(set2->u64s)); set_btree_bset_end(n1, n1->set); set_btree_bset_end(n2, n2->set); n2->nr.live_u64s = le16_to_cpu(set2->u64s); n2->nr.bset_u64s[0] = le16_to_cpu(set2->u64s); n2->nr.packed_keys = n1->nr.packed_keys - nr_packed; n2->nr.unpacked_keys = n1->nr.unpacked_keys - nr_unpacked; n1->nr.live_u64s = le16_to_cpu(set1->u64s); n1->nr.bset_u64s[0] = le16_to_cpu(set1->u64s); n1->nr.packed_keys = nr_packed; n1->nr.unpacked_keys = nr_unpacked; BUG_ON(!set1->u64s); BUG_ON(!set2->u64s); memcpy_u64s(set2->start, vstruct_end(set1), le16_to_cpu(set2->u64s)); btree_node_reset_sib_u64s(n1); btree_node_reset_sib_u64s(n2); bch2_verify_btree_nr_keys(n1); bch2_verify_btree_nr_keys(n2); if (n1->level) { btree_node_interior_verify(n1); btree_node_interior_verify(n2); } return n2; } /* * For updates to interior nodes, we've got to do the insert before we split * because the stuff we're inserting has to be inserted atomically. Post split, * the keys might have to go in different nodes and the split would no longer be * atomic. * * Worse, if the insert is from btree node coalescing, if we do the insert after * we do the split (and pick the pivot) - the pivot we pick might be between * nodes that were coalesced, and thus in the middle of a child node post * coalescing: */ static void btree_split_insert_keys(struct btree_iter *iter, struct btree *b, struct keylist *keys, struct btree_reserve *res) { struct btree_node_iter node_iter; struct bkey_i *k = bch2_keylist_front(keys); struct bkey_packed *p; struct bset *i; BUG_ON(btree_node_type(b) != BKEY_TYPE_BTREE); bch2_btree_node_iter_init(&node_iter, b, k->k.p, false, false); while (!bch2_keylist_empty(keys)) { k = bch2_keylist_front(keys); BUG_ON(bch_keylist_u64s(keys) > bch_btree_keys_u64s_remaining(iter->c, b)); BUG_ON(bkey_cmp(k->k.p, b->data->min_key) < 0); BUG_ON(bkey_cmp(k->k.p, b->data->max_key) > 0); bch2_insert_fixup_btree_ptr(iter, b, k, &node_iter, &res->disk_res); bch2_keylist_pop_front(keys); } /* * We can't tolerate whiteouts here - with whiteouts there can be * duplicate keys, and it would be rather bad if we picked a duplicate * for the pivot: */ i = btree_bset_first(b); p = i->start; while (p != vstruct_last(i)) if (bkey_deleted(p)) { le16_add_cpu(&i->u64s, -p->u64s); set_btree_bset_end(b, b->set); memmove_u64s_down(p, bkey_next(p), (u64 *) vstruct_last(i) - (u64 *) p); } else p = bkey_next(p); BUG_ON(b->nsets != 1 || b->nr.live_u64s != le16_to_cpu(btree_bset_first(b)->u64s)); btree_node_interior_verify(b); } static void btree_split(struct btree *b, struct btree_iter *iter, struct keylist *insert_keys, struct btree_reserve *reserve, struct btree_interior_update *as) { struct bch_fs *c = iter->c; struct btree *parent = iter->nodes[b->level + 1]; struct btree *n1, *n2 = NULL, *n3 = NULL; u64 start_time = local_clock(); BUG_ON(!parent && (b != btree_node_root(c, b))); BUG_ON(!btree_node_intent_locked(iter, btree_node_root(c, b)->level)); bch2_btree_interior_update_will_free_node(c, as, b); n1 = bch2_btree_node_alloc_replacement(c, b, reserve); list_add(&n1->reachable, &as->reachable_list); if (b->level) btree_split_insert_keys(iter, n1, insert_keys, reserve); if (vstruct_blocks(n1->data, c->block_bits) > BTREE_SPLIT_THRESHOLD(c)) { trace_btree_node_split(c, b, b->nr.live_u64s); n2 = __btree_split_node(iter, n1, reserve, as); bch2_btree_build_aux_trees(n2); bch2_btree_build_aux_trees(n1); six_unlock_write(&n2->lock); six_unlock_write(&n1->lock); bch2_btree_node_write(c, n2, &as->cl, SIX_LOCK_intent); /* * Note that on recursive parent_keys == insert_keys, so we * can't start adding new keys to parent_keys before emptying it * out (which we did with btree_split_insert_keys() above) */ bch2_keylist_add(&as->parent_keys, &n1->key); bch2_keylist_add(&as->parent_keys, &n2->key); if (!parent) { /* Depth increases, make a new root */ n3 = __btree_root_alloc(c, b->level + 1, iter->btree_id, reserve); list_add(&n3->reachable, &as->reachable_list); n3->sib_u64s[0] = U16_MAX; n3->sib_u64s[1] = U16_MAX; btree_split_insert_keys(iter, n3, &as->parent_keys, reserve); bch2_btree_node_write(c, n3, &as->cl, SIX_LOCK_intent); } } else { trace_btree_node_compact(c, b, b->nr.live_u64s); bch2_btree_build_aux_trees(n1); six_unlock_write(&n1->lock); bch2_keylist_add(&as->parent_keys, &n1->key); } bch2_btree_node_write(c, n1, &as->cl, SIX_LOCK_intent); /* New nodes all written, now make them visible: */ if (parent) { /* Split a non root node */ bch2_btree_insert_node(parent, iter, &as->parent_keys, reserve, as); } else if (n3) { bch2_btree_set_root(iter, n3, as, reserve); } else { /* Root filled up but didn't need to be split */ bch2_btree_set_root(iter, n1, as, reserve); } bch2_btree_open_bucket_put(c, n1); if (n2) bch2_btree_open_bucket_put(c, n2); if (n3) bch2_btree_open_bucket_put(c, n3); /* * Note - at this point other linked iterators could still have @b read * locked; we're depending on the bch2_btree_iter_node_replace() calls * below removing all references to @b so we don't return with other * iterators pointing to a node they have locked that's been freed. * * We have to free the node first because the bch2_iter_node_replace() * calls will drop _our_ iterator's reference - and intent lock - to @b. */ bch2_btree_node_free_inmem(iter, b); /* Successful split, update the iterator to point to the new nodes: */ if (n3) bch2_btree_iter_node_replace(iter, n3); if (n2) bch2_btree_iter_node_replace(iter, n2); bch2_btree_iter_node_replace(iter, n1); bch2_time_stats_update(&c->btree_split_time, start_time); } /** * bch_btree_insert_node - insert bkeys into a given btree node * * @iter: btree iterator * @insert_keys: list of keys to insert * @hook: insert callback * @persistent: if not null, @persistent will wait on journal write * * Inserts as many keys as it can into a given btree node, splitting it if full. * If a split occurred, this function will return early. This can only happen * for leaf nodes -- inserts into interior nodes have to be atomic. */ void bch2_btree_insert_node(struct btree *b, struct btree_iter *iter, struct keylist *insert_keys, struct btree_reserve *reserve, struct btree_interior_update *as) { BUG_ON(!b->level); BUG_ON(!reserve || !as); switch (bch2_btree_insert_keys_interior(b, iter, insert_keys, as, reserve)) { case BTREE_INSERT_OK: break; case BTREE_INSERT_BTREE_NODE_FULL: btree_split(b, iter, insert_keys, reserve, as); break; default: BUG(); } } static int bch2_btree_split_leaf(struct btree_iter *iter, unsigned flags) { struct bch_fs *c = iter->c; struct btree *b = iter->nodes[0]; struct btree_reserve *reserve; struct btree_interior_update *as; struct closure cl; int ret = 0; closure_init_stack(&cl); /* Hack, because