// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_gc.h" #include "btree_io.h" #include "btree_iter.h" #include "btree_locking.h" #include "buckets.h" #include "debug.h" #include "error.h" #include "extents.h" #include "journal.h" #include "journal_reclaim.h" #include "keylist.h" #include "replicas.h" #include #include inline void bch2_btree_node_lock_for_insert(struct bch_fs *c, struct btree *b, struct btree_iter *iter) { bch2_btree_node_lock_write(b, iter); if (btree_node_just_written(b) && bch2_btree_post_write_cleanup(c, b)) bch2_btree_iter_reinit_node(iter, b); /* * If the last bset has been written, or if it's gotten too big - start * a new bset to insert into: */ if (want_new_bset(c, b)) bch2_btree_init_next(c, b, iter); } static void btree_trans_lock_write(struct bch_fs *c, struct btree_trans *trans) { struct btree_insert_entry *i; trans_for_each_update_leaf(trans, i) bch2_btree_node_lock_for_insert(c, i->iter->l[0].b, i->iter); } static void btree_trans_unlock_write(struct btree_trans *trans) { struct btree_insert_entry *i; trans_for_each_update_leaf(trans, i) bch2_btree_node_unlock_write(i->iter->l[0].b, i->iter); } static inline int btree_trans_cmp(struct btree_insert_entry l, struct btree_insert_entry r) { return cmp_int(l.deferred, r.deferred) ?: btree_iter_cmp(l.iter, r.iter); } /* Inserting into a given leaf node (last stage of insert): */ /* Handle overwrites and do insert, for non extents: */ bool bch2_btree_bset_insert_key(struct btree_iter *iter, struct btree *b, struct btree_node_iter *node_iter, struct bkey_i *insert) { const struct bkey_format *f = &b->format; struct bkey_packed *k; unsigned clobber_u64s; EBUG_ON(btree_node_just_written(b)); EBUG_ON(bset_written(b, btree_bset_last(b))); EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k)); EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 || bkey_cmp(insert->k.p, b->data->max_key) > 0); k = bch2_btree_node_iter_peek_all(node_iter, b); if (k && !bkey_cmp_packed(b, k, &insert->k)) { BUG_ON(bkey_whiteout(k)); if (!bkey_written(b, k) && bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k) && !bkey_whiteout(&insert->k)) { k->type = insert->k.type; memcpy_u64s(bkeyp_val(f, k), &insert->v, bkey_val_u64s(&insert->k)); return true; } insert->k.needs_whiteout = k->needs_whiteout; btree_account_key_drop(b, k); if (k >= btree_bset_last(b)->start) { clobber_u64s = k->u64s; /* * If we're deleting, and the key we're deleting doesn't * need a whiteout (it wasn't overwriting a key that had * been written to disk) - just delete it: */ if (bkey_whiteout(&insert->k) && !k->needs_whiteout) { bch2_bset_delete(b, k, clobber_u64s); bch2_btree_node_iter_fix(iter, b, node_iter, k, clobber_u64s, 0); bch2_btree_iter_verify(iter, b); return true; } goto overwrite; } k->type = KEY_TYPE_deleted; bch2_btree_node_iter_fix(iter, b, node_iter, k, k->u64s, k->u64s); bch2_btree_iter_verify(iter, b); if (bkey_whiteout(&insert->k)) { reserve_whiteout(b, k); return true; } else { k->needs_whiteout = false; } } else { /* * Deleting, but the key to delete wasn't found - nothing to do: */ if (bkey_whiteout(&insert->k)) return false; insert->k.needs_whiteout = false; } k = bch2_btree_node_iter_bset_pos(node_iter, b, bset_tree_last(b)); clobber_u64s = 0; overwrite: bch2_bset_insert(b, node_iter, k, insert, clobber_u64s); if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k)) bch2_btree_node_iter_fix(iter, b, node_iter, k, clobber_u64s, k->u64s); bch2_btree_iter_verify(iter, b); return