#include "bcachefs.h" #include "acl.h" #include "btree_update.h" #include "buckets.h" #include "chardev.h" #include "dirent.h" #include "extents.h" #include "fs.h" #include "fs-io.h" #include "fsck.h" #include "inode.h" #include "journal.h" #include "keylist.h" #include "super.h" #include "xattr.h" #include #include #include #include #include #include #include #include static struct kmem_cache *bch2_inode_cache; static void bch2_vfs_inode_init(struct bch_fs *, struct bch_inode_info *, struct bch_inode_unpacked *); /* * I_SIZE_DIRTY requires special handling: * * To the recovery code, the flag means that there is stale data past i_size * that needs to be deleted; it's used for implementing atomic appends and * truncates. * * On append, we set I_SIZE_DIRTY before doing the write, then after the write * we clear I_SIZE_DIRTY atomically with updating i_size to the new larger size * that exposes the data we just wrote. * * On truncate, it's the reverse: We set I_SIZE_DIRTY atomically with setting * i_size to the new smaller size, then we delete the data that we just made * invisible, and then we clear I_SIZE_DIRTY. * * Because there can be multiple appends in flight at a time, we need a refcount * (i_size_dirty_count) instead of manipulating the flag directly. Nonzero * refcount means I_SIZE_DIRTY is set, zero means it's cleared. * * Because write_inode() can be called at any time, i_size_dirty_count means * something different to the runtime code - it means to write_inode() "don't * update i_size yet". * * We don't clear I_SIZE_DIRTY directly, we let write_inode() clear it when * i_size_dirty_count is zero - but the reverse is not true, I_SIZE_DIRTY must * be set explicitly. */ int __must_check __bch2_write_inode(struct bch_fs *c, struct bch_inode_info *ei, inode_set_fn set, void *p) { struct btree_iter iter; struct inode *inode = &ei->vfs_inode; struct bch_inode_unpacked inode_u; struct bkey_inode_buf inode_p; u64 inum = inode->i_ino; unsigned i_nlink = READ_ONCE(inode->i_nlink); int ret; /* * We can't write an inode with i_nlink == 0 because it's stored biased; * however, we don't need to because if i_nlink is 0 the inode is * getting deleted when it's evicted. */ if (!i_nlink) return 0; lockdep_assert_held(&ei->update_lock); bch2_btree_iter_init_intent(&iter, c, BTREE_ID_INODES, POS(inum, 0)); do { struct bkey_s_c k = bch2_btree_iter_peek_with_holes(&iter); if ((ret = btree_iter_err(k))) goto out; if (WARN_ONCE(k.k->type != BCH_INODE_FS, "inode %llu not found when updating", inum)) { bch2_btree_iter_unlock(&iter); return -ENOENT; } ret = bch2_inode_unpack(bkey_s_c_to_inode(k), &inode_u); if (WARN_ONCE(ret, "error %i unpacking inode %llu", ret, inum)) { ret = -ENOENT; break; } if (set) { ret = set(ei, &inode_u, p); if (ret) goto out; } BUG_ON(i_nlink < nlink_bias(inode->i_mode)); inode_u.i_mode = inode->i_mode; inode_u.i_uid = i_uid_read(inode); inode_u.i_gid = i_gid_read(inode); inode_u.i_nlink = i_nlink - nlink_bias(inode->i_mode); inode_u.i_dev = inode->i_rdev; inode_u.i_atime = timespec_to_bch2_time(c, inode->i_atime); inode_u.i_mtime = timespec_to_bch2_time(c, inode->i_mtime); inode_u.i_ctime = timespec_to_bch2_time(c, inode->i_ctime); bch2_inode_pack(&inode_p, &inode_u); ret = bch2_btree_insert_at(c, NULL, NULL, &ei->journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL, BTREE_INSERT_ENTRY(&iter, &inode_p.inode.k_i)); } while (ret == -EINTR); if (!ret) { ei->i_size = inode_u.i_size; ei->i_flags = inode_u.i_flags; } out: bch2_btree_iter_unlock(&iter); return ret < 0 ? ret : 0; } int __must_check bch2_write_inode(struct bch_fs *c, struct bch_inode_info *ei) { return __bch2_write_inode(c, ei, NULL, NULL); } int bch2_inc_nlink(struct bch_fs *c, struct bch_inode_info *ei) { int ret; mutex_lock(&ei->update_lock); inc_nlink(&ei->vfs_inode); ret = bch2_write_inode(c, ei); mutex_unlock(&ei->update_lock); return ret; } int bch2_dec_nlink(struct bch_fs *c, struct bch_inode_info *ei) { int ret = 0; mutex_lock(&ei->update_lock); drop_nlink(&ei->vfs_inode); ret = bch2_write_inode(c, ei); mutex_unlock(&ei->update_lock); return ret; } static struct inode *bch2_vfs_inode_get(struct super_block *sb, u64 inum) { struct bch_fs *c = sb->s_fs_info; struct inode *inode; struct bch_inode_unpacked inode_u; struct bch_inode_info *ei; int ret; pr_debug("inum %llu", inum); inode = iget_locked(sb, inum); if (unlikely(!inode)) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) return inode; ret = bch2_inode_find_by_inum(c, inum, &inode_u); if (ret) { iget_failed(inode); return ERR_PTR(ret); } ei = to_bch_ei(inode); bch2_vfs_inode_init(c, ei, &inode_u); ei->journal_seq = bch2_inode_journal_seq(&c->journal, inum); unlock_new_inode(inode); return inode; } static struct inode *bch2_vfs_inode_create(struct bch_fs *c, struct inode *parent, umode_t mode, dev_t rdev) { struct inode *inode; struct posix_acl *default_acl = NULL, *acl = NULL; struct bch_inode_info *ei; struct bch_inode_unpacked inode_u; struct bkey_inode_buf inode_p; int ret; inode = new_inode(parent->i_sb); if (unlikely(!inode)) return ERR_PTR(-ENOMEM); inode_init_owner(inode, parent, mode); ret = posix_acl_create(parent, &inode->i_mode, &default_acl, &acl); if (ret) { make_bad_inode(inode); goto err; } ei = to_bch_ei(inode); bch2_inode_init(c, &inode_u, i_uid_read(inode), i_gid_read(inode), inode->i_mode, rdev); bch2_inode_pack(&inode_p, &inode_u); ret = bch2_inode_create(c, &inode_p.inode.k_i, BLOCKDEV_INODE_MAX, 0, &c->unused_inode_hint); if (unlikely(ret)) { /* * indicate to bch_evict_inode that the inode was never actually * created: */ make_bad_inode(inode); goto err; } inode_u.inum = inode_p.inode.k.p.inode; bch2_vfs_inode_init(c, ei, &inode_u); if (default_acl) { ret = bch2_set_acl(inode, default_acl, ACL_TYPE_DEFAULT); if (unlikely(ret)) goto err; } if (acl) { ret = bch2_set_acl(inode, acl, ACL_TYPE_ACCESS); if (unlikely(ret)) goto err; } insert_inode_hash(inode); atomic_long_inc(&c->nr_inodes); out: posix_acl_release(default_acl); posix_acl_release(acl); return inode; err: clear_nlink(inode); iput(inode); inode = ERR_PTR(ret); goto out; } static int bch2_vfs_dirent_create(struct bch_fs *c, struct inode *dir, u8 type, const struct qstr *name, struct inode *dst) { struct bch_inode_info *dir_ei = to_bch_ei(dir); int ret; ret = bch2_dirent_create(c, dir->i_ino, &dir_ei->str_hash, type, name, dst->i_ino, &dir_ei->journal_seq, BCH_HASH_SET_MUST_CREATE); if (unlikely(ret)) return ret; dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb); mark_inode_dirty_sync(dir); return 0; } static int __bch2_create(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { struct bch_inode_info *dir_ei = to_bch_ei(dir); struct bch_fs *c = dir->i_sb->s_fs_info; struct inode *inode; struct bch_inode_info *ei; int ret; inode = bch2_vfs_inode_create(c, dir, mode, rdev); if (unlikely(IS_ERR(inode))) return PTR_ERR(inode); ei = to_bch_ei(inode); ret = bch2_vfs_dirent_create(c, dir, mode_to_type(mode), &dentry->d_name, inode); if (unlikely(ret)) { clear_nlink(inode); iput(inode); return ret; } if (dir_ei->journal_seq > ei->journal_seq) ei->journal_seq = dir_ei->journal_seq; d_instantiate(dentry, inode); return 0; } /* methods */ static struct dentry *bch2_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) { struct bch_fs *c = dir->i_sb->s_fs_info; struct bch_inode_info *dir_ei = to_bch_ei(dir); struct inode *inode = NULL; u64 inum; inum = bch2_dirent_lookup(c, dir->i_ino, &dir_ei->str_hash, &dentry->d_name); if (inum) inode = bch2_vfs_inode_get(dir->i_sb, inum); return d_splice_alias(inode, dentry); } static int bch2_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) { return __bch2_create(dir, dentry, mode|S_IFREG, 0); } static int bch2_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) { struct bch_fs *c = dir->i_sb->s_fs_info; struct inode *inode = old_dentry->d_inode; struct bch_inode_info *ei = to_bch_ei(inode); int ret; lockdep_assert_held(&inode->i_rwsem); inode->i_ctime = current_fs_time(dir->i_sb); ret = bch2_inc_nlink(c, ei); if (ret) return ret; ihold(inode); ret = bch2_vfs_dirent_create(c, dir, mode_to_type(inode->i_mode), &dentry->d_name, inode); if (unlikely(ret)) { bch2_dec_nlink(c, ei); iput(inode); return ret; } d_instantiate(dentry, inode); return 0; } static int bch2_unlink(struct inode *dir, struct dentry *dentry) { struct bch_fs *c = dir->i_sb->s_fs_info; struct bch_inode_info *dir_ei = to_bch_ei(dir); struct inode *inode = dentry->d_inode; struct bch_inode_info *ei = to_bch_ei(inode); int ret; lockdep_assert_held(&inode->i_rwsem); ret = bch2_dirent_delete(c, dir->i_ino, &dir_ei->str_hash, &dentry->d_name, &dir_ei->journal_seq); if (ret) return ret; if (dir_ei->journal_seq > ei->journal_seq) ei->journal_seq = dir_ei->journal_seq; inode->i_ctime = dir->i_ctime; if (S_ISDIR(inode->i_mode)) { bch2_dec_nlink(c, dir_ei); drop_nlink(inode); } bch2_dec_nlink(c, ei); return 0; } static int bch2_symlink(struct inode *dir, struct dentry *dentry, const char *symname) { struct bch_fs *c = dir->i_sb->s_fs_info; struct inode *inode; struct bch_inode_info *ei, *dir_ei = to_bch_ei(dir); int ret; inode = bch2_vfs_inode_create(c, dir, S_IFLNK|S_IRWXUGO, 0); if (unlikely(IS_ERR(inode))) return PTR_ERR(inode); ei = to_bch_ei(inode); inode_lock(inode); ret = page_symlink(inode, symname, strlen(symname) + 1); inode_unlock(inode); if (unlikely(ret)) goto err; ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); if (unlikely(ret)) goto err; /* XXX: racy */ if (dir_ei->journal_seq < ei->journal_seq) dir_ei->journal_seq = ei->journal_seq; ret = bch2_vfs_dirent_create(c, dir, DT_LNK, &dentry->d_name, inode); if (unlikely(ret)) goto err; d_instantiate(dentry, inode); return 0; err: clear_nlink(inode); iput(inode); return ret; } static int bch2_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { struct bch_fs *c = dir->i_sb->s_fs_info; int ret; lockdep_assert_held(&dir->i_rwsem); ret = __bch2_create(dir, dentry, mode|S_IFDIR, 0); if (unlikely(ret)) return ret; bch2_inc_nlink(c, to_bch_ei(dir)); return 0; } static int bch2_rmdir(struct inode *dir, struct dentry *dentry) { struct bch_fs *c = dir->i_sb->s_fs_info; struct inode *inode = dentry->d_inode; if (bch2_empty_dir(c, inode->i_ino)) return -ENOTEMPTY; return bch2_unlink(dir, dentry); } static int bch2_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { return __bch2_create(dir, dentry, mode, rdev); } static int bch2_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct bch_fs *c = old_dir->i_sb->s_fs_info; struct inode *old_inode = old_dentry->d_inode; struct bch_inode_info *ei = to_bch_ei(old_inode); struct inode *new_inode = new_dentry->d_inode; struct timespec now = current_fs_time(old_dir->i_sb); int ret; lockdep_assert_held(&old_dir->i_rwsem); lockdep_assert_held(&new_dir->i_rwsem); if (new_inode) filemap_write_and_wait_range(old_inode->i_mapping, 0, LLONG_MAX); if (new_inode && S_ISDIR(old_inode->i_mode)) { lockdep_assert_held(&new_inode->i_rwsem); if (!S_ISDIR(new_inode->i_mode)) return -ENOTDIR; if (bch2_empty_dir(c, new_inode->i_ino)) return -ENOTEMPTY; ret = bch2_dirent_rename(c, old_dir, &old_dentry->d_name, new_dir, &new_dentry->d_name, &ei->journal_seq, BCH_RENAME_OVERWRITE); if (unlikely(ret)) return ret; clear_nlink(new_inode); bch2_dec_nlink(c, to_bch_ei(old_dir)); } else if (new_inode) { lockdep_assert_held(&new_inode->i_rwsem); ret = bch2_dirent_rename(c, old_dir, &old_dentry->d_name, new_dir, &new_dentry->d_name, &ei->journal_seq, BCH_RENAME_OVERWRITE); if (unlikely(ret)) return ret; new_inode->i_ctime = now; bch2_dec_nlink(c, to_bch_ei(new_inode)); } else if (S_ISDIR(old_inode->i_mode)) { ret = bch2_dirent_rename(c, old_dir, &old_dentry->d_name, new_dir, &new_dentry->d_name, &ei->journal_seq, BCH_RENAME); if (unlikely(ret)) return ret; bch2_inc_nlink(c, to_bch_ei(new_dir)); bch2_dec_nlink(c, to_bch_ei(old_dir)); } else { ret = bch2_dirent_rename(c, old_dir, &old_dentry->d_name, new_dir, &new_dentry->d_name, &ei->journal_seq, BCH_RENAME); if (unlikely(ret)) return ret; } old_dir->i_ctime = old_dir->i_mtime = now; new_dir->i_ctime = new_dir->i_mtime = now; mark_inode_dirty_sync(old_dir); mark_inode_dirty_sync(new_dir); old_inode->i_ctime = now; mark_inode_dirty_sync(old_inode); return 0; } static int bch2_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct bch_fs *c = old_dir->i_sb->s_fs_info; struct inode *old_inode = old_dentry->d_inode; struct inode *new_inode = new_dentry->d_inode; struct bch_inode_info *ei = to_bch_ei(old_inode); struct timespec now = current_fs_time(old_dir->i_sb); int ret; ret = bch2_dirent_rename(c, old_dir, &old_dentry->d_name, new_dir, &new_dentry->d_name, &ei->journal_seq, BCH_RENAME_EXCHANGE); if (unlikely(ret)) return ret; if (S_ISDIR(old_inode->i_mode) != S_ISDIR(new_inode->i_mode)) { if (S_ISDIR(old_inode->i_mode)) { bch2_inc_nlink(c, to_bch_ei(new_dir)); bch2_dec_nlink(c, to_bch_ei(old_dir)); } else { bch2_dec_nlink(c, to_bch_ei(new_dir)); bch2_inc_nlink(c, to_bch_ei(old_dir)); } } old_dir->i_ctime = old_dir->i_mtime = now; new_dir->i_ctime = new_dir->i_mtime = now; mark_inode_dirty_sync(old_dir); mark_inode_dirty_sync(new_dir); old_inode->i_ctime = now; new_inode->i_ctime = now; mark_inode_dirty_sync(old_inode); mark_inode_dirty_sync(new_inode); return 0; } static int bch2_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned flags) { if (flags & ~(RENAME_NOREPLACE|RENAME_EXCHANGE)) return -EINVAL; if (flags & RENAME_EXCHANGE) return bch2_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); return bch2_rename(old_dir, old_dentry, new_dir, new_dentry); } static int bch2_setattr(struct dentry *dentry, struct iattr *iattr) { struct inode *inode = dentry->d_inode; struct bch_inode_info *ei = to_bch_ei(inode); struct bch_fs *c = inode->i_sb->s_fs_info; int ret = 0; lockdep_assert_held(&inode->i_rwsem); pr_debug("i_size was %llu update has %llu", inode->i_size, iattr->ia_size); ret = setattr_prepare(dentry, iattr); if (ret) return ret; if (iattr->ia_valid & ATTR_SIZE) { ret = bch2_truncate(inode, iattr); } else { mutex_lock(&ei->update_lock); setattr_copy(inode, iattr); ret = bch2_write_inode(c, ei); mutex_unlock(&ei->update_lock); } if (unlikely(ret)) return ret; if (iattr->ia_valid & ATTR_MODE) ret = posix_acl_chmod(inode, inode->i_mode); return ret; } static int bch2_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) { struct bch_fs *c = dir->i_sb->s_fs_info; struct inode *inode; /* XXX: i_nlink should be 0? */ inode = bch2_vfs_inode_create(c, dir, mode, 0); if (unlikely(IS_ERR(inode))) return PTR_ERR(inode); d_tmpfile(dentry, inode); return 0; } static int bch2_fill_extent(struct fiemap_extent_info *info, const struct bkey_i *k, unsigned flags) { if (bkey_extent_is_data(&k->k)) { struct bkey_s_c_extent e = bkey_i_to_s_c_extent(k); const struct bch_extent_ptr *ptr; const union bch_extent_crc *crc; int ret; extent_for_each_ptr_crc(e, ptr, crc) { int flags2 = 0; u64 offset = ptr->offset; if (crc_compression_type(crc)) flags2 |= FIEMAP_EXTENT_ENCODED; else offset += crc_offset(crc); if ((offset & (PAGE_SECTORS - 1)) || (e.k->size & (PAGE_SECTORS - 1))) flags2 |= FIEMAP_EXTENT_NOT_ALIGNED; ret = fiemap_fill_next_extent(info, bkey_start_offset(e.k) << 9, offset << 9, e.k->size << 9, flags|flags2); if (ret) return ret; } return 0; } else if (k->k.type == BCH_RESERVATION) { return fiemap_fill_next_extent(info, bkey_start_offset(&k->k) << 9, 0, k->k.size << 9, flags| FIEMAP_EXTENT_DELALLOC| FIEMAP_EXTENT_UNWRITTEN); } else { BUG(); } } static int bch2_fiemap(struct inode *inode, struct fiemap_extent_info *info, u64 start, u64 len) { struct bch_fs *c = inode->i_sb->s_fs_info; struct btree_iter iter; struct bkey_s_c k; BKEY_PADDED(k) tmp; bool have_extent = false; int ret = 0; if (start + len < start) return -EINVAL; for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, POS(inode->i_ino, start >> 9), k) if (bkey_extent_is_data(k.k) || k.k->type == BCH_RESERVATION) { if (bkey_cmp(bkey_start_pos(k.k), POS(inode->i_ino, (start + len) >> 9)) >= 0) break; if (have_extent) { ret = bch2_fill_extent(info, &tmp.k, 0); if (ret) goto out; } bkey_reassemble(&tmp.k, k); have_extent = true; } if (have_extent) ret = bch2_fill_extent(info, &tmp.k, FIEMAP_EXTENT_LAST); out: bch2_btree_iter_unlock(&iter); return ret < 0 ? ret : 0; } static const struct vm_operations_struct bch_vm_ops = { .fault = filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = bch2_page_mkwrite, }; static int bch2_mmap(struct file *file, struct vm_area_struct *vma) { file_accessed(file); vma->vm_ops = &bch_vm_ops; return 0; } /* Inode flags: */ static const unsigned bch_inode_flags_to_vfs_flags_map[] = { [__BCH_INODE_SYNC] = S_SYNC, [__BCH_INODE_IMMUTABLE] = S_IMMUTABLE, [__BCH_INODE_APPEND] = S_APPEND, [__BCH_INODE_NOATIME] = S_NOATIME, }; static const unsigned bch_inode_flags_to_user_flags_map[] = { [__BCH_INODE_SYNC] = FS_SYNC_FL, [__BCH_INODE_IMMUTABLE] = FS_IMMUTABLE_FL, [__BCH_INODE_APPEND] = FS_APPEND_FL, [__BCH_INODE_NODUMP] = FS_NODUMP_FL, [__BCH_INODE_NOATIME] = FS_NOATIME_FL, }; /* Set VFS inode flags from bcachefs inode: */ static void bch2_inode_flags_to_vfs(struct inode *inode) { unsigned i, flags = to_bch_ei(inode)->i_flags; for (i = 0; i < ARRAY_SIZE(bch_inode_flags_to_vfs_flags_map); i++) if (flags & (1 << i)) inode->i_flags |= bch_inode_flags_to_vfs_flags_map[i]; else inode->i_flags &= ~bch_inode_flags_to_vfs_flags_map[i]; } /* Get FS_IOC_GETFLAGS flags from bcachefs inode: */ static unsigned bch2_inode_flags_to_user_flags(unsigned flags) { unsigned i, ret = 0; for (i = 0; i < ARRAY_SIZE(bch_inode_flags_to_user_flags_map); i++) if (flags & (1 << i)) ret |= bch_inode_flags_to_user_flags_map[i]; return ret; } static int bch2_inode_user_flags_set(struct bch_inode_info *ei, struct bch_inode_unpacked *bi, void *p) { /* * We're relying on btree locking here for exclusion with other ioctl * calls - use the flags in the btree (@bi), not ei->i_flags: */ unsigned bch_flags = bi->i_flags; unsigned oldflags = bch2_inode_flags_to_user_flags(bch_flags); unsigned newflags = *((unsigned *) p); unsigned i; if (((newflags ^ oldflags) & (FS_APPEND_FL|FS_IMMUTABLE_FL)) && !capable(CAP_LINUX_IMMUTABLE)) return -EPERM; for (i = 0; i < ARRAY_SIZE(bch_inode_flags_to_user_flags_map); i++) { if (newflags & bch_inode_flags_to_user_flags_map[i]) bch_flags |= (1 << i); else bch_flags &= ~(1 << i); newflags &= ~bch_inode_flags_to_user_flags_map[i]; oldflags &= ~bch_inode_flags_to_user_flags_map[i]; } if (oldflags != newflags) return -EOPNOTSUPP; bi->i_flags = bch_flags; ei->vfs_inode.i_ctime = current_fs_time(ei->vfs_inode.i_sb); return 0; } #define FS_IOC_GOINGDOWN _IOR ('X', 125, __u32) static long bch2_fs_file_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(filp); struct super_block *sb = inode->i_sb; struct bch_fs *c = sb->s_fs_info; struct bch_inode_info *ei = to_bch_ei(inode); unsigned flags; int ret; switch (cmd) { case FS_IOC_GETFLAGS: return put_user(bch2_inode_flags_to_user_flags(ei->i_flags), (int __user *) arg); case FS_IOC_SETFLAGS: { ret = mnt_want_write_file(filp); if (ret) return ret; if (!inode_owner_or_capable(inode)) { ret = -EACCES; goto setflags_out; } if (get_user(flags, (int __user *) arg)) { ret = -EFAULT; goto setflags_out; } if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode) && (flags & (FS_NODUMP_FL|FS_NOATIME_FL)) != flags) { ret = -EINVAL; goto setflags_out; } inode_lock(inode); mutex_lock(&ei->update_lock); ret = __bch2_write_inode(c, ei, bch2_inode_user_flags_set, &flags); mutex_unlock(&ei->update_lock); if (!ret) bch2_inode_flags_to_vfs(inode); inode_unlock(inode); setflags_out: mnt_drop_write_file(filp); return ret; } case FS_IOC_GETVERSION: return -ENOTTY; case FS_IOC_SETVERSION: return -ENOTTY; case FS_IOC_GOINGDOWN: if (!capable(CAP_SYS_ADMIN)) return -EPERM; down_write(&sb->s_umount); sb->s_flags |= MS_RDONLY; bch2_fs_emergency_read_only(c); up_write(&sb->s_umount); return 0; default: return bch2_fs_ioctl(c, cmd, (void __user *) arg); } } #ifdef CONFIG_COMPAT static long bch2_compat_fs_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { /* These are just misnamed, they actually get/put from/to user an int */ switch (cmd) { case FS_IOC_GETFLAGS: cmd = FS_IOC_GETFLAGS; break; case FS_IOC32_SETFLAGS: cmd = FS_IOC_SETFLAGS; break; default: return -ENOIOCTLCMD; } return bch2_fs_file_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); } #endif /* Directories: */ static loff_t bch2_dir_llseek(struct file *file, loff_t offset, int whence) { return generic_file_llseek_size(file, offset, whence, S64_MAX, S64_MAX); } static int bch2_vfs_readdir(struct file *file, struct dir_context *ctx) { struct inode *inode = file_inode(file); struct bch_fs *c = inode->i_sb->s_fs_info; return bch2_readdir(c, file, ctx); } static const struct file_operations bch_file_operations = { .llseek = bch2_llseek, .read_iter = generic_file_read_iter, .write_iter = bch2_write_iter, .mmap = bch2_mmap, .open = generic_file_open, .fsync = bch2_fsync, .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, .fallocate = bch2_fallocate_dispatch, .unlocked_ioctl = bch2_fs_file_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = bch2_compat_fs_ioctl, #endif }; static const struct inode_operations bch_file_inode_operations = { .setattr = bch2_setattr, .fiemap = bch2_fiemap, .listxattr = bch2_xattr_list, .get_acl = bch2_get_acl, .set_acl = bch2_set_acl, }; static const struct inode_operations bch_dir_inode_operations = { .lookup = bch2_lookup, .create = bch2_create, .link = bch2_link, .unlink = bch2_unlink, .symlink = bch2_symlink, .mkdir = bch2_mkdir, .rmdir = bch2_rmdir, .mknod = bch2_mknod, .rename = bch2_rename2, .setattr = bch2_setattr, .tmpfile = bch2_tmpfile, .listxattr = bch2_xattr_list, .get_acl = bch2_get_acl, .set_acl = bch2_set_acl, }; static const struct file_operations bch_dir_file_operations = { .llseek = bch2_dir_llseek, .read = generic_read_dir, .iterate = bch2_vfs_readdir, .fsync = bch2_fsync, .unlocked_ioctl = bch2_fs_file_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = bch2_compat_fs_ioctl, #endif }; static const struct inode_operations bch_symlink_inode_operations = { .readlink = generic_readlink, .get_link = page_get_link, .setattr = bch2_setattr, .listxattr = bch2_xattr_list, .get_acl = bch2_get_acl, .set_acl = bch2_set_acl, }; static const struct inode_operations bch_special_inode_operations = { .setattr = bch2_setattr, .listxattr = bch2_xattr_list, .get_acl = bch2_get_acl, .set_acl = bch2_set_acl, }; static const struct address_space_operations bch_address_space_operations = { .writepage = bch2_writepage, .readpage = bch2_readpage, .writepages = bch2_writepages, .readpages = bch2_readpages, .set_page_dirty = bch2_set_page_dirty, .write_begin = bch2_write_begin, .write_end = bch2_write_end, .invalidatepage = bch2_invalidatepage, .releasepage = bch2_releasepage, .direct_IO = bch2_direct_IO, #ifdef CONFIG_MIGRATION .migratepage = bch2_migrate_page, #endif .error_remove_page = generic_error_remove_page, }; static void bch2_vfs_inode_init(struct bch_fs *c, struct bch_inode_info *ei, struct bch_inode_unpacked *bi) { struct inode *inode = &ei->vfs_inode; pr_debug("init inode %llu with mode %o", bi->inum, bi->i_mode); ei->i_flags = bi->i_flags; ei->i_size = bi->i_size; inode->i_mode = bi->i_mode; i_uid_write(inode, bi->i_uid); i_gid_write(inode, bi->i_gid); atomic64_set(&ei->i_sectors, bi->i_sectors); inode->i_blocks = bi->i_sectors; inode->i_ino = bi->inum; set_nlink(inode, bi->i_nlink + nlink_bias(inode->i_mode)); inode->i_rdev = bi->i_dev; inode->i_generation = bi->i_generation; inode->i_size = bi->i_size; inode->i_atime = bch2_time_to_timespec(c, bi->i_atime); inode->i_mtime = bch2_time_to_timespec(c, bi->i_mtime); inode->i_ctime = bch2_time_to_timespec(c, bi->i_ctime); bch2_inode_flags_to_vfs(inode); ei->str_hash = bch2_hash_info_init(c, bi); inode->i_mapping->a_ops = &bch_address_space_operations; switch (inode->i_mode & S_IFMT) { case S_IFREG: inode->i_op = &bch_file_inode_operations; inode->i_fop = &bch_file_operations; break; case S_IFDIR: inode->i_op = &bch_dir_inode_operations; inode->i_fop = &bch_dir_file_operations; break; case S_IFLNK: inode_nohighmem(inode); inode->i_op = &bch_symlink_inode_operations; break; default: init_special_inode(inode, inode->i_mode, inode->i_rdev); inode->i_op = &bch_special_inode_operations; break; } } static struct inode *bch2_alloc_inode(struct super_block *sb) { struct bch_inode_info *ei; ei = kmem_cache_alloc(bch2_inode_cache, GFP_NOFS); if (!ei) return NULL; pr_debug("allocated %p", &ei->vfs_inode); inode_init_once(&ei->vfs_inode); mutex_init(&ei->update_lock); ei->journal_seq = 0; atomic_long_set(&ei->i_size_dirty_count, 0); atomic_long_set(&ei->i_sectors_dirty_count, 0); return &ei->vfs_inode; } static void bch2_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); kmem_cache_free(bch2_inode_cache, to_bch_ei(inode)); } static void bch2_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, bch2_i_callback); } static int bch2_vfs_write_inode(struct inode *inode, struct writeback_control *wbc) { struct bch_fs *c = inode->i_sb->s_fs_info; struct bch_inode_info *ei = to_bch_ei(inode); int ret; mutex_lock(&ei->update_lock); ret = bch2_write_inode(c, ei); mutex_unlock(&ei->update_lock); if (c->opts.journal_flush_disabled) return ret; if (!ret && wbc->sync_mode == WB_SYNC_ALL) ret = bch2_journal_flush_seq(&c->journal, ei->journal_seq); return ret; } static void bch2_evict_inode(struct inode *inode) { struct bch_fs *c = inode->i_sb->s_fs_info; truncate_inode_pages_final(&inode->i_data); if (!bch2_journal_error(&c->journal) && !is_bad_inode(inode)) { struct bch_inode_info *ei = to_bch_ei(inode); /* XXX - we want to check this stuff iff there weren't IO errors: */ BUG_ON(atomic_long_read(&ei->i_sectors_dirty_count)); BUG_ON(atomic64_read(&ei->i_sectors) != inode->i_blocks); } clear_inode(inode); if (!inode->i_nlink && !is_bad_inode(inode)) { bch2_inode_rm(c, inode->i_ino); atomic_long_dec(&c->nr_inodes); } } static int bch2_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct bch_fs *c = sb->s_fs_info; u64 fsid; buf->f_type = BCACHE_STATFS_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = c->capacity >> PAGE_SECTOR_SHIFT; buf->f_bfree = (c->capacity - bch2_fs_sectors_used(c)) >> PAGE_SECTOR_SHIFT; buf->f_bavail = buf->f_bfree; buf->f_files = atomic_long_read(&c->nr_inodes); buf->f_ffree = U64_MAX; fsid = le64_to_cpup((void *) c->sb.user_uuid.b) ^ le64_to_cpup((void *) c->sb.user_uuid.b + sizeof(u64)); buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; buf->f_namelen = NAME_MAX; return 0; } static int bch2_sync_fs(struct super_block *sb, int wait) { struct bch_fs *c = sb->s_fs_info; if (!wait) { bch2_journal_flush_async(&c->journal, NULL); return 0; } return bch2_journal_flush(&c->journal); } static struct bch_fs *bch2_open_as_blockdevs(const char *_dev_name, struct bch_opts opts) { size_t nr_devs = 0, i = 0; char *dev_name, *s, **devs; struct bch_fs *c = NULL; const char *err = "cannot allocate memory"; dev_name = kstrdup(_dev_name, GFP_KERNEL); if (!dev_name) return NULL; for (s = dev_name; s; s = strchr(s + 1, ':')) nr_devs++; devs = kcalloc(nr_devs, sizeof(const char *), GFP_KERNEL); if (!devs) goto err; for (i = 0, s = dev_name; s; (s = strchr(s, ':')) && (*s++ = '\0')) devs[i++] = s; err = bch2_fs_open(devs, nr_devs, opts, &c); if (err) { /* * Already open? * Look up each block device, make sure they all belong to a * filesystem and they all belong to the _same_ filesystem */ for (i = 0; i < nr_devs; i++) { struct block_device *bdev = lookup_bdev(devs[i]); struct bch_fs *c2; if (IS_ERR(bdev)) goto err; c2 = bch2_bdev_to_fs(bdev); bdput(bdev); if (!c) c = c2; else if (c2) closure_put(&c2->cl); if (!c) goto err; if (c != c2) { closure_put(&c->cl); goto err; } } mutex_lock(&c->state_lock); if (!bch2_fs_running(c)) { mutex_unlock(&c->state_lock); closure_put(&c->cl); err = "incomplete filesystem"; c = NULL; goto err; } mutex_unlock(&c->state_lock); } set_bit(BCH_FS_BDEV_MOUNTED, &c->flags); err: kfree(devs); kfree(dev_name); if (!c) pr_err("bch_fs_open err %s", err); return c; } static int bch2_remount(struct super_block *sb, int *flags, char *data) { struct bch_fs *c = sb->s_fs_info; struct bch_opts opts = bch2_opts_empty(); int ret; opts.read_only = (*flags & MS_RDONLY) != 0; ret = bch2_parse_mount_opts(&opts, data); if (ret) return ret; if (opts.read_only >= 0 && opts.read_only != c->opts.read_only) { const char *err = NULL; if (opts.read_only) { bch2_fs_read_only(c); sb->s_flags |= MS_RDONLY; } else { err = bch2_fs_read_write(c); if (err) { bch_err(c, "error going rw: %s", err); return -EINVAL; } sb->s_flags &= ~MS_RDONLY; } c->opts.read_only = opts.read_only; } if (opts.errors >= 0) c->opts.errors = opts.errors; return ret; } static const struct super_operations bch_super_operations = { .alloc_inode = bch2_alloc_inode, .destroy_inode = bch2_destroy_inode, .write_inode = bch2_vfs_write_inode, .evict_inode = bch2_evict_inode, .sync_fs = bch2_sync_fs, .statfs = bch2_statfs, .show_options = generic_show_options, .remount_fs = bch2_remount, #if 0 .put_super = bch2_put_super, .freeze_fs = bch2_freeze, .unfreeze_fs = bch2_unfreeze, #endif }; static int bch2_test_super(struct super_block *s, void *data) { return s->s_fs_info == data; } static int bch2_set_super(struct super_block *s, void *data) { s->s_fs_info = data; return 0; } static struct dentry *bch2_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { struct bch_fs *c; struct bch_dev *ca; struct super_block *sb; struct inode *inode; struct bch_opts opts = bch2_opts_empty(); unsigned i; int ret; opts.read_only = (flags & MS_RDONLY) != 0; ret = bch2_parse_mount_opts(&opts, data); if (ret) return ERR_PTR(ret); c = bch2_open_as_blockdevs(dev_name, opts); if (!c) return ERR_PTR(-ENOENT); sb = sget(fs_type, bch2_test_super, bch2_set_super, flags|MS_NOSEC, c); if (IS_ERR(sb)) { closure_put(&c->cl); return ERR_CAST(sb); } BUG_ON(sb->s_fs_info != c); if (sb->s_root) { closure_put(&c->cl); if ((flags ^ sb->s_flags) & MS_RDONLY) { ret = -EBUSY; goto err_put_super; } goto out; } /* XXX: blocksize */ sb->s_blocksize = PAGE_SIZE; sb->s_blocksize_bits = PAGE_SHIFT; sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_op = &bch_super_operations; sb->s_xattr = bch2_xattr_handlers; sb->s_magic = BCACHE_STATFS_MAGIC; sb->s_time_gran = c->sb.time_precision; c->vfs_sb = sb; sb->s_bdi = &c->bdi; strlcpy(sb->s_id, c->name, sizeof(sb->s_id)); for_each_online_member(ca, c, i) { struct block_device *bdev = ca->disk_sb.bdev; /* XXX: create an anonymous device for multi device filesystems */ sb->s_bdev = bdev; sb->s_dev = bdev->bd_dev; percpu_ref_put(&ca->io_ref); break; } if (opts.posix_acl < 0) sb->s_flags |= MS_POSIXACL; else sb->s_flags |= opts.posix_acl ? MS_POSIXACL : 0; inode = bch2_vfs_inode_get(sb, BCACHE_ROOT_INO); if (IS_ERR(inode)) { ret = PTR_ERR(inode); goto err_put_super; } sb->s_root = d_make_root(inode); if (!sb->s_root) { ret = -ENOMEM; goto err_put_super; } sb->s_flags |= MS_ACTIVE; out: return dget(sb->s_root); err_put_super: deactivate_locked_super(sb); return ERR_PTR(ret); } static void bch2_kill_sb(struct super_block *sb) { struct bch_fs *c = sb->s_fs_info; generic_shutdown_super(sb); if (test_bit(BCH_FS_BDEV_MOUNTED, &c->flags)) bch2_fs_stop(c); else closure_put(&c->cl); } static struct file_system_type bcache_fs_type = { .owner = THIS_MODULE, .name = "bcachefs", .mount = bch2_mount, .kill_sb = bch2_kill_sb, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("bcachefs"); void bch2_vfs_exit(void) { unregister_filesystem(&bcache_fs_type); if (bch2_dio_write_bioset) bioset_free(bch2_dio_write_bioset); if (bch2_dio_read_bioset) bioset_free(bch2_dio_read_bioset); if (bch2_writepage_bioset) bioset_free(bch2_writepage_bioset); if (bch2_inode_cache) kmem_cache_destroy(bch2_inode_cache); } int __init bch2_vfs_init(void) { int ret = -ENOMEM; bch2_inode_cache = KMEM_CACHE(bch_inode_info, 0); if (!bch2_inode_cache) goto err; bch2_writepage_bioset = bioset_create(4, offsetof(struct bch_writepage_io, bio.bio)); if (!bch2_writepage_bioset) goto err; bch2_dio_read_bioset = bioset_create(4, offsetof(struct dio_read, rbio.bio)); if (!bch2_dio_read_bioset) goto err; bch2_dio_write_bioset = bioset_create(4, offsetof(struct dio_write, bio.bio)); if (!bch2_dio_write_bioset) goto err; ret = register_filesystem(&bcache_fs_type); if (ret) goto err; return 0; err: bch2_vfs_exit(); return ret; }