// SPDX-License-Identifier: GPL-2.0 /* * Code for manipulating bucket marks for garbage collection. * * Copyright 2014 Datera, Inc. * * Bucket states: * - free bucket: mark == 0 * The bucket contains no data and will not be read * * - allocator bucket: owned_by_allocator == 1 * The bucket is on a free list, or it is an open bucket * * - cached bucket: owned_by_allocator == 0 && * dirty_sectors == 0 && * cached_sectors > 0 * The bucket contains data but may be safely discarded as there are * enough replicas of the data on other cache devices, or it has been * written back to the backing device * * - dirty bucket: owned_by_allocator == 0 && * dirty_sectors > 0 * The bucket contains data that we must not discard (either only copy, * or one of the 'main copies' for data requiring multiple replicas) * * - metadata bucket: owned_by_allocator == 0 && is_metadata == 1 * This is a btree node, journal or gen/prio bucket * * Lifecycle: * * bucket invalidated => bucket on freelist => open bucket => * [dirty bucket =>] cached bucket => bucket invalidated => ... * * Note that cache promotion can skip the dirty bucket step, as data * is copied from a deeper tier to a shallower tier, onto a cached * bucket. * Note also that a cached bucket can spontaneously become dirty -- * see below. * * Only a traversal of the key space can determine whether a bucket is * truly dirty or cached. * * Transitions: * * - free => allocator: bucket was invalidated * - cached => allocator: bucket was invalidated * * - allocator => dirty: open bucket was filled up * - allocator => cached: open bucket was filled up * - allocator => metadata: metadata was allocated * * - dirty => cached: dirty sectors were copied to a deeper tier * - dirty => free: dirty sectors were overwritten or moved (copy gc) * - cached => free: cached sectors were overwritten * * - metadata => free: metadata was freed * * Oddities: * - cached => dirty: a device was removed so formerly replicated data * is no longer sufficiently replicated * - free => cached: cannot happen * - free => dirty: cannot happen * - free => metadata: cannot happen */ #include "bcachefs.h" #include "alloc_background.h" #include "bset.h" #include "btree_gc.h" #include "btree_update.h" #include "buckets.h" #include "ec.h" #include "error.h" #include "movinggc.h" #include "replicas.h" #include #include /* * Clear journal_seq_valid for buckets for which it's not needed, to prevent * wraparound: */ void bch2_bucket_seq_cleanup(struct bch_fs *c) { u64 journal_seq = atomic64_read(&c->journal.seq); u16 last_seq_ondisk = c->journal.last_seq_ondisk; struct bch_dev *ca; struct bucket_array *buckets; struct bucket *g; struct bucket_mark m; unsigned i; if (journal_seq - c->last_bucket_seq_cleanup < (1U << (BUCKET_JOURNAL_SEQ_BITS - 2))) return; c->last_bucket_seq_cleanup = journal_seq; for_each_member_device(ca, c, i) { down_read(&ca->bucket_lock); buckets = bucket_array(ca); for_each_bucket(g, buckets) { bucket_cmpxchg(g, m, ({ if (!m.journal_seq_valid || bucket_needs_journal_commit(m, last_seq_ondisk)) break; m.journal_seq_valid = 0; })); } up_read(&ca->bucket_lock); } } void bch2_fs_usage_initialize(struct bch_fs *c) { struct bch_fs_usage *usage; unsigned i; percpu_down_write(&c->mark_lock); usage = c->usage_base; bch2_fs_usage_acc_to_base(c, 0); bch2_fs_usage_acc_to_base(c, 1); for (i = 0; i < BCH_REPLICAS_MAX; i++) usage->reserved += usage->persistent_reserved[i]; for (i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry *e = cpu_replicas_entry(&c->replicas, i); switch (e->data_type) { case BCH_DATA_BTREE: usage->btree += usage->replicas[i]; break; case BCH_DATA_USER: usage->data += usage->replicas[i]; break; case BCH_DATA_CACHED: usage->cached += usage->replicas[i]; break; } } percpu_up_write(&c->mark_lock); } void bch2_fs_usage_scratch_put(struct bch_fs *c, struct bch_fs_usage *fs_usage) { if (fs_usage == c->usage_scratch) mutex_unlock(&c->usage_scratch_lock); else kfree(fs_usage); } struct bch_fs_usage *bch2_fs_usage_scratch_get(struct bch_fs *c) { struct bch_fs_usage *ret; unsigned bytes = fs_usage_u64s(c) * sizeof(u64); ret = kzalloc(bytes, GFP_NOWAIT); if (ret) return ret; if (mutex_trylock(&c->usage_scratch_lock)) goto out_pool; ret = kzalloc(bytes, GFP_NOFS); if (ret) return ret; mutex_lock(&c->usage_scratch_lock); out_pool: ret = c->usage_scratch; memset(ret, 0, bytes); return ret; } struct bch_dev_usage bch2_dev_usage_read(struct bch_fs *c, struct bch_dev *ca) { struct bch_dev_usage ret; memset(&ret, 0, sizeof(ret)); acc_u64s_percpu((u64 *) &ret, (u64 __percpu *) ca->usage[0], sizeof(ret) / sizeof(u64)); return ret; } static inline struct bch_fs_usage *fs_usage_ptr(struct bch_fs *c, unsigned journal_seq, bool gc) { return this_cpu_ptr(gc ? c->usage_gc : c->usage[journal_seq & 1]); } u64 bch2_fs_usage_read_one(struct bch_fs *c, u64 *v) { ssize_t offset = v - (u64 *) c->usage_base; unsigned seq; u64 ret; BUG_ON(offset < 0 || offset >= fs_usage_u64s(c)); percpu_rwsem_assert_held(&c->mark_lock); do { seq = read_seqcount_begin(&c->usage_lock); ret = *v + percpu_u64_get((u64 __percpu *) c->usage[0] + offset) + percpu_u64_get((u64 __percpu *) c->usage[1] + offset); } while (read_seqcount_retry(&c->usage_lock, seq)); return ret; } struct bch_fs_usage *bch2_fs_usage_read(struct bch_fs *c) { struct bch_fs_usage *ret; unsigned seq, v, u64s = fs_usage_u64s(c); retry: ret = kmalloc(u64s * sizeof(u64), GFP_NOFS); if (unlikely(!ret)) return NULL; percpu_down_read(&c->mark_lock); v = fs_usage_u64s(c); if (unlikely(u64s != v)) { u64s = v; percpu_up_read(&c->mark_lock); kfree(ret); goto retry; } do { seq = read_seqcount_begin(&c->usage_lock); memcpy(ret, c->usage_base, u64s * sizeof(u64)); acc_u64s_percpu((u64 *) ret, (u64 __percpu *) c->usage[0], u64s); acc_u64s_percpu((u64 *) ret, (u64 __percpu *) c->usage[1], u64s); } while (read_seqcount_retry(&c->usage_lock, seq)); return ret; } void bch2_fs_usage_acc_to_base(struct bch_fs *c, unsigned idx) { unsigned u64s = fs_usage_u64s(c); BUG_ON(idx >= 2); write_seqcount_begin(&c->usage_lock); acc_u64s_percpu((u64 *) c->usage_base, (u64 __percpu *) c->usage[idx], u64s); percpu_memset(c->usage[idx], 0, u64s * sizeof(u64)); write_seqcount_end(&c->usage_lock); } void bch2_fs_usage_to_text(struct printbuf *out, struct bch_fs *c, struct bch_fs_usage *fs_usage) { unsigned i; pr_buf(out, "capacity:\t\t\t%llu\n", c->capacity); pr_buf(out, "hidden:\t\t\t\t%llu\n", fs_usage->hidden); pr_buf(out, "data:\t\t\t\t%llu\n", fs_usage->data); pr_buf(out, "cached:\t\t\t\t%llu\n", fs_usage->cached); pr_buf(out, "reserved:\t\t\t%llu\n", fs_usage->reserved); pr_buf(out, "nr_inodes:\t\t\t%llu\n", fs_usage->nr_inodes); pr_buf(out, "online reserved:\t\t%llu\n", fs_usage->online_reserved); for (i = 0; i < ARRAY_SIZE(fs_usage->persistent_reserved); i++) { pr_buf(out, "%u replicas:\n", i + 1); pr_buf(out, "\treserved:\t\t%llu\n", fs_usage->persistent_reserved[i]); } for (i = 0; i < c->replicas.nr; i++) { struct bch_replicas_entry *e = cpu_replicas_entry(&c->replicas, i); pr_buf(out, "\t"); bch2_replicas_entry_to_text(out, e); pr_buf(out, ":\t%llu\n", fs_usage->replicas[i]); } } #define RESERVE_FACTOR 6 static u64 reserve_factor(u64 r) { return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR); } static u64 avail_factor(u64 r) { return (r << RESERVE_FACTOR) / ((1 << RESERVE_FACTOR) + 1); } u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage *fs_usage) { return min(fs_usage->hidden + fs_usage->btree + fs_usage->data + reserve_factor(fs_usage->reserved + fs_usage->online_reserved), c->capacity); } static struct bch_fs_usage_short __bch2_fs_usage_read_short(struct bch_fs *c) { struct bch_fs_usage_short ret; u64 data, reserved; ret.capacity = c->capacity - bch2_fs_usage_read_one(c, &c->usage_base->hidden); data = bch2_fs_usage_read_one(c, &c->usage_base->data) + bch2_fs_usage_read_one(c, &c->usage_base->btree); reserved = bch2_fs_usage_read_one(c, &c->usage_base->reserved) + bch2_fs_usage_read_one(c, &c->usage_base->online_reserved); ret.used = min(ret.capacity, data + reserve_factor(reserved)); ret.free = ret.capacity - ret.used; ret.nr_inodes = bch2_fs_usage_read_one(c, &c->usage_base->nr_inodes); return ret; } struct bch_fs_usage_short bch2_fs_usage_read_short(struct bch_fs *c) { struct bch_fs_usage_short ret; percpu_down_read(&c->mark_lock); ret = __bch2_fs_usage_read_short(c); percpu_up_read(&c->mark_lock); return ret; } static inline int is_unavailable_bucket(struct bucket_mark m) { return !is_available_bucket(m); } static inline int is_fragmented_bucket(struct bucket_mark m, struct bch_dev *ca) { if (!m.owned_by_allocator && m.data_type == BCH_DATA_USER && bucket_sectors_used(m)) return max_t(int, 0, (int) ca->mi.bucket_size - bucket_sectors_used(m)); return 0; } static inline enum bch_data_type bucket_type(struct bucket_mark m) { return m.cached_sectors && !m.dirty_sectors ? BCH_DATA_CACHED : m.data_type; } static bool bucket_became_unavailable(struct bucket_mark old, struct bucket_mark new) { return is_available_bucket(old) && !is_available_bucket(new); } int bch2_fs_usage_apply(struct bch_fs *c, struct bch_fs_usage *fs_usage, struct disk_reservation *disk_res, unsigned journal_seq) { s64 added = fs_usage->data + fs_usage->reserved; s64 should_not_have_added; int ret = 0; percpu_rwsem_assert_held(&c->mark_lock); /* * Not allowed to reduce sectors_available except by getting a * reservation: */ should_not_have_added = added - (s64) (disk_res ? disk_res->sectors : 0); if (WARN_ONCE(should_not_have_added > 0, "disk usage increased by %lli without a reservation", should_not_have_added)) { atomic64_sub(should_not_have_added, &c->sectors_available); added -= should_not_have_added; ret = -1; } if (added > 0) { disk_res->sectors -= added; fs_usage->online_reserved -= added; } preempt_disable(); acc_u64s((u64 *) fs_usage_ptr(c, journal_seq, false), (u64 *) fs_usage, fs_usage_u64s(c)); preempt_enable(); return ret; } static inline void account_bucket(struct bch_fs_usage *fs_usage, struct bch_dev_usage *dev_usage, enum bch_data_type type, int nr, s64 size) { if (type == BCH_DATA_SB || type == BCH_DATA_JOURNAL) fs_usage->hidden += size; dev_usage->buckets[type] += nr; } static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca, struct bch_fs_usage *fs_usage, struct bucket_mark old, struct bucket_mark new, bool gc) { struct bch_dev_usage *dev_usage; percpu_rwsem_assert_held(&c->mark_lock); preempt_disable(); dev_usage = this_cpu_ptr(ca->usage[gc]); if (bucket_type(old)) account_bucket(fs_usage, dev_usage, bucket_type(old), -1, -ca->mi.bucket_size); if (bucket_type(new)) account_bucket(fs_usage, dev_usage, bucket_type(new), 1, ca->mi.bucket_size); dev_usage->buckets_alloc += (int) new.owned_by_allocator - (int) old.owned_by_allocator; dev_usage->buckets_ec += (int) new.stripe - (int) old.stripe; dev_usage->buckets_unavailable += is_unavailable_bucket(new) - is_unavailable_bucket(old); dev_usage->sectors[old.data_type] -= old.dirty_sectors; dev_usage->sectors[new.data_type] += new.dirty_sectors; dev_usage->sectors[BCH_DATA_CACHED] += (int) new.cached_sectors - (int) old.cached_sectors; dev_usage->sectors_fragmented += is_fragmented_bucket(new, ca) - is_fragmented_bucket(old, ca); preempt_enable(); if (!is_available_bucket(old) && is_available_bucket(new)) bch2_wake_allocator(ca); } void bch2_dev_usage_from_buckets(struct bch_fs *c) { struct bch_dev *ca; struct bucket_mark old = { .v.counter = 0 }; struct bucket_array *buckets; struct bucket *g; unsigned i; int cpu; c->usage_base->hidden = 0; for_each_member_device(ca, c, i) { for_each_possible_cpu(cpu) memset(per_cpu_ptr(ca->usage[0], cpu), 