true; } static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin, unsigned i, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct btree_write *w = container_of(pin, struct btree_write, journal); struct btree *b = container_of(w, struct btree, writes[i]); btree_node_lock_type(c, b, SIX_LOCK_read); bch2_btree_node_write_cond(c, b, (btree_current_write(b) == w && w->journal.seq == seq)); six_unlock_read(&b->lock); } static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq) { return __btree_node_flush(j, pin, 0, seq); } static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq) { return __btree_node_flush(j, pin, 1, seq); } static inline void __btree_journal_key(struct btree_trans *trans, enum btree_id btree_id, struct bkey_i *insert) { struct journal *j = &trans->c->journal; u64 seq = trans->journal_res.seq; bool needs_whiteout = insert->k.needs_whiteout; /* ick */ insert->k.needs_whiteout = false; bch2_journal_add_keys(j, &trans->journal_res, btree_id, insert); insert->k.needs_whiteout = needs_whiteout; bch2_journal_set_has_inode(j, &trans->journal_res, insert->k.p.inode); if (trans->journal_seq) *trans->journal_seq = seq; } void bch2_btree_journal_key(struct btree_trans *trans, struct btree_iter *iter, struct bkey_i *insert) { struct bch_fs *c = trans->c; struct journal *j = &c->journal; struct btree *b = iter->l[0].b; struct btree_write *w = btree_current_write(b); EBUG_ON(iter->level || b->level); EBUG_ON(trans->journal_res.ref != !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)); if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) { __btree_journal_key(trans, iter->btree_id, insert); btree_bset_last(b)->journal_seq = cpu_to_le64(trans->journal_res.seq); } if (unlikely(!journal_pin_active(&w->journal))) { u64 seq = likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) ? trans->journal_res.seq : j->replay_journal_seq; bch2_journal_pin_add(j, seq, &w->journal, btree_node_write_idx(b) == 0 ? btree_node_flush0 : btree_node_flush1); } if (unlikely(!btree_node_dirty(b))) set_btree_node_dirty(b); } static void bch2_insert_fixup_key(struct btree_trans *trans, struct btree_insert_entry *insert) { struct btree_iter *iter = insert->iter; struct btree_iter_level *l = &iter->l[0]; EBUG_ON(iter->level); EBUG_ON(insert->k->k.u64s > bch_btree_keys_u64s_remaining(trans->c, l->b)); if (bch2_btree_bset_insert_key(iter, l->b, &l->iter, insert->k)) bch2_btree_journal_key(trans, iter, insert->k); } /** * btree_insert_key - insert a key one key into a leaf node */ static void btree_insert_key_leaf(struct btree_trans *trans, struct btree_insert_entry *insert) { struct bch_fs *c = trans->c; struct btree_iter *iter = insert->iter; struct btree *b = iter->l[0].b; int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); int old_live_u64s = b->nr.live_u64s; int live_u64s_added, u64s_added; if (!btree_node_is_extents(b)) bch2_insert_fixup_key(trans, insert); else bch2_insert_fixup_extent(trans, insert); live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); if (u64s_added > live_u64s_added && bch2_maybe_compact_whiteouts(c, b)) bch2_btree_iter_reinit_node(iter, b); trace_btree_insert_key(c, b, insert->k); } /* Deferred btree updates: */ static void deferred_update_flush(struct journal *j, struct journal_entry_pin *pin, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct deferred_update *d = container_of(pin, struct deferred_update, journal); struct journal_preres res = { 0 }; u64 tmp[32]; struct bkey_i *k = (void *) tmp; int ret; if (d->allocated_u64s > ARRAY_SIZE(tmp)) { k = kmalloc(d->allocated_u64s * sizeof(u64), GFP_NOFS); BUG_ON(!k); /* XXX */ } spin_lock(&d->lock); if (d->dirty) { BUG_ON(jset_u64s(d->k.k.u64s) > d->res.u64s); swap(res, d->res); BUG_ON(d->k.k.u64s > d->allocated_u64s); bkey_copy(k, &d->k); d->dirty = false; spin_unlock(&d->lock); ret = bch2_btree_insert(c, d->btree_id, k, NULL, NULL, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE| BTREE_INSERT_JOURNAL_RESERVED); bch2_fs_fatal_err_on(ret && !bch2_journal_error(j), c, "error flushing deferred btree update: %i", ret); spin_lock(&d->lock); } if (!d->dirty) bch2_journal_pin_drop(j, &d->journal); spin_unlock(&d->lock); bch2_journal_preres_put(j, &res); if (k != (void *) tmp) kfree(k); } static void btree_insert_key_deferred(struct btree_trans *trans, struct btree_insert_entry *insert) { struct bch_fs *c = trans->c; struct journal *j = &c->journal; struct deferred_update *d = insert->d; int difference; BUG_ON(trans->flags & BTREE_INSERT_JOURNAL_REPLAY); BUG_ON(insert->k->u64s > d->allocated_u64s); __btree_journal_key(trans, d->btree_id, insert->k); spin_lock(&d->lock); BUG_ON(jset_u64s(insert->k->u64s) > trans->journal_preres.u64s); difference = jset_u64s(insert->k->u64s) - d->res.u64s; if (difference > 0) { trans->journal_preres.u64s -= difference; d->res.u64s += difference; } bkey_copy(&d->k, insert->k); d->dirty = true; bch2_journal_pin_update(j, trans->journal_res.seq, &d->journal, deferred_update_flush); spin_unlock(&d->lock); } void bch2_deferred_update_free(struct bch_fs *c, struct deferred_update *d) { deferred_update_flush(&c->journal, &d->journal, 0); BUG_ON(journal_pin_active(&d->journal)); bch2_journal_pin_flush(&c->journal, &d->journal); kfree(d); } struct deferred_update * bch2_deferred_update_alloc(struct bch_fs *c, enum btree_id btree_id, unsigned u64s) { struct deferred_update *d; BUG_ON(u64s > U8_MAX); d = kmalloc(offsetof(struct deferred_update, k) + u64s * sizeof(u64), GFP_NOFS); BUG_ON(!d); memset(d, 0, offsetof(struct deferred_update, k)); spin_lock_init(&d->lock); d->allocated_u64s = u64s; d->btree_id = btree_id; return d; } /* Normal update interface: */ static inline void btree_insert_entry_checks(struct btree_trans *trans, struct btree_insert_entry *i) { struct bch_fs *c = trans->c; enum btree_id btree_id = !i->deferred ? i->iter->btree_id : i->d->btree_id; if (!i->deferred) { BUG_ON(i->iter->level); BUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos)); EBUG_ON((i->iter->flags & BTREE_ITER_IS_EXTENTS) && bkey_cmp(i->k->k.p, i->iter->l[0].b->key.k.p) > 0); EBUG_ON((i->iter->flags & BTREE_ITER_IS_EXTENTS) && !(trans->flags & BTREE_INSERT_ATOMIC)); } BUG_ON(debug_check_bkeys(c) && !bkey_deleted(&i->k->k) && bch2_bkey_invalid(c, bkey_i_to_s_c(i->k), btree_id)); } static int bch2_trans_journal_preres_get(struct btree_trans *trans) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; unsigned u64s = 0; int ret; trans_for_each_update(trans, i) if (i->deferred) u64s += jset_u64s(i->k->k.u64s); if (!u64s) return 0; ret = bch2_journal_preres_get(&c->journal, &trans->journal_preres, u64s, JOURNAL_RES_GET_NONBLOCK); if (ret != -EAGAIN) return ret; bch2_trans_unlock(trans); ret = bch2_journal_preres_get(&c->journal, &trans->journal_preres, u64s, 0); if (ret) return ret; if (!bch2_trans_relock(trans)) { trace_trans_restart_journal_preres_get(trans->ip); return -EINTR; } return 0; } static int bch2_trans_journal_res_get(struct btree_trans *trans, unsigned flags) { struct bch_fs *c = trans->c; int ret; if (trans->flags & BTREE_INSERT_JOURNAL_RESERVED) flags |= JOURNAL_RES_GET_RESERVED; ret = bch2_journal_res_get(&c->journal, &trans->journal_res, trans->journal_u64s, flags); return ret == -EAGAIN ? BTREE_INSERT_NEED_JOURNAL_RES : ret; } static enum btree_insert_ret btree_key_can_insert(struct btree_trans *trans, struct btree_insert_entry *insert, unsigned *u64s) { struct bch_fs *c = trans->c; struct btree *b = insert->iter->l[0].b; static enum btree_insert_ret ret; if (unlikely(btree_node_fake(b))) return BTREE_INSERT_BTREE_NODE_FULL; ret = !btree_node_is_extents(b) ? BTREE_INSERT_OK : bch2_extent_can_insert(trans, insert, u64s); if (ret) return ret; if (*u64s > bch_btree_keys_u64s_remaining(c, b)) return BTREE_INSERT_BTREE_NODE_FULL; return BTREE_INSERT_OK; } static int btree_trans_check_can_insert(struct btree_trans *trans, struct btree_insert_entry **stopped_at) { struct btree_insert_entry *i; unsigned u64s = 0; int ret; trans_for_each_update_iter(trans, i) { /* Multiple inserts might go to same leaf: */ if (!same_leaf_as_prev(trans, i)) u64s = 0; u64s += i->k->k.u64s; ret = btree_key_can_insert(trans, i, &u64s); if (ret) { *stopped_at = i; return ret; } } return 0; } static inline void do_btree_insert_one(struct btree_trans *trans, struct btree_insert_entry *insert) { if (likely(!insert->deferred)) btree_insert_key_leaf(trans, insert); else btree_insert_key_deferred(trans, insert); } static inline bool update_triggers_transactional(struct btree_trans *trans, struct btree_insert_entry *i) { return likely(!(trans->flags & BTREE_INSERT_MARK_INMEM)) && (i->iter->btree_id == BTREE_ID_EXTENTS || i->iter->btree_id == BTREE_ID_INODES || i->iter->btree_id == BTREE_ID_REFLINK); } static inline bool update_has_triggers(struct btree_trans *trans, struct btree_insert_entry *i) { return likely(!(trans->flags & BTREE_INSERT_NOMARK)) && !i->deferred && btree_node_type_needs_gc(i->iter->btree_id); } /* * Get journal reservation, take write locks, and attempt to do btree update(s): */ static inline int do_btree_insert_at(struct btree_trans *trans, struct btree_insert_entry **stopped_at) { struct bch_fs *c = trans->c; struct bch_fs_usage *fs_usage = NULL; struct btree_insert_entry *i; bool saw_non_marked; unsigned mark_flags = trans->flags & BTREE_INSERT_BUCKET_INVALIDATE ? BCH_BUCKET_MARK_BUCKET_INVALIDATE : 0; int ret; trans_for_each_update_iter(trans, i) BUG_ON(i->iter->uptodate >= BTREE_ITER_NEED_RELOCK); trans_for_each_update_iter(trans, i) i->marked = false; do { saw_non_marked = false; trans_for_each_update_iter(trans, i) { if (i->marked) continue; saw_non_marked = true; i->marked = true; if (update_has_triggers(trans, i) && update_triggers_transactional(trans, i)) { ret = bch2_trans_mark_update(trans, i->iter, i->k); if (ret == -EINTR) trace_trans_restart_mark(trans->ip); if (ret) goto out_clear_replicas; } } } while (saw_non_marked); trans_for_each_update(trans, i) btree_insert_entry_checks(trans, i); bch2_btree_trans_verify_locks(trans); btree_trans_lock_write(c, trans); if (race_fault()) { ret = -EINTR; trace_trans_restart_fault_inject(trans->ip); goto out; } /* * Check if the insert will fit in the leaf node with the write lock * held, otherwise another thread could write the node changing the * amount of space available: */ ret = btree_trans_check_can_insert(trans, stopped_at); if (ret) goto out; trans_for_each_update_iter(trans, i) { if (i->deferred || !btree_node_type_needs_gc(i->iter->btree_id)) continue; if (!fs_usage) { percpu_down_read(&c->mark_lock); fs_usage = bch2_fs_usage_scratch_get(c); } if (!bch2_bkey_replicas_marked_locked(c, bkey_i_to_s_c(i->k), true)) { ret = BTREE_INSERT_NEED_MARK_REPLICAS; goto out; } } /* * Don't get journal reservation until after we know insert will * succeed: */ if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) { trans->journal_u64s = 0; trans_for_each_update(trans, i) trans->journal_u64s += jset_u64s(i->k->k.u64s); ret = bch2_trans_journal_res_get(trans, JOURNAL_RES_GET_NONBLOCK); if (ret) goto out; } if (!