/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H #include "btree_cache.h" #include "btree_locking.h" #include "btree_update.h" struct btree_reserve { struct disk_reservation disk_res; unsigned nr; struct btree *b[BTREE_RESERVE_MAX]; }; void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *); bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *, struct bkey_format *); /* Btree node freeing/allocation: */ /* * Tracks a btree node that has been (or is about to be) freed in memory, but * has _not_ yet been freed on disk (because the write that makes the new * node(s) visible and frees the old hasn't completed yet) */ struct pending_btree_node_free { bool index_update_done; __le64 seq; enum btree_id btree_id; unsigned level; __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); }; /* * Tracks an in progress split/rewrite of a btree node and the update to the * parent node: * * When we split/rewrite a node, we do all the updates in memory without * waiting for any writes to complete - we allocate the new node(s) and update * the parent node, possibly recursively up to the root. * * The end result is that we have one or more new nodes being written - * possibly several, if there were multiple splits - and then a write (updating * an interior node) which will make all these new nodes visible. * * Additionally, as we split/rewrite nodes we free the old nodes - but the old * nodes can't be freed (their space on disk can't be reclaimed) until the * update to the interior node that makes the new node visible completes - * until then, the old nodes are still reachable on disk. * */ struct btree_update { struct closure cl; struct bch_fs *c; struct list_head list; /* What kind of update are we doing? */ enum { BTREE_INTERIOR_NO_UPDATE, BTREE_INTERIOR_UPDATING_NODE, BTREE_INTERIOR_UPDATING_ROOT, BTREE_INTERIOR_UPDATING_AS, } mode; unsigned must_rewrite:1; unsigned nodes_written:1; enum btree_id btree_id; struct btree_reserve *reserve; /* * BTREE_INTERIOR_UPDATING_NODE: * The update that made the new nodes visible was a regular update to an * existing interior node - @b. We can't write out the update to @b * until the new nodes we created are finished writing, so we block @b * from writing by putting this btree_interior update on the * @b->write_blocked list with @write_blocked_list: */ struct btree *b; struct list_head write_blocked_list; /* * BTREE_INTERIOR_UPDATING_AS: btree node we updated was freed, so now * we're now blocking another btree_update * @parent_as - btree_update that's waiting on our nodes to finish * writing, before it can make new nodes visible on disk * @wait - list of child btree_updates that are waiting on this * btree_update to make all the new nodes visible before they can free * their old btree nodes */ struct btree_update *parent_as; struct closure_waitlist wait; /* * We may be freeing nodes that were dirty, and thus had journal entries * pinned: we need to transfer the oldest of those pins to the * btree_update operation, and release it when the new node(s) * are all persistent and reachable: */ struct journal_entry_pin journal; u64 journal_seq; /* * Nodes being freed: * Protected by c->btree_node_pending_free_lock */ struct pending_btree_node_free pending[BTREE_MAX_DEPTH + GC_MERGE_NODES]; unsigned nr_pending; /* New nodes, that will be made reachable by this update: */ struct btree *new_nodes[BTREE_MAX_DEPTH * 2 + GC_MERGE_NODES]; unsigned nr_new_nodes; /* Only here to reduce stack usage on recursive splits: */ struct keylist parent_keys; /* * Enough room for btree_split's keys without realloc - btree node * pointers never have crc/compression info, so we only need to acount * for the pointers for three keys */ u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3]; }; #define for_each_pending_btree_node_free(c, as, p) \ list_for_each_entry(as, &c->btree_interior_update_list, list) \ for (p = as->pending; p < as->pending + as->nr_pending; p++) void bch2_btree_node_free_inmem(struct bch_fs *, struct btree *, struct btree_iter *); void bch2_btree_node_free_never_inserted(struct bch_fs *, struct btree *); struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *, struct btree *, struct bkey_format); void bch2_btree_update_done(struct btree_update *); struct btree_update * bch2_btree_update_start(struct bch_fs *, enum btree_id, unsigned, unsigned, struct closure *); void bch2_btree_interior_update_will_free_node(struct btree_update *, struct btree *); void bch2_btree_insert_node(struct btree_update *, struct btree *, struct btree_iter *, struct keylist *, unsigned); int