0, sizeof(*ca->usage[0])); buckets = bucket_array(ca); for_each_bucket(g, buckets) bch2_dev_usage_update(c, ca, c->usage_base, old, g->mark, false); } } static inline void update_replicas(struct bch_fs *c, struct bch_fs_usage *fs_usage, struct bch_replicas_entry *r, s64 sectors) { int idx = bch2_replicas_entry_idx(c, r); BUG_ON(idx < 0); switch (r->data_type) { case BCH_DATA_BTREE: fs_usage->btree += sectors; break; case BCH_DATA_USER: fs_usage->data += sectors; break; case BCH_DATA_CACHED: fs_usage->cached += sectors; break; } fs_usage->replicas[idx] += sectors; } static inline void update_cached_sectors(struct bch_fs *c, struct bch_fs_usage *fs_usage, unsigned dev, s64 sectors) { struct bch_replicas_padded r; bch2_replicas_entry_cached(&r.e, dev); update_replicas(c, fs_usage, &r.e, sectors); } static struct replicas_delta_list * replicas_deltas_realloc(struct btree_trans *trans, unsigned more) { struct replicas_delta_list *d = trans->fs_usage_deltas; unsigned new_size = d ? (d->size + more) * 2 : 128; if (!d || d->used + more > d->size) { d = krealloc(d, sizeof(*d) + new_size, GFP_NOIO|__GFP_ZERO); BUG_ON(!d); d->size = new_size; trans->fs_usage_deltas = d; } return d; } static inline void update_replicas_list(struct btree_trans *trans, struct bch_replicas_entry *r, s64 sectors) { struct replicas_delta_list *d; struct replicas_delta *n; unsigned b; if (!sectors) return; b = replicas_entry_bytes(r) + 8; d = replicas_deltas_realloc(trans, b); n = (void *) d->d + d->used; n->delta = sectors; memcpy(&n->r, r, replicas_entry_bytes(r)); d->used += b; } static inline void update_cached_sectors_list(struct btree_trans *trans, unsigned dev, s64 sectors) { struct bch_replicas_padded r; bch2_replicas_entry_cached(&r.e, dev); update_replicas_list(trans, &r.e, sectors); } void bch2_replicas_delta_list_apply(struct bch_fs *c, struct bch_fs_usage *fs_usage, struct replicas_delta_list *r) { struct replicas_delta *d = r->d; struct replicas_delta *top = (void *) r->d + r->used; acc_u64s((u64 *) fs_usage, (u64 *) &r->fs_usage, sizeof(*fs_usage) / sizeof(u64)); while (d != top) { BUG_ON((void *) d > (void *) top); update_replicas(c, fs_usage, &d->r, d->delta); d = (void *) d + replicas_entry_bytes(&d->r) + 8; } } #define do_mark_fn(fn, c, pos, flags, ...) \ ({ \ int gc, ret = 0; \ \ percpu_rwsem_assert_held(&c->mark_lock); \ \ for (gc = 0; gc < 2 && !ret; gc++) \ if (!gc == !(flags & BCH_BUCKET_MARK_GC) || \ (gc && gc_visited(c, pos))) \ ret = fn(c, __VA_ARGS__, gc); \ ret; \ }) static int __bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, struct bucket_mark *ret, bool gc) { struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc); struct bucket *g = __bucket(ca, b, gc); struct bucket_mark old, new; old = bucket_cmpxchg(g, new, ({ BUG_ON(!is_available_bucket(new)); new.owned_by_allocator = true; new.data_type = 0; new.cached_sectors = 0; new.dirty_sectors = 0; new.gen++; })); bch2_dev_usage_update(c, ca, fs_usage, old, new, gc); if (old.cached_sectors) update_cached_sectors(c, fs_usage, ca->dev_idx, -((s64) old.cached_sectors)); if (!gc) *ret = old; return 0; } void bch2_invalidate_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, struct bucket_mark *old) { do_mark_fn(__bch2_invalidate_bucket, c, gc_phase(GC_PHASE_START), 0, ca, b, old); if (!old->owned_by_allocator && old->cached_sectors) trace_invalidate(ca, bucket_to_sector(ca, b), old->cached_sectors); } static int __bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, bool owned_by_allocator, bool gc) { struct bch_fs_usage *fs_usage = fs_usage_ptr(c, 0, gc); struct bucket *g = __bucket(ca, b, gc); struct bucket_mark old, new; old = bucket_cmpxchg(g, new, ({ new.owned_by_allocator = owned_by_allocator; })); bch2_dev_usage_update(c, ca, fs_usage, old, new, gc); BUG_ON(!gc && !owned_by_allocator && !old.owned_by_allocator); return 0; } void bch2_mark_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, bool owned_by_allocator, struct gc_pos pos, unsigned flags) { preempt_disable(); do_mark_fn(__bch2_mark_alloc_bucket, c, pos, flags, ca, b, owned_by_allocator); preempt_enable(); } static int bch2_mark_alloc(struct bch_fs *c, struct bkey_s_c k, struct bch_fs_usage *fs_usage, u64 journal_seq, unsigned flags) { bool gc = flags & BCH_BUCKET_MARK_GC; struct bkey_alloc_unpacked u; struct bch_dev *ca; struct bucket *g; struct bucket_mark old, m; /* * alloc btree is read in by bch2_alloc_read, not gc: */ if ((flags & BCH_BUCKET_MARK_GC) && !(flags & BCH_BUCKET_MARK_BUCKET_INVALIDATE)) return 0; ca = bch_dev_bkey_exists(c, k.k->p.inode); if (k.k->p.offset >= ca->mi.nbuckets) return 0; g = __bucket(ca, k.k->p.offset, gc); u = bch2_alloc_unpack(k); old = bucket_cmpxchg(g, m, ({ m.gen = u.gen; m.data_type = u.data_type; m.dirty_sectors = u.dirty_sectors; m.cached_sectors = u.cached_sectors; if (journal_seq) { m.journal_seq_valid = 1; m.journal_seq = journal_seq; } })); if (!