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) { if (journal_seq_verify(c)) trans_for_each_update(trans, i) i->k->k.version.lo = trans->journal_res.seq; else if (inject_invalid_keys(c)) trans_for_each_update(trans, i) i->k->k.version = MAX_VERSION; } trans_for_each_update_iter(trans, i) if (update_has_triggers(trans, i) && !update_triggers_transactional(trans, i)) bch2_mark_update(trans, i, fs_usage, mark_flags); if (fs_usage && trans->fs_usage_deltas) bch2_replicas_delta_list_apply(c, fs_usage, trans->fs_usage_deltas); if (fs_usage) bch2_trans_fs_usage_apply(trans, fs_usage); if (likely(!(trans->flags & BTREE_INSERT_NOMARK)) && unlikely(c->gc_pos.phase)) trans_for_each_update_iter(trans, i) if (gc_visited(c, gc_pos_btree_node(i->iter->l[0].b))) bch2_mark_update(trans, i, NULL, mark_flags| BCH_BUCKET_MARK_GC); trans_for_each_update(trans, i) do_btree_insert_one(trans, i); out: BUG_ON(ret && (trans->flags & BTREE_INSERT_JOURNAL_RESERVED) && trans->journal_res.ref); btree_trans_unlock_write(trans); if (fs_usage) { bch2_fs_usage_scratch_put(c, fs_usage); percpu_up_read(&c->mark_lock); } bch2_journal_res_put(&c->journal, &trans->journal_res); out_clear_replicas: if (trans->fs_usage_deltas) { memset(&trans->fs_usage_deltas->fs_usage, 0, sizeof(trans->fs_usage_deltas->fs_usage)); trans->fs_usage_deltas->used = 0; } return ret; } static noinline int bch2_trans_commit_error(struct btree_trans *trans, struct btree_insert_entry *i, int ret) { struct bch_fs *c = trans->c; unsigned flags = trans->flags; struct btree_insert_entry *src, *dst; src = dst = trans->updates; while (src < trans->updates + trans->nr_updates) { if (!src->triggered) { *dst = *src; dst++; } src++; } trans->nr_updates = dst - trans->updates; /* * BTREE_INSERT_NOUNLOCK means don't unlock _after_ successful btree * update; if we haven't done anything yet it doesn't apply */ flags &= ~BTREE_INSERT_NOUNLOCK; switch (ret) { case BTREE_INSERT_BTREE_NODE_FULL: ret = bch2_btree_split_leaf(c, i->iter, flags); /* * if the split succeeded without dropping locks the insert will * still be atomic (in the BTREE_INSERT_ATOMIC sense, what the * caller peeked() and is overwriting won't have changed) */ #if 0 /* * XXX: * split -> btree node merging (of parent node) might still drop * locks when we're not passing it BTREE_INSERT_NOUNLOCK * * we don't want to pass BTREE_INSERT_NOUNLOCK to split as that * will inhibit merging - but we don't have a reliable way yet * (do we?) of checking if we dropped locks in this path */ if (!ret) goto retry; #endif /* * don't care if we got ENOSPC because we told split it * couldn't block: */ if (!ret || ret == -EINTR || (flags & BTREE_INSERT_NOUNLOCK)) { trace_trans_restart_btree_node_split(trans->ip); ret = -EINTR; } break; case BTREE_INSERT_ENOSPC: ret = -ENOSPC; break; case BTREE_INSERT_NEED_MARK_REPLICAS: bch2_trans_unlock(trans); trans_for_each_update_iter(trans, i) { ret = bch2_mark_bkey_replicas(c, bkey_i_to_s_c(i->k)); if (ret) return ret; } if (bch2_trans_relock(trans)) return 0; trace_trans_restart_mark_replicas(trans->ip); ret = -EINTR; break; case BTREE_INSERT_NEED_JOURNAL_RES: bch2_trans_unlock(trans); ret = bch2_trans_journal_res_get(trans, JOURNAL_RES_GET_CHECK); if (ret) return ret; if (bch2_trans_relock(trans)) return 0; trace_trans_restart_journal_res_get(trans->ip); ret = -EINTR; break; default: BUG_ON(ret >= 0); break; } if (ret == -EINTR) { int ret2 = bch2_btree_iter_traverse_all(trans); if (ret2) { trace_trans_restart_traverse(trans->ip); return ret2; } /* * BTREE_ITER_ATOMIC means we have to return -EINTR if we * dropped locks: */ if (!(flags & BTREE_INSERT_ATOMIC)) return 0; trace_trans_restart_atomic(trans->ip); } return ret; } /** * __bch_btree_insert_at - insert keys at given iterator positions * * This is main entry point for btree updates. * * Return values: * -EINTR: locking changed, this function should be called again. Only returned * if passed BTREE_INSERT_ATOMIC. * -EROFS: filesystem read only * -EIO: journal or btree node IO error */ static int __bch2_trans_commit(struct btree_trans *trans, struct btree_insert_entry **stopped_at) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; int ret; trans_for_each_update_iter(trans, i) { if (!bch2_btree_iter_upgrade(i->iter, 1)) { trace_trans_restart_upgrade(trans->ip); ret = -EINTR; goto err; } ret = btree_iter_err(i->iter); if (ret) goto err; } ret = do_btree_insert_at(trans, stopped_at); if (unlikely(ret)) goto err; if (trans->flags & BTREE_INSERT_NOUNLOCK) trans->nounlock = true; trans_for_each_update_leaf(trans, i) bch2_foreground_maybe_merge(c, i->iter, 0, trans->flags); trans->nounlock = false; trans_for_each_update_iter(trans, i) bch2_btree_iter_downgrade(i->iter); err: /* make sure we didn't drop or screw up locks: */ bch2_btree_trans_verify_locks(trans); return ret; } int bch2_trans_commit(struct btree_trans *trans, struct disk_reservation *disk_res, u64 *journal_seq, unsigned flags) { struct bch_fs *c = trans->c; struct btree_insert_entry *i = NULL; unsigned orig_mem_top = trans->mem_top; int ret = 0; if (!trans->nr_updates) goto out_noupdates; /* for the sake of sanity: */ BUG_ON(trans->nr_updates > 1 && !(flags & BTREE_INSERT_ATOMIC)); if (flags & BTREE_INSERT_GC_LOCK_HELD) lockdep_assert_held(&c->gc_lock); if (!trans->commit_start) trans->commit_start = local_clock(); memset(&trans->journal_res, 0, sizeof(trans->journal_res)); memset(&trans->journal_preres, 0, sizeof(trans->journal_preres)); trans->disk_res = disk_res; trans->journal_seq = journal_seq; trans->flags = flags; if (unlikely(!(trans->flags & BTREE_INSERT_NOCHECK_RW) && !percpu_ref_tryget(&c->writes))) { if (likely(!(trans->flags & BTREE_INSERT_LAZY_RW))) return -EROFS; bch2_trans_unlock(trans); ret = bch2_fs_read_write_early(c); if (ret) return ret; percpu_ref_get(&c->writes); if (!bch2_trans_relock(trans)) { ret = -EINTR; goto err; } } retry: ret = bch2_trans_journal_preres_get(trans); if (ret) goto err; ret = __bch2_trans_commit(trans, &i); if (ret) goto err; out: bch2_journal_preres_put(&c->journal, &trans->journal_preres); if (unlikely(!(trans->flags & BTREE_INSERT_NOCHECK_RW))) percpu_ref_put(&c->writes); out_noupdates: if (!ret && trans->commit_start) { bch2_time_stats_update(&c->times[BCH_TIME_btree_update], trans->commit_start); trans->commit_start = 0; } BUG_ON(!