bch2_btree_split_leaf(struct bch_fs *, struct btree_iter *, unsigned); void __bch2_foreground_maybe_merge(struct bch_fs *, struct btree_iter *, unsigned, unsigned, enum btree_node_sibling); static inline void bch2_foreground_maybe_merge_sibling(struct bch_fs *c, struct btree_iter *iter, unsigned level, unsigned flags, enum btree_node_sibling sib) { struct btree *b; if (iter->uptodate >= BTREE_ITER_NEED_TRAVERSE) return; if (!bch2_btree_node_relock(iter, level)) return; b = iter->l[level].b; if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) return; __bch2_foreground_maybe_merge(c, iter, level, flags, sib); } static inline void bch2_foreground_maybe_merge(struct bch_fs *c, struct btree_iter *iter, unsigned level, unsigned flags) { bch2_foreground_maybe_merge_sibling(c, iter, level, flags, btree_prev_sib); bch2_foreground_maybe_merge_sibling(c, iter, level, flags, btree_next_sib); } void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *); void bch2_btree_root_alloc(struct bch_fs *, enum btree_id); static inline unsigned btree_update_reserve_required(struct bch_fs *c, struct btree *b) { unsigned depth = btree_node_root(c, b)->level + 1; /* * Number of nodes we might have to allocate in a worst case btree * split operation - we split all the way up to the root, then allocate * a new root, unless we're already at max depth: */ if (depth < BTREE_MAX_DEPTH) return (depth - b->level) * 2 + 1; else return (depth - b->level) * 2 - 1; } static inline void btree_node_reset_sib_u64s(struct btree *b) { b->sib_u64s[0] = b->nr.live_u64s; b->sib_u64s[1] = b->nr.live_u64s; } static inline void *btree_data_end(struct bch_fs *c, struct btree *b) { return (void *) b->data + btree_bytes(c); } static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c, struct btree *b) { return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s); } static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c, struct btree *b) { return btree_data_end(c, b); } static inline void *write_block(struct btree *b) { return (void *) b->data + (b->written << 9); } static inline bool __btree_addr_written(struct btree *b, void *p) { return p < write_block(b); } static inline bool bset_written(struct btree *b, struct bset *i) { return __btree_addr_written(b, i); } static inline bool bkey_written(struct btree *b, struct bkey_packed *k) { return __btree_addr_written(b, k); } static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c, struct btree *b, void *end) { ssize_t used = bset_byte_offset(b, end) / sizeof(u64) + b->whiteout_u64s + b->uncompacted_whiteout_u64s; ssize_t total = c->opts.btree_node_size << 6; return total - used; } static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c, struct btree *b) { ssize_t remaining = __bch_btree_u64s_remaining(c, b, btree_bkey_last(b, bset_tree_last(b))); BUG_ON(remaining < 0); if (bset_written(b, btree_bset_last(b))) return 0; return remaining; } static inline unsigned btree_write_set_buffer(struct btree *b) { /* * Could buffer up larger amounts of keys for btrees with larger keys, * pending benchmarking: */ return 4 << 10; } static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b) { struct bset *i = btree_bset_last(b); struct btree_node_entry *bne = max(write_block(b), (void *) btree_bkey_last(b, bset_tree_last(b))); ssize_t remaining_space = __bch_btree_u64s_remaining(c, b, &bne->keys.start[0]); if (unlikely(bset_written(b, i))) { if (remaining_space > (ssize_t) (block_bytes(c) >> 3)) return bne; } else { if (unlikely(vstruct_bytes(i) > btree_write_set_buffer(b)) && remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3)) return bne; } return NULL; } static inline void unreserve_whiteout(struct btree *b, struct bkey_packed *k) { if (bkey_written(b, k)) { EBUG_ON(b->uncompacted_whiteout_u64s < bkeyp_key_u64s(&b->format, k)); b->uncompacted_whiteout_u64s -= bkeyp_key_u64s(&b->format, k); } } static inline void reserve_whiteout(struct btree *b, struct bkey_packed *k) { if (bkey_written(b, k)) { BUG_ON(!k->needs_whiteout); b->uncompacted_whiteout_u64s += bkeyp_key_u64s(&b->format, k); } } /* * write lock must be held on @b (else the dirty bset that we were going to * insert into could be written out from under us) */ static inline bool bch2_btree_node_insert_fits(struct bch_fs *c, struct btree *b, unsigned u64s) { if (unlikely(btree_node_fake(b))) return false; return u64s <= bch_btree_keys_u64s_remaining(c, b); } ssize_t bch2_btree_updates_print(struct bch_fs *, char *); size_t bch2_btree_interior_updates_nr_pending(struct bch_fs *); #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */