// SPDX-License-Identifier: GPL-2.0 #ifndef NO_BCACHEFS_FS #include "bcachefs.h" #include "acl.h" #include "btree_update.h" #include "buckets.h" #include "chardev.h" #include "dirent.h" #include "extents.h" #include "fs.h" #include "fs-io.h" #include "fs-ioctl.h" #include "fsck.h" #include "inode.h" #include "io.h" #include "journal.h" #include "keylist.h" #include "quota.h" #include "super.h" #include "xattr.h" #include #include #include #include #include #include #include #include static struct kmem_cache *bch2_inode_cache; static void bch2_vfs_inode_init(struct bch_fs *, struct bch_inode_info *, struct bch_inode_unpacked *); static void journal_seq_copy(struct bch_inode_info *dst, u64 journal_seq) { u64 old, v = READ_ONCE(dst->ei_journal_seq); do { old = v; if (old >= journal_seq) break; } while ((v = cmpxchg(&dst->ei_journal_seq, old, journal_seq)) != old); } /* * I_SIZE_DIRTY requires special handling: * * To the recovery code, the flag means that there is stale data past i_size * that needs to be deleted; it's used for implementing atomic appends and * truncates. * * On append, we set I_SIZE_DIRTY before doing the write, then after the write * we clear I_SIZE_DIRTY atomically with updating i_size to the new larger size * that exposes the data we just wrote. * * On truncate, it's the reverse: We set I_SIZE_DIRTY atomically with setting * i_size to the new smaller size, then we delete the data that we just made * invisible, and then we clear I_SIZE_DIRTY. * * Because there can be multiple appends in flight at a time, we need a refcount * (i_size_dirty_count) instead of manipulating the flag directly. Nonzero * refcount means I_SIZE_DIRTY is set, zero means it's cleared. * * Because write_inode() can be called at any time, i_size_dirty_count means * something different to the runtime code - it means to write_inode() "don't * update i_size yet". * * We don't clear I_SIZE_DIRTY directly, we let write_inode() clear it when * i_size_dirty_count is zero - but the reverse is not true, I_SIZE_DIRTY must * be set explicitly. */ void bch2_inode_update_after_write(struct bch_fs *c, struct bch_inode_info *inode, struct bch_inode_unpacked *bi, unsigned fields) { set_nlink(&inode->v, bi->bi_flags & BCH_INODE_UNLINKED ? 0 : bi->bi_nlink + nlink_bias(inode->v.i_mode)); i_uid_write(&inode->v, bi->bi_uid); i_gid_write(&inode->v, bi->bi_gid); inode->v.i_mode = bi->bi_mode; if (fields & ATTR_ATIME) inode->v.i_atime = bch2_time_to_timespec(c, bi->bi_atime); if (fields & ATTR_MTIME) inode->v.i_mtime = bch2_time_to_timespec(c, bi->bi_mtime); if (fields & ATTR_CTIME) inode->v.i_ctime = bch2_time_to_timespec(c, bi->bi_ctime); inode->ei_inode = *bi; bch2_inode_flags_to_vfs(inode); } int __must_check bch2_write_inode_trans(struct btree_trans *trans, struct bch_inode_info *inode, struct bch_inode_unpacked *inode_u, inode_set_fn set, void *p) { struct bch_fs *c = trans->c; struct btree_iter *iter = NULL; struct bkey_inode_buf *inode_p; int ret; lockdep_assert_held(&inode->ei_update_lock); if (c->opts.new_inode_updates) { /* XXX: Don't do this with btree locks held */ if (!inode->ei_inode_update) inode->ei_inode_update = bch2_deferred_update_alloc(c, BTREE_ID_INODES, 64); } else { iter = bch2_trans_get_iter(trans, BTREE_ID_INODES, POS(inode->v.i_ino, 0), BTREE_ITER_SLOTS|BTREE_ITER_INTENT); if (IS_ERR(iter)) return PTR_ERR(iter); /* The btree node lock is our lock on the inode: */ ret = bch2_btree_iter_traverse(iter); if (ret) return ret; } *inode_u = inode->ei_inode; if (set) { ret = set(inode, inode_u, p); if (ret) return ret; } inode_p = bch2_trans_kmalloc(trans, sizeof(*inode_p)); if (IS_ERR(inode_p)) return PTR_ERR(inode_p); bch2_inode_pack(inode_p, inode_u); if (!inode->ei_inode_update) bch2_trans_update(trans, BTREE_INSERT_ENTRY(iter, &inode_p->inode.k_i)); else bch2_trans_update(trans, BTREE_INSERT_DEFERRED(inode->ei_inode_update, &inode_p->inode.k_i)); return 0; } int __must_check bch2_write_inode(struct bch_fs *c, struct bch_inode_info *inode, inode_set_fn set, void *p, unsigned fields) { struct btree_trans trans; struct bch_inode_unpacked inode_u; int ret; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); ret = bch2_write_inode_trans(&trans, inode, &inode_u, set, p) ?: bch2_trans_commit(&trans, NULL, &inode->ei_journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOUNLOCK| BTREE_INSERT_NOFAIL); if (ret == -EINTR) goto retry; /* * the btree node lock protects inode->ei_inode, not ei_update_lock; * this is important for inode updates via bchfs_write_index_update */ if (!ret) bch2_inode_update_after_write(c, inode, &inode_u, fields); bch2_trans_exit(&trans); return ret < 0 ? ret : 0; } int bch2_fs_quota_transfer(struct bch_fs *c, struct bch_inode_info *inode, struct bch_qid new_qid, unsigned qtypes, enum quota_acct_mode mode) { unsigned i; int ret; qtypes &= enabled_qtypes(c); for (i = 0; i < QTYP_NR; i++) if (new_qid.q[i] == inode->ei_qid.q[i]) qtypes &= ~(1U << i); if (!qtypes) return 0; mutex_lock(&inode->ei_quota_lock); ret = bch2_quota_transfer(c, qtypes, new_qid, inode->ei_qid, inode->v.i_blocks + inode->ei_quota_reserved, mode); if (!ret) for (i = 0; i < QTYP_NR; i++) if (qtypes & (1 << i)) inode->ei_qid.q[i] = new_qid.q[i]; mutex_unlock(&inode->ei_quota_lock); return ret; } int bch2_reinherit_attrs_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_inode_info *dir = p; u64 src, dst; unsigned id; int ret = 1; for (id = 0; id < Inode_opt_nr; id++) { if (bi->bi_fields_set & (1 << id)) continue; src = bch2_inode_opt_get(&dir->ei_inode, id); dst = bch2_inode_opt_get(bi, id); if (src == dst) continue; bch2_inode_opt_set(bi, id, src); ret = 0; } return ret; } struct inode *bch2_vfs_inode_get(struct bch_fs *c, u64 inum) { struct bch_inode_unpacked inode_u; struct bch_inode_info *inode; int ret; inode = to_bch_ei(iget_locked(c->vfs_sb, inum)); if (unlikely(!inode)) return ERR_PTR(-ENOMEM); if (!