gc and splitting nodes doesn't mix yet: */ if (!down_read_trylock(&c->gc_lock)) { bch2_btree_iter_unlock(iter); down_read(&c->gc_lock); } /* * XXX: figure out how far we might need to split, * instead of locking/reserving all the way to the root: */ if (!bch2_btree_iter_set_locks_want(iter, U8_MAX)) { ret = -EINTR; goto out; } reserve = bch2_btree_reserve_get(c, b, 0, flags, &cl); if (IS_ERR(reserve)) { ret = PTR_ERR(reserve); if (ret == -EAGAIN) { bch2_btree_iter_unlock(iter); up_read(&c->gc_lock); closure_sync(&cl); return -EINTR; } goto out; } as = bch2_btree_interior_update_alloc(c); btree_split(b, iter, NULL, reserve, as); bch2_btree_reserve_put(c, reserve); bch2_btree_iter_set_locks_want(iter, 1); out: up_read(&c->gc_lock); return ret; } enum btree_node_sibling { btree_prev_sib, btree_next_sib, }; static struct btree *btree_node_get_sibling(struct btree_iter *iter, struct btree *b, enum btree_node_sibling sib) { struct btree *parent; struct btree_node_iter node_iter; struct bkey_packed *k; BKEY_PADDED(k) tmp; struct btree *ret; unsigned level = b->level; parent = iter->nodes[level + 1]; if (!parent) return NULL; if (!bch2_btree_node_relock(iter, level + 1)) { bch2_btree_iter_set_locks_want(iter, level + 2); return ERR_PTR(-EINTR); } node_iter = iter->node_iters[parent->level]; k = bch2_btree_node_iter_peek_all(&node_iter, parent); BUG_ON(bkey_cmp_left_packed(parent, k, &b->key.k.p)); do { k = sib == btree_prev_sib ? bch2_btree_node_iter_prev_all(&node_iter, parent) : (bch2_btree_node_iter_advance(&node_iter, parent), bch2_btree_node_iter_peek_all(&node_iter, parent)); if (!k) return NULL; } while (bkey_deleted(k)); bch2_bkey_unpack(parent, &tmp.k, k); ret = bch2_btree_node_get(iter, &tmp.k, level, SIX_LOCK_intent); if (IS_ERR(ret) && PTR_ERR(ret) == -EINTR) { btree_node_unlock(iter, level); ret = bch2_btree_node_get(iter, &tmp.k, level, SIX_LOCK_intent); } if (!IS_ERR(ret) && !bch2_btree_node_relock(iter, level)) { six_unlock_intent(&ret->lock); ret = ERR_PTR(-EINTR); } return ret; } static int __foreground_maybe_merge(struct btree_iter *iter, enum btree_node_sibling sib) { struct bch_fs *c = iter->c; struct btree_reserve *reserve; struct btree_interior_update *as; struct bkey_format_state new_s; struct bkey_format new_f; struct bkey_i delete; struct btree *b, *m, *n, *prev, *next, *parent; struct closure cl; size_t sib_u64s; int ret = 0; closure_init_stack(&cl); retry: if (!bch2_btree_node_relock(iter, iter->level)) return 0; b = iter->nodes[iter->level]; parent = iter->nodes[b->level + 1]; if (!parent) return 0; if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) return 0; /* XXX: can't be holding read locks */ m = btree_node_get_sibling(iter, b, sib); if (IS_ERR(m)) { ret = PTR_ERR(m); goto out; } /* NULL means no sibling: */ if (!m) { b->sib_u64s[sib] = U16_MAX; return 0; } if (sib == btree_prev_sib) { prev = m; next = b; } else { prev = b; next = m; } bch2_bkey_format_init(&new_s); __bch2_btree_calc_format(&new_s, b); __bch2_btree_calc_format(&new_s, m); new_f = bch2_bkey_format_done(&new_s); sib_u64s = btree_node_u64s_with_format(b, &new_f) + btree_node_u64s_with_format(m, &new_f); if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); sib_u64s /= 2; sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); } sib_u64s = min(sib_u64s, btree_max_u64s(c)); b->sib_u64s[sib] = sib_u64s; if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) { six_unlock_intent(&m->lock); return 0; } /* We're changing btree topology, doesn't mix with gc: */ if (!down_read_trylock(&c->gc_lock)) { six_unlock_intent(&m->lock); bch2_btree_iter_unlock(iter); down_read(&c->gc_lock); up_read(&c->gc_lock); ret = -EINTR; goto out; } if (!bch2_btree_iter_set_locks_want(iter, U8_MAX)) { ret = -EINTR; goto out_unlock; } reserve = bch2_btree_reserve_get(c, b, 0, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE, &cl); if (IS_ERR(reserve)) { ret = PTR_ERR(reserve); goto out_unlock; } as = bch2_btree_interior_update_alloc(c); bch2_btree_interior_update_will_free_node(c, as, b); bch2_btree_interior_update_will_free_node(c, as, m); n = bch2_btree_node_alloc(c, b->level, b->btree_id, reserve); list_add(&n->reachable, &as->reachable_list); n->data->min_key = prev->data->min_key; n->data->max_key = next->data->max_key; n->data->format = new_f; n->key.k.p = next->key.k.p; btree_node_set_format(n, new_f); bch2_btree_sort_into(c, n, prev); bch2_btree_sort_into(c, n, next); bch2_btree_build_aux_trees(n); six_unlock_write(&n->lock); bkey_init(&delete.k); delete.k.p = prev->key.k.p; bch2_keylist_add(&as->parent_keys, &delete); bch2_keylist_add(&as->parent_keys, &n->key); bch2_btree_node_write(c, n, &as->cl, SIX_LOCK_intent); bch2_btree_insert_node(parent, iter, &as->parent_keys, reserve, as); bch2_btree_open_bucket_put(c, n); bch2_btree_node_free_inmem(iter, b); bch2_btree_node_free_inmem(iter, m); bch2_btree_iter_node_replace(iter, n); bch2_btree_iter_verify(iter, n); bch2_btree_reserve_put(c, reserve); out_unlock: if (ret != -EINTR && ret != -EAGAIN) bch2_btree_iter_set_locks_want(iter, 1); six_unlock_intent(&m->lock); up_read(&c->gc_lock); out: if (ret == -EAGAIN || ret == -EINTR) { bch2_btree_iter_unlock(iter); ret = -EINTR; } closure_sync(&cl); if (ret == -EINTR) { ret = bch2_btree_iter_traverse(iter); if (!ret) goto retry; } return ret; } static int inline foreground_maybe_merge(struct btree_iter *iter, enum btree_node_sibling sib) { struct bch_fs *c = iter->c; struct btree *b; if (!btree_node_locked(iter, iter->level)) return 0; b = iter->nodes[iter->level]; if (b->sib_u64s[sib] > BTREE_FOREGROUND_MERGE_THRESHOLD(c)) return 0; return __foreground_maybe_merge(iter, sib); } /** * btree_insert_key - insert a key one key into a leaf node */ static enum btree_insert_ret btree_insert_key(struct btree_insert *trans, struct btree_insert_entry *insert) { struct bch_fs *c = trans->c; struct btree_iter *iter = insert->iter; struct btree *b = iter->nodes[0]; enum btree_insert_ret ret; int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); int old_live_u64s = b->nr.live_u64s; int live_u64s_added, u64s_added; ret = !btree_node_is_extents(b) ? bch2_insert_fixup_key(trans, insert) : bch2_insert_fixup_extent(trans, insert); live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); if (u64s_added > live_u64s_added && bch2_maybe_compact_whiteouts(iter->c, b)) bch2_btree_iter_reinit_node(iter, b); trace_btree_insert_key(c, b, insert->k); return ret; } static bool same_leaf_as_prev(struct btree_insert *trans, struct btree_insert_entry *i) { /* * Because we sorted the transaction entries, if multiple iterators * point to the same leaf node they'll always be adjacent now: */ return i != trans->entries && i[0].iter->nodes[0] == i[-1].iter->nodes[0]; } #define trans_for_each_entry(trans, i) \ for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++) static void multi_lock_write(struct btree_insert *trans) { struct btree_insert_entry *i; trans_for_each_entry(trans, i) if (!same_leaf_as_prev(trans, i)) btree_node_lock_for_insert(i->iter->nodes[0], i->iter); } static void multi_unlock_write(struct btree_insert *trans) { struct btree_insert_entry *i; trans_for_each_entry(trans, i) if (!same_leaf_as_prev(trans, i)) bch2_btree_node_unlock_write(i->iter->nodes[0], i->iter); } static int btree_trans_entry_cmp(const void *_l, const void *_r) { const struct btree_insert_entry *l = _l; const struct btree_insert_entry *r = _r; return btree_iter_cmp(l->iter, r->iter); } /* Normal update interface: */ /** * __bch_btree_insert_at - insert keys at given iterator positions * * This is main entry point for btree updates. * * Return values: * -EINTR: locking changed, this function should be called again. Only returned * if passed BTREE_INSERT_ATOMIC. * -EROFS: filesystem read only * -EIO: journal or btree node IO error */ int __bch2_btree_insert_at(struct btree_insert *trans) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; struct btree_iter *split = NULL; bool cycle_gc_lock = false; unsigned u64s; int ret; trans_for_each_entry(trans, i) { BUG_ON(i->iter->level); BUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos)); } sort(trans->entries, trans->nr, sizeof(trans->entries[0]), btree_trans_entry_cmp, NULL); if (unlikely(!percpu_ref_tryget(&c->writes))) return -EROFS; retry_locks: ret = -EINTR; trans_for_each_entry(trans, i) if (!bch2_btree_iter_set_locks_want(i->iter, 1)) goto err; retry: trans->did_work = false; u64s = 0; trans_for_each_entry(trans, i) if (!i->done) u64s += jset_u64s(i->k->k.u64s + i->extra_res); memset(&trans->journal_res, 0, sizeof(trans->journal_res)); ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY) ? bch2_journal_res_get(&c->journal, &trans->journal_res, u64s, u64s) : 0; if (ret) goto err; multi_lock_write(trans); u64s = 0; trans_for_each_entry(trans, i) { /* Multiple inserts might go to same leaf: */ if (!same_leaf_as_prev(trans, i)) u64s = 0; /* * bch2_btree_node_insert_fits() must be called under write lock: * with only an intent lock, another thread can still call * bch2_btree_node_write(), converting an unwritten bset to a * written one */ if (!i->done) { u64s += i->k->k.u64s + i->extra_res; if (!bch2_btree_node_insert_fits(c, i->iter->nodes[0], u64s)) { split = i->iter; goto unlock; } } } ret = 0; split = NULL; cycle_gc_lock = false; trans_for_each_entry(trans, i) { if (i->done) continue; switch (btree_insert_key(trans, i)) { case BTREE_INSERT_OK: i->done = true; break; case BTREE_INSERT_JOURNAL_RES_FULL: case BTREE_INSERT_NEED_TRAVERSE: ret = -EINTR; break; case BTREE_INSERT_NEED_RESCHED: ret = -EAGAIN; break; case BTREE_INSERT_BTREE_NODE_FULL: split = i->iter; break; case BTREE_INSERT_ENOSPC: ret = -ENOSPC; break; case BTREE_INSERT_NEED_GC_LOCK: cycle_gc_lock = true; ret = -EINTR; break; default: BUG(); } if (!trans->did_work && (ret || split)) break; } unlock: multi_unlock_write(trans); bch2_journal_res_put(&c->journal, &trans->journal_res); if (split) goto split; if (ret) goto err; /* * hack: iterators are inconsistent when they hit end of leaf, until * traversed again */ trans_for_each_entry(trans, i) if (i->iter->at_end_of_leaf) goto out; trans_for_each_entry(trans, i) if (!same_leaf_as_prev(trans, i)) { foreground_maybe_merge(i->iter, btree_prev_sib); foreground_maybe_merge(i->iter, btree_next_sib); } out: /* make sure we didn't lose an error: */ if (!ret && IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) trans_for_each_entry(trans, i) BUG_ON(!i->done); percpu_ref_put(&c->writes); return ret; split: /* * have to drop journal res before splitting, because splitting means * allocating new btree nodes, and holding a journal reservation * potentially blocks the allocator: */ ret = bch2_btree_split_leaf(split, trans->flags); if (ret) goto err; /* * if the split didn't have to drop locks the insert will still be * atomic (in the BTREE_INSERT_ATOMIC sense, what the caller peeked() * and is overwriting won't have changed) */ goto retry_locks; err: if (cycle_gc_lock) { down_read(&c->gc_lock); up_read(&c->gc_lock); } if (ret == -EINTR) { trans_for_each_entry(trans, i) { int ret2 = bch2_btree_iter_traverse(i->iter); if (ret2) { ret = ret2; goto out; } } /* * BTREE_ITER_ATOMIC means we have to return -EINTR if we * dropped locks: */ if (!(trans->flags & BTREE_INSERT_ATOMIC)) goto retry; } goto out; } int bch2_btree_delete_at(struct btree_iter *iter, unsigned flags) { struct bkey_i k; bkey_init(&k.k); k.k.p = iter->pos; return bch2_btree_insert_at(iter->c, NULL, NULL, NULL, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE|flags, BTREE_INSERT_ENTRY(iter, &k)); } int bch2_btree_insert_list_at(struct btree_iter *iter, struct keylist *keys, struct disk_reservation *disk_res, struct extent_insert_hook *hook, u64 *journal_seq, unsigned flags) { BUG_ON(flags & BTREE_INSERT_ATOMIC); BUG_ON(bch2_keylist_empty(keys)); verify_keys_sorted(keys); while (!bch2_keylist_empty(keys)) { /* need to traverse between each insert */ int ret = bch2_btree_iter_traverse(iter); if (ret) return ret; ret = bch2_btree_insert_at(iter->c, disk_res, hook, journal_seq, flags, BTREE_INSERT_ENTRY(iter, bch2_keylist_front(keys))); if (ret) return ret; bch2_keylist_pop_front(keys); } return 0; } /** * bch_btree_insert - insert keys into the extent btree * @c: pointer to struct bch_fs * @id: btree to insert into * @insert_keys: list of keys to insert * @hook: insert callback */ int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k, struct disk_reservation *disk_res, struct extent_insert_hook *hook, u64 *journal_seq, int flags) { struct btree_iter iter; int ret, ret2; bch2_btree_iter_init_intent(&iter, c, id, bkey_start_pos(&k->k)); ret = bch2_btree_iter_traverse(&iter); if (unlikely(ret)) goto out; ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq, flags, BTREE_INSERT_ENTRY(&iter, k)); out: ret2 = bch2_btree_iter_unlock(&iter); return ret ?: ret2; } /** * bch_btree_update - like bch2_btree_insert(), but asserts that we're * overwriting an existing key */ int bch2_btree_update(struct bch_fs *c, enum btree_id id, struct bkey_i *k, u64 *journal_seq) { struct btree_iter iter; struct bkey_s_c u; int ret; EBUG_ON(id == BTREE_ID_EXTENTS); bch2_btree_iter_init_intent(&iter, c, id, k->k.p); u = bch2_btree_iter_peek_with_holes(&iter); ret = btree_iter_err(u); if (ret) return ret; if (bkey_deleted(u.k)) { bch2_btree_iter_unlock(&iter); return -ENOENT; } ret = bch2_btree_insert_at(c, NULL, NULL, journal_seq, 0, BTREE_INSERT_ENTRY(&iter, k)); bch2_btree_iter_unlock(&iter); return ret; } /* * bch_btree_delete_range - delete everything within a given range * * Range is a half open interval - [start, end) */ int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id, struct bpos start, struct bpos end, struct bversion version, struct disk_reservation *disk_res, struct extent_insert_hook *hook, u64 *journal_seq) { struct btree_iter iter; struct bkey_s_c k; int ret = 0; bch2_btree_iter_init_intent(&iter, c, id, start); while ((k = bch2_btree_iter_peek(&iter)).k && !(ret = btree_iter_err(k))) { unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits); /* really shouldn't be using a bare, unpadded bkey_i */ struct bkey_i delete; if (bkey_cmp(iter.pos, end) >= 0) break; bkey_init(&delete.k); /* * For extents, iter.pos won't necessarily be the same as * bkey_start_pos(k.k) (for non extents they always will be the * same). It's important that we delete starting from iter.pos * because the range we want to delete could start in the middle * of k. * * (bch2_btree_iter_peek() does guarantee that iter.pos >= * bkey_start_pos(k.k)). */ delete.k.p = iter.pos; delete.k.version = version; if (iter.is_extents) { /* * The extents btree is special - KEY_TYPE_DISCARD is * used for deletions, not KEY_TYPE_DELETED. This is an * internal implementation detail that probably * shouldn't be exposed (internally, KEY_TYPE_DELETED is * used as a proxy for k->size == 0): */ delete.k.type = KEY_TYPE_DISCARD; /* create the biggest key we can */ bch2_key_resize(&delete.k, max_sectors); bch2_cut_back(end, &delete.k); } ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq, BTREE_INSERT_NOFAIL, BTREE_INSERT_ENTRY(&iter, &delete)); if (ret) break; bch2_btree_iter_cond_resched(&iter); } bch2_btree_iter_unlock(&iter); return ret; } /** * bch_btree_node_rewrite - Rewrite/move a btree node * * Returns 0 on success, -EINTR or -EAGAIN on failure (i.e. * btree_check_reserve() has to wait) */ int bch2_btree_node_rewrite(struct btree_iter *iter, struct btree *b, struct closure *cl) { struct bch_fs *c = iter->c; struct btree *n, *parent = iter->nodes[b->level + 1]; struct btree_reserve *reserve; struct btree_interior_update *as; unsigned flags = BTREE_INSERT_NOFAIL; /* * if caller is going to wait if allocating reserve fails, then this is * a rewrite that must succeed: */ if (cl) flags |= BTREE_INSERT_USE_RESERVE; if (!bch2_btree_iter_set_locks_want(iter, U8_MAX)) return -EINTR; reserve = bch2_btree_reserve_get(c, b, 0, flags, cl); if (IS_ERR(reserve)) { trace_btree_gc_rewrite_node_fail(c, b); return PTR_ERR(reserve); } as = bch2_btree_interior_update_alloc(c); bch2_btree_interior_update_will_free_node(c, as, b); n = bch2_btree_node_alloc_replacement(c, b, reserve); list_add(&n->reachable, &as->reachable_list); bch2_btree_build_aux_trees(n); six_unlock_write(&n->lock); trace_btree_gc_rewrite_node(c, b); bch2_btree_node_write(c, n, &as->cl, SIX_LOCK_intent); if (parent) { bch2_btree_insert_node(parent, iter, &keylist_single(&n->key), reserve, as); } else { bch2_btree_set_root(iter, n, as, reserve); } bch2_btree_open_bucket_put(c, n); bch2_btree_node_free_inmem(iter, b); BUG_ON(!bch2_btree_iter_node_replace(iter, n)); bch2_btree_reserve_put(c, reserve); return 0; }