(flags & BCH_BUCKET_MARK_ALLOC_READ)) bch2_dev_usage_update(c, ca, fs_usage, old, m, gc); g->io_time[READ] = u.read_time; g->io_time[WRITE] = u.write_time; g->oldest_gen = u.oldest_gen; g->gen_valid = 1; /* * need to know if we're getting called from the invalidate path or * not: */ if ((flags & BCH_BUCKET_MARK_BUCKET_INVALIDATE) && old.cached_sectors) { update_cached_sectors(c, fs_usage, ca->dev_idx, -old.cached_sectors); trace_invalidate(ca, bucket_to_sector(ca, k.k->p.offset), old.cached_sectors); } return 0; } #define checked_add(a, b) \ ({ \ unsigned _res = (unsigned) (a) + (b); \ bool overflow = _res > U16_MAX; \ if (overflow) \ _res = U16_MAX; \ (a) = _res; \ overflow; \ }) static int __bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, enum bch_data_type type, unsigned sectors, bool gc) { struct bucket *g = __bucket(ca, b, gc); struct bucket_mark old, new; bool overflow; BUG_ON(type != BCH_DATA_SB && type != BCH_DATA_JOURNAL); old = bucket_cmpxchg(g, new, ({ new.data_type = type; overflow = checked_add(new.dirty_sectors, sectors); })); bch2_fs_inconsistent_on(old.data_type && old.data_type != type, c, "different types of data in same bucket: %s, %s", bch2_data_types[old.data_type], bch2_data_types[type]); bch2_fs_inconsistent_on(overflow, c, "bucket sector count overflow: %u + %u > U16_MAX", old.dirty_sectors, sectors); if (c) bch2_dev_usage_update(c, ca, fs_usage_ptr(c, 0, gc), old, new, gc); return 0; } void bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, size_t b, enum bch_data_type type, unsigned sectors, struct gc_pos pos, unsigned flags) { BUG_ON(type != BCH_DATA_SB && type != BCH_DATA_JOURNAL); preempt_disable(); if (likely(c)) { do_mark_fn(__bch2_mark_metadata_bucket, c, pos, flags, ca, b, type, sectors); } else { __bch2_mark_metadata_bucket(c, ca, b, type, sectors, 0); } preempt_enable(); } static s64 ptr_disk_sectors_delta(struct extent_ptr_decoded p, unsigned offset, s64 delta, unsigned flags) { if (flags & BCH_BUCKET_MARK_OVERWRITE_SPLIT) { BUG_ON(offset + -delta > p.crc.live_size); return -((s64) ptr_disk_sectors(p)) + __ptr_disk_sectors(p, offset) + __ptr_disk_sectors(p, p.crc.live_size - offset + delta); } else if (flags & BCH_BUCKET_MARK_OVERWRITE) { BUG_ON(offset + -delta > p.crc.live_size); return -((s64) ptr_disk_sectors(p)) + __ptr_disk_sectors(p, p.crc.live_size + delta); } else { return ptr_disk_sectors(p); } } static void bucket_set_stripe(struct bch_fs *c, const struct bch_stripe *v, struct bch_fs_usage *fs_usage, u64 journal_seq, unsigned flags) { bool enabled = !(flags & BCH_BUCKET_MARK_OVERWRITE); bool gc = flags & BCH_BUCKET_MARK_GC; unsigned i; for (i = 0; i < v->nr_blocks; i++) { const struct bch_extent_ptr *ptr = v->ptrs + i; struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket *g = PTR_BUCKET(ca, ptr, gc); struct bucket_mark new, old; old = bucket_cmpxchg(g, new, ({ new.stripe = enabled; if (journal_seq) { new.journal_seq_valid = 1; new.journal_seq = journal_seq; } })); bch2_dev_usage_update(c, ca, fs_usage, old, new, gc); /* * XXX write repair code for these, flag stripe as possibly bad */ if (old.gen != ptr->gen) bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "stripe with stale pointer"); #if 0 /* * We'd like to check for these, but these checks don't work * yet: */ if (old.stripe && enabled) bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "multiple stripes using same bucket"); if (!old.stripe && !enabled) bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "deleting stripe but bucket not marked as stripe bucket"); #endif } } static bool bch2_mark_pointer(struct bch_fs *c, struct extent_ptr_decoded p, s64 sectors, enum bch_data_type data_type, struct bch_fs_usage *fs_usage, u64 journal_seq, unsigned flags) { bool gc = flags & BCH_BUCKET_MARK_GC; struct bucket_mark old, new; struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); struct bucket *g = PTR_BUCKET(ca, &p.ptr, gc); bool overflow; u64 v; v = atomic64_read(&g->_mark.v); do { new.v.counter = old.v.counter = v; /* * Check this after reading bucket mark to guard against * the allocator invalidating a bucket after we've already * checked the gen */ if (gen_after(p.ptr.gen, new.gen)) { bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "pointer gen in the future"); return true; } if (new.gen != p.ptr.gen) { /* XXX write repair code for this */ if (!p.ptr.cached && test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "stale dirty pointer"); return true; } if (!p.ptr.cached) overflow = checked_add(new.dirty_sectors, sectors); else overflow = checked_add(new.cached_sectors, sectors); if (!new.dirty_sectors && !new.cached_sectors) { new.data_type = 0; if (journal_seq) { new.journal_seq_valid = 1; new.journal_seq = journal_seq; } } else { new.data_type = data_type; } if (flags & BCH_BUCKET_MARK_NOATOMIC) { g->_mark = new; break; } } while ((v = atomic64_cmpxchg(&g->_mark.v, old.v.counter, new.v.counter)) != old.v.counter); if (old.data_type && old.data_type != data_type) bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "bucket %u:%zu gen %u different types of data in same bucket: %s, %s", p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), new.gen, bch2_data_types[old.data_type], bch2_data_types[data_type]); bch2_fs_inconsistent_on(overflow, c, "bucket sector count overflow: %u + %lli > U16_MAX", !p.ptr.cached ? old.dirty_sectors : old.cached_sectors, sectors); bch2_dev_usage_update(c, ca, fs_usage, old, new, gc); BUG_ON(!gc && bucket_became_unavailable(old, new)); return false; } static int bch2_mark_stripe_ptr(struct bch_fs *c, struct bch_extent_stripe_ptr p, enum bch_data_type data_type, struct bch_fs_usage *fs_usage, s64 sectors, unsigned flags) { bool gc = flags & BCH_BUCKET_MARK_GC; struct stripe *m; unsigned old, new, nr_data; int blocks_nonempty_delta; s64 parity_sectors; BUG_ON(!sectors); m = genradix_ptr(&c->stripes[gc], p.idx); spin_lock(&c->ec_stripes_heap_lock); if (!m || !m->alive) { spin_unlock(&c->ec_stripes_heap_lock); bch_err_ratelimited(c, "pointer to nonexistent stripe %llu", (u64) p.idx); return -EIO; } BUG_ON(m->r.e.data_type != data_type); nr_data = m->nr_blocks - m->nr_redundant; parity_sectors = DIV_ROUND_UP(abs(sectors) * m->nr_redundant, nr_data); if (sectors < 0) parity_sectors = -parity_sectors; sectors += parity_sectors; old = m->block_sectors[p.block]; m->block_sectors[p.block] += sectors; new = m->block_sectors[p.block]; blocks_nonempty_delta = (int) !!new - (int) !!old; if (blocks_nonempty_delta) { m->blocks_nonempty += blocks_nonempty_delta; if (!gc) bch2_stripes_heap_update(c, m, p.idx); } m->dirty = true; spin_unlock(&c->ec_stripes_heap_lock); update_replicas(c, fs_usage, &m->r.e, sectors); return 0; } static int bch2_mark_extent(struct bch_fs *c, struct bkey_s_c k, unsigned offset, s64 sectors, enum bch_data_type data_type, struct bch_fs_usage *fs_usage, unsigned journal_seq, unsigned flags) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; struct bch_replicas_padded r; s64 dirty_sectors = 0; unsigned i; int ret; r.e.data_type = data_type; r.e.nr_devs = 0; r.e.nr_required = 1; BUG_ON(!sectors); bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { s64 disk_sectors = data_type == BCH_DATA_BTREE ? sectors : ptr_disk_sectors_delta(p, offset, sectors, flags); bool stale = bch2_mark_pointer(c, p, disk_sectors, data_type, fs_usage, journal_seq, flags); if (p.ptr.cached) { if (!stale) update_cached_sectors(c, fs_usage, p.ptr.dev, disk_sectors); } else if (!p.ec_nr) { dirty_sectors += disk_sectors; r.e.devs[r.e.nr_devs++] = p.ptr.dev; } else { for (i = 0; i < p.ec_nr; i++) { ret = bch2_mark_stripe_ptr(c, p.ec[i], data_type, fs_usage, disk_sectors, flags); if (ret) return ret; } r.e.nr_required = 0; } } update_replicas(c, fs_usage, &r.e, dirty_sectors); return 0; } static int bch2_mark_stripe(struct bch_fs *c, struct bkey_s_c k, struct bch_fs_usage *fs_usage, u64 journal_seq, unsigned flags) { bool gc = flags & BCH_BUCKET_MARK_GC; struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); size_t idx = s.k->p.offset; struct stripe *m = genradix_ptr(&c->stripes[gc], idx); unsigned i; spin_lock(&c->ec_stripes_heap_lock); if (!m || ((flags & BCH_BUCKET_MARK_OVERWRITE) && !m->alive)) { spin_unlock(&c->ec_stripes_heap_lock); bch_err_ratelimited(c, "error marking nonexistent stripe %zu", idx); return -1; } if (!(flags & BCH_BUCKET_MARK_OVERWRITE)) { m->sectors = le16_to_cpu(s.v->sectors); m->algorithm = s.v->algorithm; m->nr_blocks = s.v->nr_blocks; m->nr_redundant = s.v->nr_redundant; bch2_bkey_to_replicas(&m->r.e, k); /* * XXX: account for stripes somehow here */ #if 0 update_replicas(c, fs_usage, &m->r.e, stripe_sectors); #endif /* gc recalculates these fields: */ if (!(flags & BCH_BUCKET_MARK_GC)) { for (i = 0; i < s.v->nr_blocks; i++) { m->block_sectors[i] = stripe_blockcount_get(s.v, i); m->blocks_nonempty += !!m->block_sectors[i]; } } if (!gc) bch2_stripes_heap_update(c, m, idx); m->alive = true; } else { if (!gc) bch2_stripes_heap_del(c, m, idx); memset(m, 0, sizeof(*m)); } spin_unlock(&c->ec_stripes_heap_lock); bucket_set_stripe(c, s.v, fs_usage, 0, flags); return 0; } int bch2_mark_key_locked(struct bch_fs *c, struct bkey_s_c k, unsigned offset, s64 sectors, struct bch_fs_usage *fs_usage, u64 journal_seq, unsigned flags) { int ret = 0; preempt_disable(); if (!fs_usage || (flags & BCH_BUCKET_MARK_GC)) fs_usage = fs_usage_ptr(c, journal_seq, flags & BCH_BUCKET_MARK_GC); switch (k.k->type) { case KEY_TYPE_alloc: ret = bch2_mark_alloc(c, k, fs_usage, journal_seq, flags); break; case KEY_TYPE_btree_ptr: sectors = !(flags & BCH_BUCKET_MARK_OVERWRITE) ? c->opts.btree_node_size : -c->opts.btree_node_size; ret = bch2_mark_extent(c, k, offset, sectors, BCH_DATA_BTREE, fs_usage, journal_seq, flags); break; case KEY_TYPE_extent: case KEY_TYPE_reflink_v: ret = bch2_mark_extent(c, k, offset, sectors, BCH_DATA_USER, fs_usage, journal_seq, flags); break; case KEY_TYPE_stripe: ret = bch2_mark_stripe(c, k, fs_usage, journal_seq, flags); break; case KEY_TYPE_inode: if (!(flags & BCH_BUCKET_MARK_OVERWRITE)) fs_usage->nr_inodes++; else fs_usage->nr_inodes--; break; case KEY_TYPE_reservation: { unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas; sectors *= replicas; replicas = clamp_t(unsigned, replicas, 1, ARRAY_SIZE(fs_usage->persistent_reserved)); fs_usage->reserved += sectors; fs_usage->persistent_reserved[replicas - 1] += sectors; break; } } preempt_enable(); return ret; } int bch2_mark_key(struct bch_fs *c, struct bkey_s_c k, unsigned offset, s64 sectors, struct bch_fs_usage *fs_usage, u64 journal_seq, unsigned flags) { int ret; percpu_down_read(&c->mark_lock); ret = bch2_mark_key_locked(c, k, offset, sectors, fs_usage, journal_seq, flags); percpu_up_read(&c->mark_lock); return ret; } inline int bch2_mark_overwrite(struct btree_trans *trans, struct btree_iter *iter, struct bkey_s_c old, struct bkey_i *new, struct bch_fs_usage *fs_usage, unsigned flags) { struct bch_fs *c = trans->c; struct btree *b = iter->l[0].b; unsigned offset = 0; s64 sectors = 0; flags |= BCH_BUCKET_MARK_OVERWRITE; if (btree_node_is_extents(b) ? bkey_cmp(new->k.p, bkey_start_pos(old.k)) <= 0 : bkey_cmp(new->k.p, old.k->p)) return 0; if (btree_node_is_extents(b)) { switch (bch2_extent_overlap(&new->k, old.k)) { case BCH_EXTENT_OVERLAP_ALL: offset = 0; sectors = -((s64) old.k->size); break; case BCH_EXTENT_OVERLAP_BACK: offset = bkey_start_offset(&new->k) - bkey_start_offset(old.k); sectors = bkey_start_offset(&new->k) - old.k->p.offset; break; case BCH_EXTENT_OVERLAP_FRONT: offset = 0; sectors = bkey_start_offset(old.k) - new->k.p.offset; break; case BCH_EXTENT_OVERLAP_MIDDLE: offset = bkey_start_offset(&new->k) - bkey_start_offset(old.k); sectors = -((s64) new->k.size); flags |= BCH_BUCKET_MARK_OVERWRITE_SPLIT; break; } BUG_ON(sectors >= 0); } return bch2_mark_key_locked(c, old, offset, sectors, fs_usage, trans->journal_res.seq, flags) ?: 1; } int bch2_mark_update(struct btree_trans *trans, struct btree_insert_entry *insert, struct bch_fs_usage *fs_usage, unsigned flags) { struct bch_fs *c = trans->c; struct btree_iter *iter = insert->iter; struct btree *b = iter->l[0].b; struct btree_node_iter node_iter = iter->l[0].iter; struct bkey_packed *_k; int ret = 0; if (!btree_node_type_needs_gc(iter->btree_id)) return 0; if (!(trans->flags & BTREE_INSERT_NOMARK_INSERT)) bch2_mark_key_locked(c, bkey_i_to_s_c(insert->k), 0, insert->k->k.size, fs_usage, trans->journal_res.seq, BCH_BUCKET_MARK_INSERT|flags); if (unlikely(trans->flags & BTREE_INSERT_NOMARK_OVERWRITES)) return 0; /* * For non extents, we only mark the new key, not the key being * overwritten - unless we're actually deleting: */ if ((iter->btree_id == BTREE_ID_ALLOC || iter->btree_id == BTREE_ID_EC) && !bkey_deleted(&insert->k->k)) return 0; while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b, KEY_TYPE_discard))) { struct bkey unpacked; struct bkey_s_c k = bkey_disassemble(b, _k, &unpacked); ret = bch2_mark_overwrite(trans, iter, k, insert->k, fs_usage, flags); if (ret <= 0) break; bch2_btree_node_iter_advance(&node_iter, b); } return ret; } void bch2_trans_fs_usage_apply(struct btree_trans *trans, struct bch_fs_usage *fs_usage) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; static int warned_disk_usage = 0; u64 disk_res_sectors = trans->disk_res ? trans->disk_res->sectors : 0; char buf[200]; if (!bch2_fs_usage_apply(c, fs_usage, trans->disk_res, trans->journal_res.seq) || warned_disk_usage || xchg(&warned_disk_usage, 1)) return; bch_err(c, "disk usage increased more than %llu sectors reserved", disk_res_sectors); trans_for_each_update_iter(trans, i) { struct btree_iter *iter = i->iter; struct btree *b = iter->l[0].b; struct btree_node_iter node_iter = iter->l[0].iter; struct bkey_packed *_k; pr_err("while inserting"); bch2_bkey_val_to_text(&PBUF(buf), c, bkey_i_to_s_c(i->k)); pr_err("%s", buf); pr_err("overlapping with"); node_iter = iter->l[0].iter; while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b, KEY_TYPE_discard))) { struct bkey unpacked; struct bkey_s_c k; k = bkey_disassemble(b, _k, &unpacked); if (btree_node_is_extents(b) ? bkey_cmp(i->k->k.p, bkey_start_pos(k.k)) <= 0 : bkey_cmp(i->k->k.p, k.k->p)) break; bch2_bkey_val_to_text(&PBUF(buf), c, k); pr_err("%s", buf); bch2_btree_node_iter_advance(&node_iter, b); } } } /* trans_mark: */ static int trans_get_key(struct btree_trans *trans, enum btree_id btree_id, struct bpos pos, struct btree_iter **iter, struct bkey_s_c *k) { struct btree_insert_entry *i; int ret; for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) if (!i->deferred && i->iter->btree_id == btree_id && (btree_node_type_is_extents(btree_id) ? bkey_cmp(pos, bkey_start_pos(&i->k->k)) >= 0 && bkey_cmp(pos, i->k->k.p) < 0 : !bkey_cmp(pos, i->iter->pos))) { *iter = i->iter; *k = bkey_i_to_s_c(i->k); return 1; } *iter = __bch2_trans_get_iter(trans, btree_id, pos, BTREE_ITER_SLOTS|BTREE_ITER_INTENT, 0); if (IS_ERR(*iter)) return PTR_ERR(*iter); bch2_trans_iter_free_on_commit(trans, *iter); *k = bch2_btree_iter_peek_slot(*iter); ret = bkey_err(*k); if (ret) bch2_trans_iter_put(trans, *iter); return ret; } static void *trans_update_key(struct btree_trans *trans, struct btree_iter *iter, unsigned u64s) { struct bkey_i *new_k; unsigned i; new_k = bch2_trans_kmalloc(trans, u64s * sizeof(u64)); if (IS_ERR(new_k)) return new_k; bkey_init(&new_k->k); new_k->k.p = iter->pos; for (i = 0; i < trans->nr_updates; i++) if (!trans->updates[i].deferred && trans->updates[i].iter == iter) { trans->updates[i].k = new_k; return new_k; } bch2_trans_update(trans, ((struct btree_insert_entry) { .iter = iter, .k = new_k, .triggered = true, })); return new_k; } static int bch2_trans_mark_pointer(struct btree_trans *trans, struct extent_ptr_decoded p, s64 sectors, enum bch_data_type data_type) { struct bch_fs *c = trans->c; struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); struct btree_iter *iter; struct bkey_s_c k; struct bkey_alloc_unpacked u; struct bkey_i_alloc *a; unsigned old; bool overflow; int ret; ret = trans_get_key(trans, BTREE_ID_ALLOC, POS(p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr)), &iter, &k); if (ret < 0) return ret; if (!ret) { /* * During journal replay, and if gc repairs alloc info at * runtime, the alloc info in the btree might not be up to date * yet - so, trust the in memory mark: */ struct bucket *g; struct bucket_mark m; percpu_down_read(&c->mark_lock); g = bucket(ca, iter->pos.offset); m = READ_ONCE(g->mark); u = alloc_mem_to_key(g, m); percpu_up_read(&c->mark_lock); } else { /* * Unless we're already updating that key: */ if (k.k->type != KEY_TYPE_alloc) { bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "pointer to nonexistent bucket %llu:%llu", iter->pos.inode, iter->pos.offset); ret = -1; goto out; } u = bch2_alloc_unpack(k); } if (gen_after(u.gen, p.ptr.gen)) { ret = 1; goto out; } if (u.data_type && u.data_type != data_type) { bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, "bucket %llu:%llu gen %u different types of data in same bucket: %s, %s", iter->pos.inode, iter->pos.offset, u.gen, bch2_data_types[u.data_type], bch2_data_types[data_type]); ret = -1; goto out; } if (!p.ptr.cached) { old = u.dirty_sectors; overflow = checked_add(u.dirty_sectors, sectors); } else { old = u.cached_sectors; overflow = checked_add(u.cached_sectors, sectors); } u.data_type = u.dirty_sectors || u.cached_sectors ? data_type : 0; bch2_fs_inconsistent_on(overflow, c, "bucket sector count overflow: %u + %lli > U16_MAX", old, sectors); a = trans_update_key(trans, iter, BKEY_ALLOC_U64s_MAX); ret = PTR_ERR_OR_ZERO(a); if (ret) goto out; bkey_alloc_init(&a->k_i); a->k.p = iter->pos; bch2_alloc_pack(a, u); out: bch2_trans_iter_put(trans, iter); return ret; } static int bch2_trans_mark_stripe_ptr(struct btree_trans *trans, struct bch_extent_stripe_ptr p, s64 sectors, enum bch_data_type data_type) { struct bch_fs *c = trans->c; struct bch_replicas_padded r; struct btree_iter *iter; struct bkey_i *new_k; struct bkey_s_c k; struct bkey_s_stripe s; unsigned nr_data; s64 parity_sectors; int ret = 0; ret = trans_get_key(trans, BTREE_ID_EC, POS(0, p.idx), &iter, &k); if (ret < 0) return ret; if (k.k->type != KEY_TYPE_stripe) { bch2_fs_inconsistent(c, "pointer to nonexistent stripe %llu", (u64) p.idx); ret = -EIO; goto out; } new_k = trans_update_key(trans, iter, k.k->u64s); ret = PTR_ERR_OR_ZERO(new_k); if (ret) goto out; bkey_reassemble(new_k, k); s = bkey_i_to_s_stripe(new_k); nr_data = s.v->nr_blocks - s.v->nr_redundant; parity_sectors = DIV_ROUND_UP(abs(sectors) * s.v->nr_redundant, nr_data); if (sectors < 0) parity_sectors = -parity_sectors; stripe_blockcount_set(s.v, p.block, stripe_blockcount_get(s.v, p.block) + sectors + parity_sectors); bch2_bkey_to_replicas(&r.e, s.s_c); update_replicas_list(trans, &r.e, sectors); out: bch2_trans_iter_put(trans, iter); return ret; } static int bch2_trans_mark_extent(struct btree_trans *trans, struct bkey_s_c k, unsigned offset, s64 sectors, unsigned flags, enum bch_data_type data_type) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; struct bch_replicas_padded r; s64 dirty_sectors = 0; bool stale; unsigned i; int ret; r.e.data_type = data_type; r.e.nr_devs = 0; r.e.nr_required = 1; BUG_ON(!sectors); bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { s64 disk_sectors = data_type == BCH_DATA_BTREE ? sectors : ptr_disk_sectors_delta(p, offset, sectors, flags); ret = bch2_trans_mark_pointer(trans, p, disk_sectors, data_type); if (ret < 0) return ret; stale = ret > 0; if (p.ptr.cached) { if (!stale) update_cached_sectors_list(trans, p.ptr.dev, disk_sectors); } else if (!p.ec_nr) { dirty_sectors += disk_sectors; r.e.devs[r.e.nr_devs++] = p.ptr.dev; } else { for (i = 0; i < p.ec_nr; i++) { ret = bch2_trans_mark_stripe_ptr(trans, p.ec[i], disk_sectors, data_type); if (ret) return ret; } r.e.nr_required = 0; } } update_replicas_list(trans, &r.e, dirty_sectors); return 0; } static int __bch2_trans_mark_reflink_p(struct btree_trans *trans, struct bkey_s_c_reflink_p p, u64 idx, unsigned sectors, unsigned flags) { struct bch_fs *c = trans->c; struct btree_iter *iter; struct bkey_i *new_k; struct bkey_s_c k; struct bkey_i_reflink_v *r_v; s64 ret; ret = trans_get_key(trans, BTREE_ID_REFLINK, POS(0, idx), &iter, &k); if (ret < 0) return ret; if (k.k->type != KEY_TYPE_reflink_v) { bch2_fs_inconsistent(c, "%llu:%llu len %u points to nonexistent indirect extent %llu", p.k->p.inode, p.k->p.offset, p.k->size, idx); ret = -EIO; goto err; } if ((flags & BCH_BUCKET_MARK_OVERWRITE) && (bkey_start_offset(k.k) < idx || k.k->p.offset > idx + sectors)) goto out; bch2_btree_iter_set_pos(iter, bkey_start_pos(k.k)); BUG_ON(iter->uptodate > BTREE_ITER_NEED_PEEK); new_k = trans_update_key(trans, iter, k.k->u64s); ret = PTR_ERR_OR_ZERO(new_k); if (ret) goto err; bkey_reassemble(new_k, k); r_v = bkey_i_to_reflink_v(new_k); le64_add_cpu(&r_v->v.refcount, !(flags & BCH_BUCKET_MARK_OVERWRITE) ? 1 : -1); if (!r_v->v.refcount) { r_v->k.type = KEY_TYPE_deleted; set_bkey_val_u64s(&r_v->k, 0); } out: ret = k.k->p.offset - idx; err: bch2_trans_iter_put(trans, iter); return ret; } static int bch2_trans_mark_reflink_p(struct btree_trans *trans, struct bkey_s_c_reflink_p p, unsigned offset, s64 sectors, unsigned flags) { u64 idx = le64_to_cpu(p.v->idx) + offset; s64 ret = 0; sectors = abs(sectors); BUG_ON(offset + sectors > p.k->size); while (sectors) { ret = __bch2_trans_mark_reflink_p(trans, p, idx, sectors, flags); if (ret < 0) break; idx += ret; sectors = max_t(s64, 0LL, sectors - ret); ret = 0; } return ret; } int bch2_trans_mark_key(struct btree_trans *trans, struct bkey_s_c k, unsigned offset, s64 sectors, unsigned flags) { struct replicas_delta_list *d; struct bch_fs *c = trans->c; switch (k.k->type) { case KEY_TYPE_btree_ptr: sectors = !(flags & BCH_BUCKET_MARK_OVERWRITE) ? c->opts.btree_node_size : -c->opts.btree_node_size; return bch2_trans_mark_extent(trans, k, offset, sectors, flags, BCH_DATA_BTREE); case KEY_TYPE_extent: case KEY_TYPE_reflink_v: return bch2_trans_mark_extent(trans, k, offset, sectors, flags, BCH_DATA_USER); case KEY_TYPE_inode: d = replicas_deltas_realloc(trans, 0); if (!(flags & BCH_BUCKET_MARK_OVERWRITE)) d->fs_usage.nr_inodes++; else d->fs_usage.nr_inodes--; return 0; case KEY_TYPE_reservation: { unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas; d = replicas_deltas_realloc(trans, 0); sectors *= replicas; replicas = clamp_t(unsigned, replicas, 1, ARRAY_SIZE(d->fs_usage.persistent_reserved)); d->fs_usage.reserved += sectors; d->fs_usage.persistent_reserved[replicas - 1] += sectors; return 0; } case KEY_TYPE_reflink_p: return bch2_trans_mark_reflink_p(trans, bkey_s_c_to_reflink_p(k), offset, sectors, flags); default: return 0; } } int bch2_trans_mark_update(struct btree_trans *trans, struct btree_iter *iter, struct bkey_i *insert) { struct btree *b = iter->l[0].b; struct btree_node_iter node_iter = iter->l[0].iter; struct bkey_packed *_k; int ret; if (!btree_node_type_needs_gc(iter->btree_id)) return 0; ret = bch2_trans_mark_key(trans, bkey_i_to_s_c(insert), 0, insert->k.size, BCH_BUCKET_MARK_INSERT); if (ret) return ret; if (unlikely(trans->flags & BTREE_INSERT_NOMARK_OVERWRITES)) return 0; while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b, KEY_TYPE_discard))) { struct bkey unpacked; struct bkey_s_c k; unsigned offset = 0; s64 sectors = 0; unsigned flags = BCH_BUCKET_MARK_OVERWRITE; k = bkey_disassemble(b, _k, &unpacked); if (btree_node_is_extents(b) ? bkey_cmp(insert->k.p, bkey_start_pos(k.k)) <= 0 : bkey_cmp(insert->k.p, k.k->p)) break; if (btree_node_is_extents(b)) { switch (bch2_extent_overlap(&insert->k, k.k)) { case BCH_EXTENT_OVERLAP_ALL: offset = 0; sectors = -((s64) k.k->size); break; case BCH_EXTENT_OVERLAP_BACK: offset = bkey_start_offset(&insert->k) - bkey_start_offset(k.k); sectors = bkey_start_offset(&insert->k) - k.k->p.offset; break; case BCH_EXTENT_OVERLAP_FRONT: offset = 0; sectors = bkey_start_offset(k.k) - insert->k.p.offset; break; case BCH_EXTENT_OVERLAP_MIDDLE: offset = bkey_start_offset(&insert->k) - bkey_start_offset(k.k); sectors = -((s64) insert->k.size); flags |= BCH_BUCKET_MARK_OVERWRITE_SPLIT; break; } BUG_ON(sectors >= 0); } ret = bch2_trans_mark_key(trans, k, offset, sectors, flags); if (ret) return ret; bch2_btree_node_iter_advance(&node_iter, b); } return 0; } /* Disk reservations: */ static u64 bch2_recalc_sectors_available(struct bch_fs *c) { percpu_u64_set(&c->pcpu->sectors_available, 0); return avail_factor(__bch2_fs_usage_read_short(c).free); } void __bch2_disk_reservation_put(struct bch_fs *c, struct disk_reservation *res) { percpu_down_read(&c->mark_lock); this_cpu_sub(c->usage[0]->online_reserved, res->sectors); percpu_up_read(&c->mark_lock); res->sectors = 0; } #define SECTORS_CACHE 1024 int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res, unsigned sectors, int flags) { struct bch_fs_pcpu *pcpu; u64 old, v, get; s64 sectors_available; int ret; percpu_down_read(&c->mark_lock); preempt_disable(); pcpu = this_cpu_ptr(c->pcpu); if (sectors <= pcpu->sectors_available) goto out; v = atomic64_read(&c->sectors_available); do { old = v; get = min((u64) sectors + SECTORS_CACHE, old); if (get < sectors) { preempt_enable(); percpu_up_read(&c->mark_lock); goto recalculate; } } while ((v = atomic64_cmpxchg(&c->sectors_available, old, old - get)) != old); pcpu->sectors_available += get; out: pcpu->sectors_available -= sectors; this_cpu_add(c->usage[0]->online_reserved, sectors); res->sectors += sectors; preempt_enable(); percpu_up_read(&c->mark_lock); return 0; recalculate: percpu_down_write(&c->mark_lock); sectors_available = bch2_recalc_sectors_available(c); if (sectors <= sectors_available || (flags & BCH_DISK_RESERVATION_NOFAIL)) { atomic64_set(&c->sectors_available, max_t(s64, 0, sectors_available - sectors)); this_cpu_add(c->usage[0]->online_reserved, sectors); res->sectors += sectors; ret = 0; } else { atomic64_set(&c->sectors_available, sectors_available); ret = -ENOSPC; } percpu_up_write(&c->mark_lock); return ret; } /* Startup/shutdown: */ static void buckets_free_rcu(struct rcu_head *rcu) { struct bucket_array *buckets = container_of(rcu, struct bucket_array, rcu); kvpfree(buckets, sizeof(struct bucket_array) + buckets->nbuckets * sizeof(struct bucket)); } int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) { struct bucket_array *buckets = NULL, *old_buckets = NULL; unsigned long *buckets_nouse = NULL; alloc_fifo free[RESERVE_NR]; alloc_fifo free_inc; alloc_heap alloc_heap; copygc_heap copygc_heap; size_t btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, ca->mi.bucket_size / c->opts.btree_node_size); /* XXX: these should be tunable */ size_t reserve_none = max_t(size_t, 1, nbuckets >> 9); size_t copygc_reserve = max_t(size_t, 2, nbuckets >> 7); size_t free_inc_nr = max(max_t(size_t, 1, nbuckets >> 12), btree_reserve * 2); bool resize = ca->buckets[0] != NULL, start_copygc = ca->copygc_thread != NULL; int ret = -ENOMEM; unsigned i; memset(&free, 0, sizeof(free)); memset(&free_inc, 0, sizeof(free_inc)); memset(&alloc_heap, 0, sizeof(alloc_heap)); memset(©gc_heap, 0, sizeof(copygc_heap)); if (!(buckets = kvpmalloc(sizeof(struct bucket_array) + nbuckets * sizeof(struct bucket), GFP_KERNEL|__GFP_ZERO)) || !(buckets_nouse = kvpmalloc(BITS_TO_LONGS(nbuckets) * sizeof(unsigned long), GFP_KERNEL|__GFP_ZERO)) || !init_fifo(&free[RESERVE_BTREE], btree_reserve, GFP_KERNEL) || !init_fifo(&free[RESERVE_MOVINGGC], copygc_reserve, GFP_KERNEL) || !init_fifo(&free[RESERVE_NONE], reserve_none, GFP_KERNEL) || !init_fifo(&free_inc, free_inc_nr, GFP_KERNEL) || !init_heap(&alloc_heap, ALLOC_SCAN_BATCH(ca) << 1, GFP_KERNEL) || !init_heap(©gc_heap, copygc_reserve, GFP_KERNEL)) goto err; buckets->first_bucket = ca->mi.first_bucket; buckets->nbuckets = nbuckets; bch2_copygc_stop(ca); if (resize) { down_write(&c->gc_lock); down_write(&ca->bucket_lock); percpu_down_write(&c->mark_lock); } old_buckets = bucket_array(ca); if (resize) { size_t n = min(buckets->nbuckets, old_buckets->nbuckets); memcpy(buckets->b, old_buckets->b, n * sizeof(struct bucket)); memcpy(buckets_nouse, ca->buckets_nouse, BITS_TO_LONGS(n) * sizeof(unsigned long)); } rcu_assign_pointer(ca->buckets[0], buckets); buckets = old_buckets; swap(ca->buckets_nouse, buckets_nouse); if (resize) percpu_up_write(&c->mark_lock); spin_lock(&c->freelist_lock); for (i = 0; i < RESERVE_NR; i++) { fifo_move(&free[i], &ca->free[i]); swap(ca->free[i], free[i]); } fifo_move(&free_inc, &ca->free_inc); swap(ca->free_inc, free_inc); spin_unlock(&c->freelist_lock); /* with gc lock held, alloc_heap can't be in use: */ swap(ca->alloc_heap, alloc_heap); /* and we shut down copygc: */ swap(ca->copygc_heap, copygc_heap); nbuckets = ca->mi.nbuckets; if (resize) { up_write(&ca->bucket_lock); up_write(&c->gc_lock); } if (start_copygc && bch2_copygc_start(c, ca)) bch_err(ca, "error restarting copygc thread"); ret = 0; err: free_heap(©gc_heap); free_heap(&alloc_heap); free_fifo(&free_inc); for (i = 0; i < RESERVE_NR; i++) free_fifo(&free[i]); kvpfree(buckets_nouse, BITS_TO_LONGS(nbuckets) * sizeof(unsigned long)); if (buckets) call_rcu(&old_buckets->rcu, buckets_free_rcu); return ret; } void bch2_dev_buckets_free(struct bch_dev *ca) { unsigned i; free_heap(&ca->copygc_heap); free_heap(&ca->alloc_heap); free_fifo(&ca->free_inc); for (i = 0; i < RESERVE_NR; i++) free_fifo(&ca->free[i]); kvpfree(ca->buckets_nouse, BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long)); kvpfree(rcu_dereference_protected(ca->buckets[0], 1), sizeof(struct bucket_array) + ca->mi.nbuckets * sizeof(struct bucket)); free_percpu(ca->usage[0]); } int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca) { if (!(ca->usage[0] = alloc_percpu(struct bch_dev_usage))) return -ENOMEM; return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets);; }