/* * Code for manipulating bucket marks for garbage collection. * * Copyright 2014 Datera, Inc. * * Bucket states: * - free bucket: mark == 0 * The bucket contains no data and will not be read * * - allocator bucket: owned_by_allocator == 1 * The bucket is on a free list, or it is an open bucket * * - cached bucket: owned_by_allocator == 0 && * dirty_sectors == 0 && * cached_sectors > 0 * The bucket contains data but may be safely discarded as there are * enough replicas of the data on other cache devices, or it has been * written back to the backing device * * - dirty bucket: owned_by_allocator == 0 && * dirty_sectors > 0 * The bucket contains data that we must not discard (either only copy, * or one of the 'main copies' for data requiring multiple replicas) * * - metadata bucket: owned_by_allocator == 0 && is_metadata == 1 * This is a btree node, journal or gen/prio bucket * * Lifecycle: * * bucket invalidated => bucket on freelist => open bucket => * [dirty bucket =>] cached bucket => bucket invalidated => ... * * Note that cache promotion can skip the dirty bucket step, as data * is copied from a deeper tier to a shallower tier, onto a cached * bucket. * Note also that a cached bucket can spontaneously become dirty -- * see below. * * Only a traversal of the key space can determine whether a bucket is * truly dirty or cached. * * Transitions: * * - free => allocator: bucket was invalidated * - cached => allocator: bucket was invalidated * * - allocator => dirty: open bucket was filled up * - allocator => cached: open bucket was filled up * - allocator => metadata: metadata was allocated * * - dirty => cached: dirty sectors were copied to a deeper tier * - dirty => free: dirty sectors were overwritten or moved (copy gc) * - cached => free: cached sectors were overwritten * * - metadata => free: metadata was freed * * Oddities: * - cached => dirty: a device was removed so formerly replicated data * is no longer sufficiently replicated * - free => cached: cannot happen * - free => dirty: cannot happen * - free => metadata: cannot happen */ #include "bcachefs.h" #include "alloc.h" #include "btree_gc.h" #include "buckets.h" #include "error.h" #include #include #ifdef DEBUG_BUCKETS #define lg_local_lock lg_global_lock #define lg_local_unlock lg_global_unlock static void bch2_fs_stats_verify(struct bch_fs *c) { struct bch_fs_usage stats = __bch2_fs_usage_read(c); if ((s64) stats.sectors_dirty < 0) panic("sectors_dirty underflow: %lli\n", stats.sectors_dirty); if ((s64) stats.sectors_cached < 0) panic("sectors_cached underflow: %lli\n", stats.sectors_cached); if ((s64) stats.sectors_meta < 0) panic("sectors_meta underflow: %lli\n", stats.sectors_meta); if ((s64) stats.sectors_persistent_reserved < 0) panic("sectors_persistent_reserved underflow: %lli\n", stats.sectors_persistent_reserved); if ((s64) stats.sectors_online_reserved < 0) panic("sectors_online_reserved underflow: %lli\n", stats.sectors_online_reserved); } #else static void bch2_fs_stats_verify(struct bch_fs *c) {} #endif /* * Clear journal_seq_valid for buckets for which it's not needed, to prevent * wraparound: */ void bch2_bucket_seq_cleanup(struct bch_fs *c) { u16 last_seq_ondisk = c->journal.last_seq_ondisk; struct bch_dev *ca; struct bucket *g; struct bucket_mark m; unsigned i; for_each_member_device(ca, c, i) for_each_bucket(g, ca) { bucket_cmpxchg(g, m, ({ if (!m.journal_seq_valid || bucket_needs_journal_commit(m, last_seq_ondisk)) break; m.journal_seq_valid = 0; })); } } #define bch2_usage_add(_acc, _stats) \ do { \ typeof(_acc) _a = (_acc), _s = (_stats); \ unsigned i; \ \ for (i = 0; i < sizeof(*_a) / sizeof(u64); i++) \ ((u64 *) (_a))[i] += ((u64 *) (_s))[i]; \ } while (0) #define bch2_usage_read_raw(_stats) \ ({ \ typeof(*this_cpu_ptr(_stats)) _acc = { 0 }; \ int