(inode->v.i_state & I_NEW)) return &inode->v; ret = bch2_inode_find_by_inum(c, inum, &inode_u); if (ret) { iget_failed(&inode->v); return ERR_PTR(ret); } bch2_vfs_inode_init(c, inode, &inode_u); inode->ei_journal_seq = bch2_inode_journal_seq(&c->journal, inum); unlock_new_inode(&inode->v); return &inode->v; } static void bch2_inode_init_owner(struct bch_inode_unpacked *inode_u, const struct inode *dir, umode_t mode) { kuid_t uid = current_fsuid(); kgid_t gid; if (dir && dir->i_mode & S_ISGID) { gid = dir->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else gid = current_fsgid(); inode_u->bi_uid = from_kuid(dir->i_sb->s_user_ns, uid); inode_u->bi_gid = from_kgid(dir->i_sb->s_user_ns, gid); inode_u->bi_mode = mode; } static int inode_update_for_create_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_inode_unpacked *new_inode = p; bi->bi_mtime = bi->bi_ctime = bch2_current_time(c); if (S_ISDIR(new_inode->bi_mode)) bi->bi_nlink++; return 0; } static struct bch_inode_info * __bch2_create(struct bch_inode_info *dir, struct dentry *dentry, umode_t mode, dev_t rdev, bool tmpfile) { struct bch_fs *c = dir->v.i_sb->s_fs_info; struct btree_trans trans; struct bch_inode_unpacked dir_u; struct bch_inode_info *inode, *old; struct bch_inode_unpacked inode_u; struct bch_hash_info hash_info; struct posix_acl *default_acl = NULL, *acl = NULL; u64 journal_seq = 0; int ret; bch2_inode_init(c, &inode_u, 0, 0, 0, rdev, &dir->ei_inode); bch2_inode_init_owner(&inode_u, &dir->v, mode); hash_info = bch2_hash_info_init(c, &inode_u); if (tmpfile) inode_u.bi_flags |= BCH_INODE_UNLINKED; ret = bch2_quota_acct(c, bch_qid(&inode_u), Q_INO, 1, KEY_TYPE_QUOTA_PREALLOC); if (ret) return ERR_PTR(ret); #ifdef CONFIG_BCACHEFS_POSIX_ACL ret = posix_acl_create(&dir->v, &inode_u.bi_mode, &default_acl, &acl); if (ret) goto err; #endif /* * preallocate vfs inode before btree transaction, so that nothing can * fail after the transaction succeeds: */ inode = to_bch_ei(new_inode(c->vfs_sb)); if (unlikely(!inode)) { ret = -ENOMEM; goto err; } if (!tmpfile) mutex_lock(&dir->ei_update_lock); bch2_trans_init(&trans, c, 8, 1024); retry: bch2_trans_begin(&trans); ret = __bch2_inode_create(&trans, &inode_u, BLOCKDEV_INODE_MAX, 0, &c->unused_inode_hint) ?: (default_acl ? bch2_set_acl_trans(&trans, &inode_u, &hash_info, default_acl, ACL_TYPE_DEFAULT) : 0) ?: (acl ? bch2_set_acl_trans(&trans, &inode_u, &hash_info, acl, ACL_TYPE_ACCESS) : 0) ?: (!tmpfile ? __bch2_dirent_create(&trans, dir->v.i_ino, &dir->ei_str_hash, mode_to_type(mode), &dentry->d_name, inode_u.bi_inum, BCH_HASH_SET_MUST_CREATE) : 0) ?: (!tmpfile ? bch2_write_inode_trans(&trans, dir, &dir_u, inode_update_for_create_fn, &inode_u) : 0) ?: bch2_trans_commit(&trans, NULL, &journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOUNLOCK); if (ret == -EINTR) goto retry; if (unlikely(ret)) goto err_trans; if (!tmpfile) { bch2_inode_update_after_write(c, dir, &dir_u, ATTR_MTIME|ATTR_CTIME); journal_seq_copy(dir, journal_seq); mutex_unlock(&dir->ei_update_lock); } bch2_vfs_inode_init(c, inode, &inode_u); journal_seq_copy(inode, journal_seq); set_cached_acl(&inode->v, ACL_TYPE_ACCESS, acl); set_cached_acl(&inode->v, ACL_TYPE_DEFAULT, default_acl); /* * we must insert the new inode into the inode cache before calling * bch2_trans_exit() and dropping locks, else we could race with another * thread pulling the inode in and modifying it: */ old = to_bch_ei(insert_inode_locked2(&inode->v)); if (unlikely(old)) { /* * We raced, another process pulled the new inode into cache * before us: */ old->ei_journal_seq = inode->ei_journal_seq; make_bad_inode(&inode->v); iput(&inode->v); inode = old; } else { /* * we really don't want insert_inode_locked2() to be setting * I_NEW... */ unlock_new_inode(&inode->v); } bch2_trans_exit(&trans); out: posix_acl_release(default_acl); posix_acl_release(acl); return inode; err_trans: if (!tmpfile) mutex_unlock(&dir->ei_update_lock); bch2_trans_exit(&trans); make_bad_inode(&inode->v); iput(&inode->v); err: bch2_quota_acct(c, bch_qid(&inode_u), Q_INO, -1, KEY_TYPE_QUOTA_WARN); inode = ERR_PTR(ret); goto out; } /* methods */ static struct dentry *bch2_lookup(struct inode *vdir, struct dentry *dentry, unsigned int flags) { struct bch_fs *c = vdir->i_sb->s_fs_info; struct bch_inode_info *dir = to_bch_ei(vdir); struct inode *vinode = NULL; u64 inum; inum = bch2_dirent_lookup(c, dir->v.i_ino, &dir->ei_str_hash, &dentry->d_name); if (inum) vinode = bch2_vfs_inode_get(c, inum); return d_splice_alias(vinode, dentry); } static int bch2_create(struct inode *vdir, struct dentry *dentry, umode_t mode, bool excl) { struct bch_inode_info *inode = __bch2_create(to_bch_ei(vdir), dentry, mode|S_IFREG, 0, false); if (IS_ERR(inode)) return PTR_ERR(inode); d_instantiate(dentry, &inode->v); return 0; } static int inode_update_for_link_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_fs *c = inode->v.i_sb->s_fs_info; bi->bi_ctime = bch2_current_time(c); if (bi->bi_flags & BCH_INODE_UNLINKED) bi->bi_flags &= ~BCH_INODE_UNLINKED; else bi->bi_nlink++; return 0; } static int __bch2_link(struct bch_fs *c, struct bch_inode_info *inode, struct bch_inode_info *dir, struct dentry *dentry) { struct btree_trans trans; struct bch_inode_unpacked inode_u; int ret; mutex_lock(&inode->ei_update_lock); bch2_trans_init(&trans, c, 4, 1024); retry: bch2_trans_begin(&trans); ret = __bch2_dirent_create(&trans, dir->v.i_ino, &dir->ei_str_hash, mode_to_type(inode->v.i_mode), &dentry->d_name, inode->v.i_ino, BCH_HASH_SET_MUST_CREATE) ?: bch2_write_inode_trans(&trans, inode, &inode_u, inode_update_for_link_fn, NULL) ?: bch2_trans_commit(&trans, NULL, &inode->ei_journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOUNLOCK); if (ret == -EINTR) goto retry; if (likely(!ret)) bch2_inode_update_after_write(c, inode, &inode_u, ATTR_CTIME); bch2_trans_exit(&trans); mutex_unlock(&inode->ei_update_lock); return ret; } static int bch2_link(struct dentry *old_dentry, struct inode *vdir, struct dentry *dentry) { struct bch_fs *c = vdir->i_sb->s_fs_info; struct bch_inode_info *dir = to_bch_ei(vdir); struct bch_inode_info *inode = to_bch_ei(old_dentry->d_inode); int ret; lockdep_assert_held(&inode->v.i_rwsem); ret = __bch2_link(c, inode, dir, dentry); if (unlikely(ret)) return ret; ihold(&inode->v); d_instantiate(dentry, &inode->v); return 0; } static int inode_update_dir_for_unlink_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_inode_info *unlink_inode = p; bi->bi_mtime = bi->bi_ctime = bch2_current_time(c); bi->bi_nlink -= S_ISDIR(unlink_inode->v.i_mode); return 0; } static int inode_update_for_unlink_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_fs *c = inode->v.i_sb->s_fs_info; bi->bi_ctime = bch2_current_time(c); if (bi->bi_nlink) bi->bi_nlink--; else bi->bi_flags |= BCH_INODE_UNLINKED; return 0; } static int bch2_unlink(struct inode *vdir, struct dentry *dentry) { struct bch_fs *c = vdir->i_sb->s_fs_info; struct bch_inode_info *dir = to_bch_ei(vdir); struct bch_inode_info *inode = to_bch_ei(dentry->d_inode); struct bch_inode_unpacked dir_u, inode_u; struct btree_trans trans; int ret; bch2_lock_inodes(INODE_UPDATE_LOCK, dir, inode); bch2_trans_init(&trans, c, 4, 1024); retry: bch2_trans_begin(&trans); ret = __bch2_dirent_delete(&trans, dir->v.i_ino, &dir->ei_str_hash, &dentry->d_name) ?: bch2_write_inode_trans(&trans, dir, &dir_u, inode_update_dir_for_unlink_fn, inode) ?: bch2_write_inode_trans(&trans, inode, &inode_u, inode_update_for_unlink_fn, NULL) ?: bch2_trans_commit(&trans, NULL, &dir->ei_journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOUNLOCK| BTREE_INSERT_NOFAIL); if (ret == -EINTR) goto retry; if (ret) goto err; if (dir->ei_journal_seq > inode->ei_journal_seq) inode->ei_journal_seq = dir->ei_journal_seq; bch2_inode_update_after_write(c, dir, &dir_u, ATTR_MTIME|ATTR_CTIME); bch2_inode_update_after_write(c, inode, &inode_u, ATTR_MTIME); err: bch2_trans_exit(&trans); bch2_unlock_inodes(INODE_UPDATE_LOCK, dir, inode); return ret; } static int bch2_symlink(struct inode *vdir, struct dentry *dentry, const char *symname) { struct bch_fs *c = vdir->i_sb->s_fs_info; struct bch_inode_info *dir = to_bch_ei(vdir), *inode; int ret; inode = __bch2_create(dir, dentry, S_IFLNK|S_IRWXUGO, 0, true); if (unlikely(IS_ERR(inode))) return PTR_ERR(inode); inode_lock(&inode->v); ret = page_symlink(&inode->v, symname, strlen(symname) + 1); inode_unlock(&inode->v); if (unlikely(ret)) goto err; ret = filemap_write_and_wait_range(inode->v.i_mapping, 0, LLONG_MAX); if (unlikely(ret)) goto err; journal_seq_copy(dir, inode->ei_journal_seq); ret = __bch2_link(c, inode, dir, dentry); if (unlikely(ret)) goto err; d_instantiate(dentry, &inode->v); return 0; err: iput(&inode->v); return ret; } static int bch2_mkdir(struct inode *vdir, struct dentry *dentry, umode_t mode) { struct bch_inode_info *inode = __bch2_create(to_bch_ei(vdir), dentry, mode|S_IFDIR, 0, false); if (IS_ERR(inode)) return PTR_ERR(inode); d_instantiate(dentry, &inode->v); return 0; } static int bch2_rmdir(struct inode *vdir, struct dentry *dentry) { struct bch_fs *c = vdir->i_sb->s_fs_info; if (bch2_empty_dir(c, dentry->d_inode->i_ino)) return -ENOTEMPTY; return bch2_unlink(vdir, dentry); } static int bch2_mknod(struct inode *vdir, struct dentry *dentry, umode_t mode, dev_t rdev) { struct bch_inode_info *inode = __bch2_create(to_bch_ei(vdir), dentry, mode, rdev, false); if (IS_ERR(inode)) return PTR_ERR(inode); d_instantiate(dentry, &inode->v); return 0; } struct rename_info { u64 now; struct bch_inode_info *src_dir; struct bch_inode_info *dst_dir; struct bch_inode_info *src_inode; struct bch_inode_info *dst_inode; enum bch_rename_mode mode; }; static int inode_update_for_rename_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct rename_info *info = p; int ret; if (inode == info->src_dir) { bi->bi_nlink -= S_ISDIR(info->src_inode->v.i_mode); bi->bi_nlink += info->dst_inode && S_ISDIR(info->dst_inode->v.i_mode) && info->mode == BCH_RENAME_EXCHANGE; } if (inode == info->dst_dir) { bi->bi_nlink += S_ISDIR(info->src_inode->v.i_mode); bi->bi_nlink -= info->dst_inode && S_ISDIR(info->dst_inode->v.i_mode); } if (inode == info->src_inode) { ret = bch2_reinherit_attrs_fn(inode, bi, info->dst_dir); BUG_ON(!ret && S_ISDIR(info->src_inode->v.i_mode)); } if (inode == info->dst_inode && info->mode == BCH_RENAME_EXCHANGE) { ret = bch2_reinherit_attrs_fn(inode, bi, info->src_dir); BUG_ON(!ret && S_ISDIR(info->dst_inode->v.i_mode)); } if (inode == info->dst_inode && info->mode == BCH_RENAME_OVERWRITE) { BUG_ON(bi->bi_nlink && S_ISDIR(info->dst_inode->v.i_mode)); if (bi->bi_nlink) bi->bi_nlink--; else bi->bi_flags |= BCH_INODE_UNLINKED; } if (inode == info->src_dir || inode == info->dst_dir) bi->bi_mtime = info->now; bi->bi_ctime = info->now; return 0; } static int bch2_rename2(struct inode *src_vdir, struct dentry *src_dentry, struct inode *dst_vdir, struct dentry *dst_dentry, unsigned flags) { struct bch_fs *c = src_vdir->i_sb->s_fs_info; struct rename_info i = { .src_dir = to_bch_ei(src_vdir), .dst_dir = to_bch_ei(dst_vdir), .src_inode = to_bch_ei(src_dentry->d_inode), .dst_inode = to_bch_ei(dst_dentry->d_inode), .mode = flags & RENAME_EXCHANGE ? BCH_RENAME_EXCHANGE : dst_dentry->d_inode ? BCH_RENAME_OVERWRITE : BCH_RENAME, }; struct btree_trans trans; struct bch_inode_unpacked dst_dir_u, src_dir_u; struct bch_inode_unpacked src_inode_u, dst_inode_u; u64 journal_seq = 0; int ret; if (flags & ~(RENAME_NOREPLACE|RENAME_EXCHANGE)) return -EINVAL; if (i.mode == BCH_RENAME_OVERWRITE) { if (S_ISDIR(i.src_inode->v.i_mode) != S_ISDIR(i.dst_inode->v.i_mode)) return -ENOTDIR; if (S_ISDIR(i.src_inode->v.i_mode) && bch2_empty_dir(c, i.dst_inode->v.i_ino)) return -ENOTEMPTY; ret = filemap_write_and_wait_range(i.src_inode->v.i_mapping, 0, LLONG_MAX); if (ret) return ret; } bch2_trans_init(&trans, c, 8, 2048); bch2_lock_inodes(INODE_UPDATE_LOCK, i.src_dir, i.dst_dir, i.src_inode, i.dst_inode); if (S_ISDIR(i.src_inode->v.i_mode) && inode_attrs_changing(i.dst_dir, i.src_inode)) { ret = -EXDEV; goto err; } if (i.mode == BCH_RENAME_EXCHANGE && S_ISDIR(i.dst_inode->v.i_mode) && inode_attrs_changing(i.src_dir, i.dst_inode)) { ret = -EXDEV; goto err; } if (inode_attr_changing(i.dst_dir, i.src_inode, Inode_opt_project)) { ret = bch2_fs_quota_transfer(c, i.src_inode, i.dst_dir->ei_qid, 1 << QTYP_PRJ, KEY_TYPE_QUOTA_PREALLOC); if (ret) goto err; } if (i.mode == BCH_RENAME_EXCHANGE && inode_attr_changing(i.src_dir, i.dst_inode, Inode_opt_project)) { ret = bch2_fs_quota_transfer(c, i.dst_inode, i.src_dir->ei_qid, 1 << QTYP_PRJ, KEY_TYPE_QUOTA_PREALLOC); if (ret) goto err; } retry: bch2_trans_begin(&trans); i.now = bch2_current_time(c); ret = bch2_dirent_rename(&trans, i.src_dir, &src_dentry->d_name, i.dst_dir, &dst_dentry->d_name, i.mode) ?: bch2_write_inode_trans(&trans, i.src_dir, &src_dir_u, inode_update_for_rename_fn, &i) ?: (i.src_dir != i.dst_dir ? bch2_write_inode_trans(&trans, i.dst_dir, &dst_dir_u, inode_update_for_rename_fn, &i) : 0 ) ?: bch2_write_inode_trans(&trans, i.src_inode, &src_inode_u, inode_update_for_rename_fn, &i) ?: (i.dst_inode ? bch2_write_inode_trans(&trans, i.dst_inode, &dst_inode_u, inode_update_for_rename_fn, &i) : 0 ) ?: bch2_trans_commit(&trans, NULL, &journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOUNLOCK); if (ret == -EINTR) goto retry; if (unlikely(ret)) goto err; bch2_inode_update_after_write(c, i.src_dir, &src_dir_u, ATTR_MTIME|ATTR_CTIME); journal_seq_copy(i.src_dir, journal_seq); if (i.src_dir != i.dst_dir) { bch2_inode_update_after_write(c, i.dst_dir, &dst_dir_u, ATTR_MTIME|ATTR_CTIME); journal_seq_copy(i.dst_dir, journal_seq); } journal_seq_copy(i.src_inode, journal_seq); if (i.dst_inode) journal_seq_copy(i.dst_inode, journal_seq); bch2_inode_update_after_write(c, i.src_inode, &src_inode_u, ATTR_CTIME); if (i.dst_inode) bch2_inode_update_after_write(c, i.dst_inode, &dst_inode_u, ATTR_CTIME); err: bch2_trans_exit(&trans); bch2_fs_quota_transfer(c, i.src_inode, bch_qid(&i.src_inode->ei_inode), 1 << QTYP_PRJ, KEY_TYPE_QUOTA_NOCHECK); if (i.dst_inode) bch2_fs_quota_transfer(c, i.dst_inode, bch_qid(&i.dst_inode->ei_inode), 1 << QTYP_PRJ, KEY_TYPE_QUOTA_NOCHECK); bch2_unlock_inodes(INODE_UPDATE_LOCK, i.src_dir, i.dst_dir, i.src_inode, i.dst_inode); return ret; } static int inode_update_for_setattr_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct iattr *attr = p; unsigned int ia_valid = attr->ia_valid; if (ia_valid & ATTR_UID) bi->bi_uid = from_kuid(inode->v.i_sb->s_user_ns, attr->ia_uid); if (ia_valid & ATTR_GID) bi->bi_gid = from_kgid(inode->v.i_sb->s_user_ns, attr->ia_gid); if (ia_valid & ATTR_ATIME) bi->bi_atime = timespec_to_bch2_time(c, attr->ia_atime); if (ia_valid & ATTR_MTIME) bi->bi_mtime = timespec_to_bch2_time(c, attr->ia_mtime); if (ia_valid & ATTR_CTIME) bi->bi_ctime = timespec_to_bch2_time(c, attr->ia_ctime); if (ia_valid & ATTR_MODE) { umode_t mode = attr->ia_mode; kgid_t gid = ia_valid & ATTR_GID ? attr->ia_gid : inode->v.i_gid; if (!in_group_p(gid) && !capable_wrt_inode_uidgid(&inode->v, CAP_FSETID)) mode &= ~S_ISGID; bi->bi_mode = mode; } return 0; } static int bch2_setattr_nonsize(struct bch_inode_info *inode, struct iattr *iattr) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_qid qid; struct btree_trans trans; struct bch_inode_unpacked inode_u; struct posix_acl *acl = NULL; int ret; mutex_lock(&inode->ei_update_lock); qid = inode->ei_qid; if (iattr->ia_valid & ATTR_UID) qid.q[QTYP_USR] = from_kuid(&init_user_ns, iattr->ia_uid); if (iattr->ia_valid & ATTR_GID) qid.q[QTYP_GRP] = from_kgid(&init_user_ns, iattr->ia_gid); ret = bch2_fs_quota_transfer(c, inode, qid, ~0, KEY_TYPE_QUOTA_PREALLOC); if (ret) goto err; bch2_trans_init(&trans, c, 0, 0); retry: bch2_trans_begin(&trans); kfree(acl); acl = NULL; ret = bch2_write_inode_trans(&trans, inode, &inode_u, inode_update_for_setattr_fn, iattr) ?: (iattr->ia_valid & ATTR_MODE ? bch2_acl_chmod(&trans, inode, iattr->ia_mode, &acl) : 0) ?: bch2_trans_commit(&trans, NULL, &inode->ei_journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOUNLOCK| BTREE_INSERT_NOFAIL); if (ret == -EINTR) goto retry; if (unlikely(ret)) goto err_trans; bch2_inode_update_after_write(c, inode, &inode_u, iattr->ia_valid); if (acl) set_cached_acl(&inode->v, ACL_TYPE_ACCESS, acl); err_trans: bch2_trans_exit(&trans); err: mutex_unlock(&inode->ei_update_lock); return ret; } static int bch2_getattr(const struct path *path, struct kstat *stat, u32 request_mask, unsigned query_flags) { struct bch_inode_info *inode = to_bch_ei(d_inode(path->dentry)); struct bch_fs *c = inode->v.i_sb->s_fs_info; stat->dev = inode->v.i_sb->s_dev; stat->ino = inode->v.i_ino; stat->mode = inode->v.i_mode; stat->nlink = inode->v.i_nlink; stat->uid = inode->v.i_uid; stat->gid = inode->v.i_gid; stat->rdev = inode->v.i_rdev; stat->size = i_size_read(&inode->v); stat->atime = inode->v.i_atime; stat->mtime = inode->v.i_mtime; stat->ctime = inode->v.i_ctime; stat->blksize = block_bytes(c); stat->blocks = inode->v.i_blocks; if (request_mask & STATX_BTIME) { stat->result_mask |= STATX_BTIME; stat->btime = bch2_time_to_timespec(c, inode->ei_inode.bi_otime); } if (inode->ei_inode.bi_flags & BCH_INODE_IMMUTABLE) stat->attributes |= STATX_ATTR_IMMUTABLE; if (inode->ei_inode.bi_flags & BCH_INODE_APPEND) stat->attributes |= STATX_ATTR_APPEND; if (inode->ei_inode.bi_flags & BCH_INODE_NODUMP) stat->attributes |= STATX_ATTR_NODUMP; return 0; } static int bch2_setattr(struct dentry *dentry, struct iattr *iattr) { struct bch_inode_info *inode = to_bch_ei(dentry->d_inode); int ret; lockdep_assert_held(&inode->v.i_rwsem); ret = setattr_prepare(dentry, iattr); if (ret) return ret; return iattr->ia_valid & ATTR_SIZE ? bch2_truncate(inode, iattr) : bch2_setattr_nonsize(inode, iattr); } static int bch2_tmpfile(struct inode *vdir, struct dentry *dentry, umode_t mode) { struct bch_inode_info *inode = __bch2_create(to_bch_ei(vdir), dentry, mode, 0, true); if (IS_ERR(inode)) return PTR_ERR(inode); d_mark_tmpfile(dentry, &inode->v); d_instantiate(dentry, &inode->v); return 0; } static int bch2_fill_extent(struct bch_fs *c, struct fiemap_extent_info *info, struct bkey_s_c k, unsigned flags) { if (bkey_extent_is_data(k.k)) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); const union bch_extent_entry *entry; struct extent_ptr_decoded p; int ret; if (k.k->type == KEY_TYPE_reflink_v) flags |= FIEMAP_EXTENT_SHARED; bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { int flags2 = 0; u64 offset = p.ptr.offset; if (p.crc.compression_type) flags2 |= FIEMAP_EXTENT_ENCODED; else offset += p.crc.offset; if ((offset & (c->opts.block_size - 1)) || (k.k->size & (c->opts.block_size - 1))) flags2 |= FIEMAP_EXTENT_NOT_ALIGNED; ret = fiemap_fill_next_extent(info, bkey_start_offset(k.k) << 9, offset << 9, k.k->size << 9, flags|flags2); if (ret) return ret; } return 0; } else if (k.k->type == KEY_TYPE_reservation) { return fiemap_fill_next_extent(info, bkey_start_offset(k.k) << 9, 0, k.k->size << 9, flags| FIEMAP_EXTENT_DELALLOC| FIEMAP_EXTENT_UNWRITTEN); } else { BUG(); } } static int bch2_fiemap(struct inode *vinode, struct fiemap_extent_info *info, u64 start, u64 len) { struct bch_fs *c = vinode->i_sb->s_fs_info; struct bch_inode_info *ei = to_bch_ei(vinode); struct btree_trans trans; struct btree_iter *iter; struct bkey_s_c k; BKEY_PADDED(k) cur, prev; struct bpos end = POS(ei->v.i_ino, (start + len) >> 9); unsigned offset_into_extent, sectors; bool have_extent = false; int ret = 0; if (start + len < start) return -EINVAL; bch2_trans_init(&trans, c, 0, 0); iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS(ei->v.i_ino, start >> 9), 0); retry: while ((k = bch2_btree_iter_peek(iter)).k && !(ret = bkey_err(k)) && bkey_cmp(iter->pos, end) < 0) { if (!bkey_extent_is_data(k.k) && k.k->type != KEY_TYPE_reservation) { bch2_btree_iter_next(iter); continue; } bkey_reassemble(&cur.k, k); k = bkey_i_to_s_c(&cur.k); offset_into_extent = iter->pos.offset - bkey_start_offset(k.k); sectors = k.k->size - offset_into_extent; ret = bch2_read_indirect_extent(&trans, &offset_into_extent, &cur.k); if (ret) break; sectors = min(sectors, k.k->size - offset_into_extent); if (offset_into_extent) bch2_cut_front(POS(k.k->p.inode, bkey_start_offset(k.k) + offset_into_extent), &cur.k); bch2_key_resize(&cur.k.k, sectors); cur.k.k.p = iter->pos; cur.k.k.p.offset += cur.k.k.size; if (have_extent) { ret = bch2_fill_extent(c, info, bkey_i_to_s_c(&prev.k), 0); if (ret) break; } bkey_copy(&prev.k, &cur.k); have_extent = true; if (k.k->type == KEY_TYPE_reflink_v) bch2_btree_iter_set_pos(iter, k.k->p); else bch2_btree_iter_next(iter); } if (ret == -EINTR) goto retry; if (!ret && have_extent) ret = bch2_fill_extent(c, info, bkey_i_to_s_c(&prev.k), FIEMAP_EXTENT_LAST); ret = bch2_trans_exit(&trans) ?: ret; return ret < 0 ? ret : 0; } static const struct vm_operations_struct bch_vm_ops = { .fault = filemap_fault, .map_pages = filemap_map_pages, .page_mkwrite = bch2_page_mkwrite, }; static int bch2_mmap(struct file *file, struct vm_area_struct *vma) { file_accessed(file); vma->vm_ops = &bch_vm_ops; return 0; } /* Directories: */ static loff_t bch2_dir_llseek(struct file *file, loff_t offset, int whence) { return generic_file_llseek_size(file, offset, whence, S64_MAX, S64_MAX); } static int bch2_vfs_readdir(struct file *file, struct dir_context *ctx) { struct bch_fs *c = file_inode(file)->i_sb->s_fs_info; return bch2_readdir(c, file, ctx); } static const struct file_operations bch_file_operations = { .llseek = bch2_llseek, .read_iter = generic_file_read_iter, .write_iter = bch2_write_iter, .mmap = bch2_mmap, .open = generic_file_open, .fsync = bch2_fsync, .splice_read = generic_file_splice_read, .splice_write = iter_file_splice_write, .fallocate = bch2_fallocate_dispatch, .unlocked_ioctl = bch2_fs_file_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = bch2_compat_fs_ioctl, #endif .remap_file_range = bch2_remap_file_range, }; static const struct inode_operations bch_file_inode_operations = { .getattr = bch2_getattr, .setattr = bch2_setattr, .fiemap = bch2_fiemap, .listxattr = bch2_xattr_list, #ifdef CONFIG_BCACHEFS_POSIX_ACL .get_acl = bch2_get_acl, .set_acl = bch2_set_acl, #endif }; static const struct inode_operations bch_dir_inode_operations = { .lookup = bch2_lookup, .create = bch2_create, .link = bch2_link, .unlink = bch2_unlink, .symlink = bch2_symlink, .mkdir = bch2_mkdir, .rmdir = bch2_rmdir, .mknod = bch2_mknod, .rename = bch2_rename2, .getattr = bch2_getattr, .setattr = bch2_setattr, .tmpfile = bch2_tmpfile, .listxattr = bch2_xattr_list, #ifdef CONFIG_BCACHEFS_POSIX_ACL .get_acl = bch2_get_acl, .set_acl = bch2_set_acl, #endif }; static const struct file_operations bch_dir_file_operations = { .llseek = bch2_dir_llseek, .read = generic_read_dir, .iterate = bch2_vfs_readdir, .fsync = bch2_fsync, .unlocked_ioctl = bch2_fs_file_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = bch2_compat_fs_ioctl, #endif }; static const struct inode_operations bch_symlink_inode_operations = { .get_link = page_get_link, .getattr = bch2_getattr, .setattr = bch2_setattr, .listxattr = bch2_xattr_list, #ifdef CONFIG_BCACHEFS_POSIX_ACL .get_acl = bch2_get_acl, .set_acl = bch2_set_acl, #endif }; static const struct inode_operations bch_special_inode_operations = { .getattr = bch2_getattr, .setattr = bch2_setattr, .listxattr = bch2_xattr_list, #ifdef CONFIG_BCACHEFS_POSIX_ACL .get_acl = bch2_get_acl, .set_acl = bch2_set_acl, #endif }; static const struct address_space_operations bch_address_space_operations = { .writepage = bch2_writepage, .readpage = bch2_readpage, .writepages = bch2_writepages, .readpages = bch2_readpages, .set_page_dirty = __set_page_dirty_nobuffers, .write_begin = bch2_write_begin, .write_end = bch2_write_end, .invalidatepage = bch2_invalidatepage, .releasepage = bch2_releasepage, .direct_IO = bch2_direct_IO, #ifdef CONFIG_MIGRATION .migratepage = bch2_migrate_page, #endif .error_remove_page = generic_error_remove_page, }; static struct inode *bch2_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct bch_fs *c = sb->s_fs_info; struct inode *vinode; if (ino < BCACHEFS_ROOT_INO) return ERR_PTR(-ESTALE); vinode = bch2_vfs_inode_get(c, ino); if (IS_ERR(vinode)) return ERR_CAST(vinode); if (generation && vinode->i_generation != generation) { /* we didn't find the right inode.. */ iput(vinode); return ERR_PTR(-ESTALE); } return vinode; } static struct dentry *bch2_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, bch2_nfs_get_inode); } static struct dentry *bch2_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, bch2_nfs_get_inode); } static const struct export_operations bch_export_ops = { .fh_to_dentry = bch2_fh_to_dentry, .fh_to_parent = bch2_fh_to_parent, //.get_parent = bch2_get_parent, }; static void bch2_vfs_inode_init(struct bch_fs *c, struct bch_inode_info *inode, struct bch_inode_unpacked *bi) { bch2_inode_update_after_write(c, inode, bi, ~0); inode->v.i_blocks = bi->bi_sectors; inode->v.i_ino = bi->bi_inum; inode->v.i_rdev = bi->bi_dev; inode->v.i_generation = bi->bi_generation; inode->v.i_size = bi->bi_size; inode->ei_journal_seq = 0; inode->ei_quota_reserved = 0; inode->ei_str_hash = bch2_hash_info_init(c, bi); inode->ei_qid = bch_qid(bi); inode->v.i_mapping->a_ops = &bch_address_space_operations; switch (inode->v.i_mode & S_IFMT) { case S_IFREG: inode->v.i_op = &bch_file_inode_operations; inode->v.i_fop = &bch_file_operations; break; case S_IFDIR: inode->v.i_op = &bch_dir_inode_operations; inode->v.i_fop = &bch_dir_file_operations; break; case S_IFLNK: inode_nohighmem(&inode->v); inode->v.i_op = &bch_symlink_inode_operations; break; default: init_special_inode(&inode->v, inode->v.i_mode, inode->v.i_rdev); inode->v.i_op = &bch_special_inode_operations; break; } } static struct inode *bch2_alloc_inode(struct super_block *sb) { struct bch_inode_info *inode; inode = kmem_cache_alloc(bch2_inode_cache, GFP_NOFS); if (!inode) return NULL; inode_init_once(&inode->v); mutex_init(&inode->ei_update_lock); mutex_init(&inode->ei_quota_lock); inode->ei_inode_update = NULL; inode->ei_journal_seq = 0; return &inode->v; } static void bch2_i_callback(struct rcu_head *head) { struct inode *vinode = container_of(head, struct inode, i_rcu); struct bch_inode_info *inode = to_bch_ei(vinode); kmem_cache_free(bch2_inode_cache, inode); } static void bch2_destroy_inode(struct inode *vinode) { call_rcu(&vinode->i_rcu, bch2_i_callback); } static int inode_update_times_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_fs *c = inode->v.i_sb->s_fs_info; bi->bi_atime = timespec_to_bch2_time(c, inode->v.i_atime); bi->bi_mtime = timespec_to_bch2_time(c, inode->v.i_mtime); bi->bi_ctime = timespec_to_bch2_time(c, inode->v.i_ctime); return 0; } static int bch2_vfs_write_inode(struct inode *vinode, struct writeback_control *wbc) { struct bch_fs *c = vinode->i_sb->s_fs_info; struct bch_inode_info *inode = to_bch_ei(vinode); int ret; mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode(c, inode, inode_update_times_fn, NULL, ATTR_ATIME|ATTR_MTIME|ATTR_CTIME); mutex_unlock(&inode->ei_update_lock); return ret; } static void bch2_evict_inode(struct inode *vinode) { struct bch_fs *c = vinode->i_sb->s_fs_info; struct bch_inode_info *inode = to_bch_ei(vinode); truncate_inode_pages_final(&inode->v.i_data); clear_inode(&inode->v); BUG_ON(!is_bad_inode(&inode->v) && inode->ei_quota_reserved); if (inode->ei_inode_update) bch2_deferred_update_free(c, inode->ei_inode_update); inode->ei_inode_update = NULL; if (!inode->v.i_nlink && !is_bad_inode(&inode->v)) { bch2_quota_acct(c, inode->ei_qid, Q_SPC, -((s64) inode->v.i_blocks), KEY_TYPE_QUOTA_WARN); bch2_quota_acct(c, inode->ei_qid, Q_INO, -1, KEY_TYPE_QUOTA_WARN); bch2_inode_rm(c, inode->v.i_ino); } } static int bch2_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct bch_fs *c = sb->s_fs_info; struct bch_fs_usage_short usage = bch2_fs_usage_read_short(c); unsigned shift = sb->s_blocksize_bits - 9; u64 fsid; buf->f_type = BCACHEFS_STATFS_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = usage.capacity >> shift; buf->f_bfree = (usage.capacity - usage.used) >> shift; buf->f_bavail = buf->f_bfree; buf->f_files = usage.nr_inodes; buf->f_ffree = U64_MAX; fsid = le64_to_cpup((void *) c->sb.user_uuid.b) ^ le64_to_cpup((void *) c->sb.user_uuid.b + sizeof(u64)); buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; buf->f_namelen = BCH_NAME_MAX; return 0; } static int bch2_sync_fs(struct super_block *sb, int wait) { struct bch_fs *c = sb->s_fs_info; if (c->opts.journal_flush_disabled) return 0; if (!wait) { bch2_journal_flush_async(&c->journal, NULL); return 0; } return bch2_journal_flush(&c->journal); } static struct bch_fs *bch2_path_to_fs(const char *dev) { struct bch_fs *c; struct block_device *bdev = lookup_bdev(dev); if (IS_ERR(bdev)) return ERR_CAST(bdev); c = bch2_bdev_to_fs(bdev); bdput(bdev); return c ?: ERR_PTR(-ENOENT); } static struct bch_fs *__bch2_open_as_blockdevs(const char *dev_name, char * const *devs, unsigned nr_devs, struct bch_opts opts) { struct bch_fs *c, *c1, *c2; size_t i; if (!nr_devs) return ERR_PTR(-EINVAL); c = bch2_fs_open(devs, nr_devs, opts); if (IS_ERR(c) && PTR_ERR(c) == -EBUSY) { /* * Already open? * Look up each block device, make sure they all belong to a * filesystem and they all belong to the _same_ filesystem */ c1 = bch2_path_to_fs(devs[0]); if (IS_ERR(c1)) return c; for (i = 1; i < nr_devs; i++) { c2 = bch2_path_to_fs(devs[i]); if (!IS_ERR(c2)) closure_put(&c2->cl); if (c1 != c2) { closure_put(&c1->cl); return c; } } c = c1; } if (IS_ERR(c)) return c; mutex_lock(&c->state_lock); if (!test_bit(BCH_FS_STARTED, &c->flags)) { mutex_unlock(&c->state_lock); closure_put(&c->cl); pr_err("err mounting %s: incomplete filesystem", dev_name); return ERR_PTR(-EINVAL); } mutex_unlock(&c->state_lock); set_bit(BCH_FS_BDEV_MOUNTED, &c->flags); return c; } static struct bch_fs *bch2_open_as_blockdevs(const char *_dev_name, struct bch_opts opts) { char *dev_name = NULL, **devs = NULL, *s; struct bch_fs *c = ERR_PTR(-ENOMEM); size_t i, nr_devs = 0; dev_name = kstrdup(_dev_name, GFP_KERNEL); if (!dev_name) goto err; for (s = dev_name; s; s = strchr(s + 1, ':')) nr_devs++; devs = kcalloc(nr_devs, sizeof(const char *), GFP_KERNEL); if (!devs) goto err; for (i = 0, s = dev_name; s; (s = strchr(s, ':')) && (*s++ = '\0')) devs[i++] = s; c = __bch2_open_as_blockdevs(_dev_name, devs, nr_devs, opts); err: kfree(devs); kfree(dev_name); return c; } static int bch2_remount(struct super_block *sb, int *flags, char *data) { struct bch_fs *c = sb->s_fs_info; struct bch_opts opts = bch2_opts_empty(); int ret; opt_set(opts, read_only, (*flags & SB_RDONLY) != 0); ret = bch2_parse_mount_opts(&opts, data); if (ret) return ret; if (opts.read_only != c->opts.read_only) { mutex_lock(&c->state_lock); if (opts.read_only) { bch2_fs_read_only(c); sb->s_flags |= SB_RDONLY; } else { ret = bch2_fs_read_write(c); if (ret) { bch_err(c, "error going rw: %i", ret); mutex_unlock(&c->state_lock); return -EINVAL; } sb->s_flags &= ~SB_RDONLY; } c->opts.read_only = opts.read_only; mutex_unlock(&c->state_lock); } if (opts.errors >= 0) c->opts.errors = opts.errors; return ret; } static int bch2_show_options(struct seq_file *seq, struct dentry *root) { struct bch_fs *c = root->d_sb->s_fs_info; enum bch_opt_id i; char buf[512]; for (i = 0; i < bch2_opts_nr; i++) { const struct bch_option *opt = &bch2_opt_table[i]; u64 v = bch2_opt_get_by_id(&c->opts, i); if (!(opt->mode & OPT_MOUNT)) continue; if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) continue; bch2_opt_to_text(&PBUF(buf), c, opt, v, OPT_SHOW_MOUNT_STYLE); seq_putc(seq, ','); seq_puts(seq, buf); } return 0; } static const struct super_operations bch_super_operations = { .alloc_inode = bch2_alloc_inode, .destroy_inode = bch2_destroy_inode, .write_inode = bch2_vfs_write_inode, .evict_inode = bch2_evict_inode, .sync_fs = bch2_sync_fs, .statfs = bch2_statfs, .show_options = bch2_show_options, .remount_fs = bch2_remount, #if 0 .put_super = bch2_put_super, .freeze_fs = bch2_freeze, .unfreeze_fs = bch2_unfreeze, #endif }; static int bch2_test_super(struct super_block *s, void *data) { return s->s_fs_info == data; } static int bch2_set_super(struct super_block *s, void *data) { s->s_fs_info = data; return 0; } static struct dentry *bch2_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { struct bch_fs *c; struct bch_dev *ca; struct super_block *sb; struct inode *vinode; struct bch_opts opts = bch2_opts_empty(); unsigned i; int ret; opt_set(opts, read_only, (flags & SB_RDONLY) != 0); ret = bch2_parse_mount_opts(&opts, data); if (ret) return ERR_PTR(ret); c = bch2_open_as_blockdevs(dev_name, opts); if (IS_ERR(c)) return ERR_CAST(c); sb = sget(fs_type, bch2_test_super, bch2_set_super, flags|SB_NOSEC, c); if (IS_ERR(sb)) { closure_put(&c->cl); return ERR_CAST(sb); } BUG_ON(sb->s_fs_info != c); if (sb->s_root) { closure_put(&c->cl); if ((flags ^ sb->s_flags) & SB_RDONLY) { ret = -EBUSY; goto err_put_super; } goto out; } sb->s_blocksize = block_bytes(c); sb->s_blocksize_bits = ilog2(block_bytes(c)); sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_op = &bch_super_operations; sb->s_export_op = &bch_export_ops; #ifdef CONFIG_BCACHEFS_QUOTA sb->s_qcop = &bch2_quotactl_operations; sb->s_quota_types = QTYPE_MASK_USR|QTYPE_MASK_GRP|QTYPE_MASK_PRJ; #endif sb->s_xattr = bch2_xattr_handlers; sb->s_magic = BCACHEFS_STATFS_MAGIC; sb->s_time_gran = c->sb.time_precision; c->vfs_sb = sb; strlcpy(sb->s_id, c->name, sizeof(sb->s_id)); ret = super_setup_bdi(sb); if (ret) goto err_put_super; sb->s_bdi->congested_fn = bch2_congested; sb->s_bdi->congested_data = c; sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; for_each_online_member(ca, c, i) { struct block_device *bdev = ca->disk_sb.bdev; /* XXX: create an anonymous device for multi device filesystems */ sb->s_bdev = bdev; sb->s_dev = bdev->bd_dev; percpu_ref_put(&ca->io_ref); break; } #ifdef CONFIG_BCACHEFS_POSIX_ACL if (c->opts.acl) sb->s_flags |= SB_POSIXACL; #endif vinode = bch2_vfs_inode_get(c, BCACHEFS_ROOT_INO); if (IS_ERR(vinode)) { bch_err(c, "error mounting: error getting root inode %i", (int) PTR_ERR(vinode)); ret = PTR_ERR(vinode); goto err_put_super; } sb->s_root = d_make_root(vinode); if (!sb->s_root) { bch_err(c, "error mounting: error allocating root dentry"); ret = -ENOMEM; goto err_put_super; } sb->s_flags |= SB_ACTIVE; out: return dget(sb->s_root); err_put_super: deactivate_locked_super(sb); return ERR_PTR(ret); } static void bch2_kill_sb(struct super_block *sb) { struct bch_fs *c = sb->s_fs_info; generic_shutdown_super(sb); if (test_bit(BCH_FS_BDEV_MOUNTED, &c->flags)) bch2_fs_stop(c); else closure_put(&c->cl); } static struct file_system_type bcache_fs_type = { .owner = THIS_MODULE, .name = "bcachefs", .mount = bch2_mount, .kill_sb = bch2_kill_sb, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("bcachefs"); void bch2_vfs_exit(void) { unregister_filesystem(&bcache_fs_type); if (bch2_inode_cache) kmem_cache_destroy(bch2_inode_cache); } int __init bch2_vfs_init(void) { int ret = -ENOMEM; bch2_inode_cache = KMEM_CACHE(bch_inode_info, 0); if (!bch2_inode_cache) goto err; ret = register_filesystem(&bcache_fs_type); if (ret) goto err; return 0; err: bch2_vfs_exit(); return ret; } #endif /* NO_BCACHEFS_FS */