(trans->flags & BTREE_INSERT_ATOMIC) && ret == -EINTR); if (!ret) { bch2_trans_unlink_iters(trans, ~trans->iters_touched| trans->iters_unlink_on_commit); trans->iters_touched = 0; } trans->nr_updates = 0; trans->mem_top = 0; return ret; err: ret = bch2_trans_commit_error(trans, i, ret); /* can't loop if it was passed in and we changed it: */ if (unlikely(trans->flags & BTREE_INSERT_NO_CLEAR_REPLICAS) && !ret) ret = -EINTR; if (!ret) { /* free memory used by triggers, they'll be reexecuted: */ trans->mem_top = orig_mem_top; goto retry; } goto out; } struct btree_insert_entry *bch2_trans_update(struct btree_trans *trans, struct btree_insert_entry entry) { struct btree_insert_entry *i; BUG_ON(trans->nr_updates >= trans->nr_iters + 4); for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) if (btree_trans_cmp(entry, *i) < 0) break; memmove(&i[1], &i[0], (void *) &trans->updates[trans->nr_updates] - (void *) i); trans->nr_updates++; *i = entry; return i; } /** * bch2_btree_insert - insert keys into the extent btree * @c: pointer to struct bch_fs * @id: btree to insert into * @insert_keys: list of keys to insert * @hook: insert callback */ int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k, struct disk_reservation *disk_res, u64 *journal_seq, int flags) { struct btree_trans trans; struct btree_iter *iter; int ret; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); iter = bch2_trans_get_iter(&trans, id, bkey_start_pos(&k->k), BTREE_ITER_INTENT); bch2_trans_update(&trans, BTREE_INSERT_ENTRY(iter, k)); ret = bch2_trans_commit(&trans, disk_res, journal_seq, flags); if (ret == -EINTR) goto retry; bch2_trans_exit(&trans); return ret; } int bch2_btree_delete_at_range(struct btree_trans *trans, struct btree_iter *iter, struct bpos end, u64 *journal_seq) { struct bkey_s_c k; int ret = 0; retry: while ((k = bch2_btree_iter_peek(iter)).k && !(ret = bkey_err(k)) && bkey_cmp(iter->pos, end) < 0) { struct bkey_i delete; bkey_init(&delete.k); /* * For extents, iter.pos won't necessarily be the same as * bkey_start_pos(k.k) (for non extents they always will be the * same). It's important that we delete starting from iter.pos * because the range we want to delete could start in the middle * of k. * * (bch2_btree_iter_peek() does guarantee that iter.pos >= * bkey_start_pos(k.k)). */ delete.k.p = iter->pos; if (iter->flags & BTREE_ITER_IS_EXTENTS) { unsigned max_sectors = KEY_SIZE_MAX & (~0 << trans->c->block_bits); /* create the biggest key we can */ bch2_key_resize(&delete.k, max_sectors); bch2_cut_back(end, &delete.k); ret = bch2_extent_trim_atomic(&delete, iter); if (ret) break; } bch2_trans_update(trans, BTREE_INSERT_ENTRY(iter, &delete)); ret = bch2_trans_commit(trans, NULL, journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL); if (ret) break; bch2_trans_cond_resched(trans); } if (ret == -EINTR) { ret = 0; goto retry; } return ret; } int bch2_btree_delete_at(struct btree_trans *trans, struct btree_iter *iter, unsigned flags) { struct bkey_i k; bkey_init(&k.k); k.k.p = iter->pos; bch2_trans_update(trans, BTREE_INSERT_ENTRY(iter, &k)); return bch2_trans_commit(trans, NULL, NULL, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE|flags); } /* * bch_btree_delete_range - delete everything within a given range * * Range is a half open interval - [start, end) */ int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id, struct bpos start, struct bpos end, u64 *journal_seq) { struct btree_trans trans; struct btree_iter *iter; int ret = 0; /* * XXX: whether we need mem/more iters depends on whether this btree id * has triggers */ bch2_trans_init(&trans, c, BTREE_ITER_MAX, 512); iter = bch2_trans_get_iter(&trans, id, start, BTREE_ITER_INTENT); ret = bch2_btree_delete_at_range(&trans, iter, end, journal_seq); ret = bch2_trans_exit(&trans) ?: ret; BUG_ON(ret == -EINTR); return ret; }