cpu; \ \ for_each_possible_cpu(cpu) \ bch2_usage_add(&_acc, per_cpu_ptr((_stats), cpu)); \ \ _acc; \ }) #define bch2_usage_read_cached(_c, _cached, _uncached) \ ({ \ typeof(_cached) _ret; \ unsigned _seq; \ \ do { \ _seq = read_seqcount_begin(&(_c)->gc_pos_lock); \ _ret = (_c)->gc_pos.phase == GC_PHASE_DONE \ ? bch2_usage_read_raw(_uncached) \ : (_cached); \ } while (read_seqcount_retry(&(_c)->gc_pos_lock, _seq)); \ \ _ret; \ }) struct bch_dev_usage __bch2_dev_usage_read(struct bch_dev *ca) { return bch2_usage_read_raw(ca->usage_percpu); } struct bch_dev_usage bch2_dev_usage_read(struct bch_dev *ca) { return bch2_usage_read_cached(ca->fs, ca->usage_cached, ca->usage_percpu); } struct bch_fs_usage __bch2_fs_usage_read(struct bch_fs *c) { return bch2_usage_read_raw(c->usage_percpu); } struct bch_fs_usage bch2_fs_usage_read(struct bch_fs *c) { return bch2_usage_read_cached(c, c->usage_cached, c->usage_percpu); } static inline int is_meta_bucket(struct bucket_mark m) { return m.data_type != BUCKET_DATA; } static inline int is_dirty_bucket(struct bucket_mark m) { return m.data_type == BUCKET_DATA && !!m.dirty_sectors; } static inline int is_cached_bucket(struct bucket_mark m) { return m.data_type == BUCKET_DATA && !m.dirty_sectors && !!m.cached_sectors; } static inline enum s_alloc bucket_type(struct bucket_mark m) { return is_meta_bucket(m) ? S_META : S_DIRTY; } static bool bucket_became_unavailable(struct bch_fs *c, struct bucket_mark old, struct bucket_mark new) { return is_available_bucket(old) && !is_available_bucket(new) && c && c->gc_pos.phase == GC_PHASE_DONE; } void bch2_fs_usage_apply(struct bch_fs *c, struct bch_fs_usage *stats, struct disk_reservation *disk_res, struct gc_pos gc_pos) { s64 added = stats->s[S_COMPRESSED][S_META] + stats->s[S_COMPRESSED][S_DIRTY] + stats->persistent_reserved + stats->online_reserved; /* * Not allowed to reduce sectors_available except by getting a * reservation: */ BUG_ON(added > (s64) (disk_res ? disk_res->sectors : 0)); if (added > 0) { disk_res->sectors -= added; stats->online_reserved -= added; } lg_local_lock(&c->usage_lock); /* online_reserved not subject to gc: */ this_cpu_ptr(c->usage_percpu)->online_reserved += stats->online_reserved; stats->online_reserved = 0; if (!gc_will_visit(c, gc_pos)) bch2_usage_add(this_cpu_ptr(c->usage_percpu), stats); bch2_fs_stats_verify(c); lg_local_unlock(&c->usage_lock); memset(stats, 0, sizeof(*stats)); } static void bch2_fs_usage_update(struct bch_fs_usage *fs_usage, struct bucket_mark old, struct bucket_mark new) { fs_usage->s[S_COMPRESSED][S_CACHED] += (int) new.cached_sectors - (int) old.cached_sectors; fs_usage->s[S_COMPRESSED][bucket_type(old)] -= old.dirty_sectors; fs_usage->s[S_COMPRESSED][bucket_type(new)] += new.dirty_sectors; } static void bch2_dev_usage_update(struct bch_dev *ca, struct bucket_mark old, struct bucket_mark new) { struct bch_fs *c = ca->fs; struct bch_dev_usage *dev_usage; bch2_fs_inconsistent_on(old.data_type && new.data_type && old.data_type != new.data_type, c, "different types of metadata in same bucket: %u, %u", old.data_type, new.data_type); preempt_disable(); dev_usage = this_cpu_ptr(ca->usage_percpu); dev_usage->sectors[S_CACHED] += (int) new.cached_sectors - (int) old.cached_sectors; dev_usage->sectors[bucket_type(old)] -= old.dirty_sectors; dev_usage->sectors[bucket_type(new)] += new.dirty_sectors; dev_usage->buckets_alloc += (int) new.owned_by_allocator - (int) old.owned_by_allocator; dev_usage->buckets_meta += is_meta_bucket(new) - is_meta_bucket(old); dev_usage->buckets_cached += is_cached_bucket(new) - is_cached_bucket(old); dev_usage->buckets_dirty += is_dirty_bucket(new) - is_dirty_bucket(old); preempt_enable(); if (!is_available_bucket(old) && is_available_bucket(new)) bch2_wake_allocator(ca); } #define bucket_data_cmpxchg(ca, g, new, expr) \ ({ \ struct bucket_mark _old = bucket_cmpxchg(g, new, expr); \ \ bch2_dev_usage_update(ca, _old, new); \ _old; \ }) void bch2_invalidate_bucket(struct bch_dev *ca, struct bucket *g) { struct bch_fs_usage stats = { 0 }; struct bucket_mark old, new; old = bucket_data_cmpxchg(ca, g, new, ({ new.owned_by_allocator = 1; new.had_metadata = 0; new.data_type = 0; new.cached_sectors = 0; new.dirty_sectors = 0; new.copygc = 0; new.gen++; })); /* XXX: we're not actually updating fs usage's cached sectors... */ bch2_fs_usage_update(&stats, old, new); if (!old.owned_by_allocator && old.cached_sectors) trace_invalidate(ca, g - ca->buckets, old.cached_sectors); } void bch2_mark_free_bucket(struct bch_dev *ca, struct bucket *g) { struct bucket_mark old, new; old = bucket_data_cmpxchg(ca, g, new, ({ new.owned_by_allocator = 0; new.data_type = 0; new.cached_sectors = 0; new.dirty_sectors = 0; })); BUG_ON(bucket_became_unavailable(ca->fs, old, new)); } void bch2_mark_alloc_bucket(struct bch_dev *ca, struct bucket *g, bool owned_by_allocator) { struct bucket_mark new; bucket_data_cmpxchg(ca, g, new, ({ new.owned_by_allocator = owned_by_allocator; })); } #define saturated_add(ca, dst, src, max) \ do { \ BUG_ON((int) (dst) + (src) < 0); \ if ((dst) == (max)) \ ; \ else if ((dst) + (src) <= (max)) \ dst += (src); \ else { \ dst = (max); \ trace_sectors_saturated(ca); \ } \ } while (0) void bch2_mark_metadata_bucket(struct bch_dev *ca, struct bucket *g, enum bucket_data_type type, bool may_make_unavailable) { struct bucket_mark old, new; BUG_ON(!type); old = bucket_data_cmpxchg(ca, g, new, ({ saturated_add(ca, new.dirty_sectors, ca->mi.bucket_size, GC_MAX_SECTORS_USED); new.data_type = type; new.had_metadata = 1; })); if (old.data_type != type && (old.data_type || old.cached_sectors || old.dirty_sectors)) bch_err(ca->fs, "bucket %zu has multiple types of data (%u, %u)", g - ca->buckets, old.data_type, new.data_type); BUG_ON(!may_make_unavailable && bucket_became_unavailable(ca->fs, old, new)); } #if 0 /* Reverting this until the copygc + compression issue is fixed: */ static unsigned __disk_sectors(const union bch_extent_crc *crc, unsigned sectors) { return crc_compression_type(crc) ? sectors * crc_compressed_size(crc) / crc_uncompressed_size(crc) : sectors; } static unsigned __compressed_sectors(const union bch_extent_crc *crc, unsigned sectors) { return crc_compression_type(crc) ? min_t(unsigned, crc_compressed_size(crc), sectors) : sectors; } #else static unsigned __disk_sectors(const union bch_extent_crc *crc, unsigned sectors) { return sectors; } static unsigned __compressed_sectors(const union bch_extent_crc *crc, unsigned sectors) { return sectors; } #endif /* * Checking against gc's position has to be done here, inside the cmpxchg() * loop, to avoid racing with the start of gc clearing all the marks - GC does * that with the gc pos seqlock held. */ static void bch2_mark_pointer(struct bch_fs *c, struct bkey_s_c_extent e, const union bch_extent_crc *crc, const struct bch_extent_ptr *ptr, s64 sectors, enum s_alloc type, bool may_make_unavailable, struct bch_fs_usage *stats, bool gc_will_visit, u64 journal_seq) { struct bucket_mark old, new; unsigned saturated; struct bch_dev *ca = c->devs[ptr->dev]; struct bucket *g = ca->buckets + PTR_BUCKET_NR(ca, ptr); unsigned data_type = type == S_META ? BUCKET_BTREE : BUCKET_DATA; unsigned old_sectors, new_sectors; int disk_sectors, compressed_sectors; if (sectors > 0) { old_sectors = 0; new_sectors = sectors; } else { old_sectors = e.k->size; new_sectors = e.k->size + sectors; } disk_sectors = -__disk_sectors(crc, old_sectors) + __disk_sectors(crc, new_sectors); compressed_sectors = -__compressed_sectors(crc, old_sectors) + __compressed_sectors(crc, new_sectors); if (gc_will_visit) { if (journal_seq) bucket_cmpxchg(g, new, ({ new.journal_seq_valid = 1; new.journal_seq = journal_seq; })); goto out; } old = bucket_data_cmpxchg(ca, g, new, ({ saturated = 0; /* * Check this after reading bucket mark to guard against * the allocator invalidating a bucket after we've already * checked the gen */ if (gen_after(new.gen, ptr->gen)) { EBUG_ON(type != S_CACHED && test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)); return; } EBUG_ON(type != S_CACHED && !may_make_unavailable && is_available_bucket(new) && test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)); if (type != S_CACHED && new.dirty_sectors == GC_MAX_SECTORS_USED && disk_sectors < 0) saturated = -disk_sectors; if (type == S_CACHED) saturated_add(ca, new.cached_sectors, disk_sectors, GC_MAX_SECTORS_USED); else saturated_add(ca, new.dirty_sectors, disk_sectors, GC_MAX_SECTORS_USED); if (!new.dirty_sectors && !new.cached_sectors) { new.data_type = 0; if (journal_seq) { new.journal_seq_valid = 1; new.journal_seq = journal_seq; } } else { new.data_type = data_type; } new.had_metadata |= is_meta_bucket(new); })); if (old.data_type != data_type && (old.data_type || old.cached_sectors || old.dirty_sectors)) bch_err(ca->fs, "bucket %zu has multiple types of data (%u, %u)", g - ca->buckets, old.data_type, new.data_type); BUG_ON(!may_make_unavailable && bucket_became_unavailable(c, old, new)); if (saturated && atomic_long_add_return(saturated, &ca->saturated_count) >= ca->free_inc.size << ca->bucket_bits) { if (c->gc_thread) { trace_gc_sectors_saturated(c); wake_up_process(c->gc_thread); } } out: stats->s[S_COMPRESSED][type] += compressed_sectors; stats->s[S_UNCOMPRESSED][type] += sectors; } static void bch2_mark_extent(struct bch_fs *c, struct bkey_s_c_extent e, s64 sectors, bool metadata, bool may_make_unavailable, struct bch_fs_usage *stats, bool gc_will_visit, u64 journal_seq) { const struct bch_extent_ptr *ptr; const union bch_extent_crc *crc; enum s_alloc type = metadata ? S_META : S_DIRTY; BUG_ON(metadata && bkey_extent_is_cached(e.k)); BUG_ON(!sectors); extent_for_each_ptr_crc(e, ptr, crc) bch2_mark_pointer(c, e, crc, ptr, sectors, ptr->cached ? S_CACHED : type, may_make_unavailable, stats, gc_will_visit, journal_seq); } static void __bch2_mark_key(struct bch_fs *c, struct bkey_s_c k, s64 sectors, bool metadata, bool may_make_unavailable, struct bch_fs_usage *stats, bool gc_will_visit, u64 journal_seq) { switch (k.k->type) { case BCH_EXTENT: case BCH_EXTENT_CACHED: bch2_mark_extent(c, bkey_s_c_to_extent(k), sectors, metadata, may_make_unavailable, stats, gc_will_visit, journal_seq); break; case BCH_RESERVATION: { struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); stats->persistent_reserved += r.v->nr_replicas * sectors; break; } } } void __bch2_gc_mark_key(struct bch_fs *c, struct bkey_s_c k, s64 sectors, bool metadata, struct bch_fs_usage *stats) { __bch2_mark_key(c, k, sectors, metadata, true, stats, false, 0); } void bch2_gc_mark_key(struct bch_fs *c, struct bkey_s_c k, s64 sectors, bool metadata) { struct bch_fs_usage stats = { 0 }; __bch2_gc_mark_key(c, k, sectors, metadata, &stats); preempt_disable(); bch2_usage_add(this_cpu_ptr(c->usage_percpu), &stats); preempt_enable(); } void bch2_mark_key(struct bch_fs *c, struct bkey_s_c k, s64 sectors, bool metadata, struct gc_pos gc_pos, struct bch_fs_usage *stats, u64 journal_seq) { /* * synchronization w.r.t. GC: * * Normally, bucket sector counts/marks are updated on the fly, as * references are added/removed from the btree, the lists of buckets the * allocator owns, other metadata buckets, etc. * * When GC is in progress and going to mark this reference, we do _not_ * mark this reference here, to avoid double counting - GC will count it * when it gets to it. * * To know whether we should mark a given reference (GC either isn't * running, or has already marked references at this position) we * construct a total order for everything GC walks. Then, we can simply * compare the position of the reference we're marking - @gc_pos - with * GC's current position. If GC is going to mark this reference, GC's * current position will be less than @gc_pos; if GC's current position * is greater than @gc_pos GC has either already walked this position, * or isn't running. * * To avoid racing with GC's position changing, we have to deal with * - GC's position being set to GC_POS_MIN when GC starts: * usage_lock guards against this * - GC's position overtaking @gc_pos: we guard against this with * whatever lock protects the data structure the reference lives in * (e.g. the btree node lock, or the relevant allocator lock). */ lg_local_lock(&c->usage_lock); __bch2_mark_key(c, k, sectors, metadata, false, stats, gc_will_visit(c, gc_pos), journal_seq); bch2_fs_stats_verify(c); lg_local_unlock(&c->usage_lock); } static u64 __recalc_sectors_available(struct bch_fs *c) { return c->capacity - bch2_fs_sectors_used(c); } /* Used by gc when it's starting: */ void bch2_recalc_sectors_available(struct bch_fs *c) { int cpu; lg_global_lock(&c->usage_lock); for_each_possible_cpu(cpu) per_cpu_ptr(c->usage_percpu, cpu)->available_cache = 0; atomic64_set(&c->sectors_available, __recalc_sectors_available(c)); lg_global_unlock(&c->usage_lock); } void bch2_disk_reservation_put(struct bch_fs *c, struct disk_reservation *res) { if (res->sectors) { lg_local_lock(&c->usage_lock); this_cpu_sub(c->usage_percpu->online_reserved, res->sectors); bch2_fs_stats_verify(c); lg_local_unlock(&c->usage_lock); res->sectors = 0; } } #define SECTORS_CACHE 1024 int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res, unsigned sectors, int flags) { struct bch_fs_usage *stats; u64 old, new, v; s64 sectors_available; int ret; sectors *= res->nr_replicas; lg_local_lock(&c->usage_lock); stats = this_cpu_ptr(c->usage_percpu); if (sectors >= stats->available_cache) goto out; v = atomic64_read(&c->sectors_available); do { old = v; if (old < sectors) { lg_local_unlock(&c->usage_lock); goto recalculate; } new = max_t(s64, 0, old - sectors - SECTORS_CACHE); } while ((v = atomic64_cmpxchg(&c->sectors_available, old, new)) != old); stats->available_cache += old - new; out: stats->available_cache -= sectors; stats->online_reserved += sectors; res->sectors += sectors; bch2_fs_stats_verify(c); lg_local_unlock(&c->usage_lock); return 0; recalculate: /* * GC recalculates sectors_available when it starts, so that hopefully * we don't normally end up blocking here: */ /* * Piss fuck, we can be called from extent_insert_fixup() with btree * locks held: */ if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD)) { if (!(flags & BCH_DISK_RESERVATION_BTREE_LOCKS_HELD)) down_read(&c->gc_lock); else if (!down_read_trylock(&c->gc_lock)) return -EINTR; } lg_global_lock(&c->usage_lock); sectors_available = __recalc_sectors_available(c); if (sectors <= sectors_available || (flags & BCH_DISK_RESERVATION_NOFAIL)) { atomic64_set(&c->sectors_available, max_t(s64, 0, sectors_available - sectors)); stats->online_reserved += sectors; res->sectors += sectors; ret = 0; } else { atomic64_set(&c->sectors_available, sectors_available); ret = -ENOSPC; } bch2_fs_stats_verify(c); lg_global_unlock(&c->usage_lock); if (!(flags & BCH_DISK_RESERVATION_GC_LOCK_HELD)) up_read(&c->gc_lock); return ret; } int bch2_disk_reservation_get(struct bch_fs *c, struct disk_reservation *res, unsigned sectors, int flags) { res->sectors = 0; res->gen = c->capacity_gen; res->nr_replicas = (flags & BCH_DISK_RESERVATION_METADATA) ? c->opts.metadata_replicas : c->opts.data_replicas; return bch2_disk_reservation_add(c, res, sectors, flags); }