/* * bcachefs journalling code, for btree insertions * * Copyright 2012 Google, Inc. */ #include "bcachefs.h" #include "alloc.h" #include "bkey_methods.h" #include "buckets.h" #include "btree_gc.h" #include "btree_update.h" #include "btree_io.h" #include "checksum.h" #include "debug.h" #include "error.h" #include "extents.h" #include "io.h" #include "keylist.h" #include "journal.h" #include "super-io.h" #include "vstructs.h" #include static void journal_write(struct closure *); static void journal_reclaim_fast(struct journal *); static void journal_pin_add_entry(struct journal *, struct journal_entry_pin_list *, struct journal_entry_pin *, journal_pin_flush_fn); static inline struct journal_buf *journal_cur_buf(struct journal *j) { return j->buf + j->reservations.idx; } static inline struct journal_buf *journal_prev_buf(struct journal *j) { return j->buf + !j->reservations.idx; } /* Sequence number of oldest dirty journal entry */ static inline u64 last_seq(struct journal *j) { return atomic64_read(&j->seq) - fifo_used(&j->pin) + 1; } static inline u64 journal_pin_seq(struct journal *j, struct journal_entry_pin_list *pin_list) { return last_seq(j) + fifo_entry_idx(&j->pin, pin_list); } static inline struct jset_entry *__jset_entry_type_next(struct jset *jset, struct jset_entry *entry, unsigned type) { while (entry < vstruct_last(jset)) { if (JOURNAL_ENTRY_TYPE(entry) == type) return entry; entry = vstruct_next(entry); } return NULL; } #define for_each_jset_entry_type(entry, jset, type) \ for (entry = (jset)->start; \ (entry = __jset_entry_type_next(jset, entry, type)); \ entry = vstruct_next(entry)) #define for_each_jset_key(k, _n, entry, jset) \ for_each_jset_entry_type(entry, jset, JOURNAL_ENTRY_BTREE_KEYS) \ vstruct_for_each_safe(entry, k, _n) static inline void bch2_journal_add_entry(struct journal_buf *buf, const void *data, size_t u64s, unsigned type, enum btree_id id, unsigned level) { struct jset *jset = buf->data; bch2_journal_add_entry_at(buf, data, u64s, type, id, level, le32_to_cpu(jset->u64s)); le32_add_cpu(&jset->u64s, jset_u64s(u64s)); } static struct jset_entry *bch2_journal_find_entry(struct jset *j, unsigned type, enum btree_id id) { struct jset_entry *entry; for_each_jset_entry_type(entry, j, type) if (entry->btree_id == id) return entry; return NULL; } struct bkey_i *bch2_journal_find_btree_root(struct bch_fs *c, struct jset *j, enum btree_id id, unsigned *level) { struct bkey_i *k; struct jset_entry *entry = bch2_journal_find_entry(j, JOURNAL_ENTRY_BTREE_ROOT, id); if (!entry) return NULL; k = entry->start; *level = entry->level; *level = entry->level; return k; } static void bch2_journal_add_btree_root(struct journal_buf *buf, enum btree_id id, struct bkey_i *k, unsigned level) { bch2_journal_add_entry(buf, k, k->k.u64s, JOURNAL_ENTRY_BTREE_ROOT, id, level); } static inline void bch2_journal_add_prios(struct journal *j, struct journal_buf *buf) { /* * no prio bucket ptrs yet... XXX should change the allocator so this * can't happen: */ if (!buf->nr_prio_buckets) return; bch2_journal_add_entry(buf, j->prio_buckets, buf->nr_prio_buckets, JOURNAL_ENTRY_PRIO_PTRS, 0, 0); } static void journal_seq_blacklist_flush(struct journal *j, struct journal_entry_pin *pin, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct journal_seq_blacklist *bl = container_of(pin, struct journal_seq_blacklist, pin); struct blacklisted_node n; struct closure cl; unsigned i; int ret; closure_init_stack(&cl); for (i = 0;; i++) { struct btree_iter iter; struct btree *b; mutex_lock(&j->blacklist_lock); if (i >= bl->nr_entries) { mutex_unlock(&j->blacklist_lock); break; } n = bl->entries[i]; mutex_unlock(&j->blacklist_lock); bch2_btree_iter_init(&iter, c, n.btree_id, n.pos); iter.is_extents = false; redo_peek: b = bch2_btree_iter_peek_node(&iter); /* The node might have already been rewritten: */ if (b->data->keys.seq == n.seq) { ret = bch2_btree_node_rewrite(&iter, b, &cl); if (ret) { bch2_btree_iter_unlock(&iter); closure_sync(&cl); if (ret == -EAGAIN || ret == -EINTR) goto redo_peek; bch2_fs_fatal_error(c, "error %i rewriting btree node with blacklisted journal seq", ret); bch2_journal_halt(j); return; } } bch2_btree_iter_unlock(&iter); } closure_sync(&cl); for (i = 0;; i++) { struct btree_interior_update *as; struct pending_btree_node_free *d; mutex_lock(&j->blacklist_lock); if (i >= bl->nr_entries) { mutex_unlock(&j->blacklist_lock); break; } n = bl->entries[i]; mutex_unlock(&j->blacklist_lock); redo_wait: mutex_lock(&c->btree_interior_update_lock); /* * Is the node on the list of pending interior node updates - * being freed? If so, wait for that to finish: */ for_each_pending_btree_node_free(c, as, d) if (n.seq == d->seq && n.btree_id == d->btree_id && !d->level && !bkey_cmp(n.pos, d->key.k.p)) { closure_wait(&as->wait, &cl); mutex_unlock(&c->btree_interior_update_lock); closure_sync(&cl); goto redo_wait; } mutex_unlock(&c->btree_interior_update_lock); } mutex_lock(&j->blacklist_lock); bch2_journal_pin_drop(j, &bl->pin); list_del(&bl->list); kfree(bl->entries); kfree(bl); mutex_unlock(&j->blacklist_lock); } static struct journal_seq_blacklist * journal_seq_blacklist_find(struct journal *j, u64 seq) { struct journal_seq_blacklist *bl; lockdep_assert_held(&j->blacklist_lock); list_for_each_entry(bl, &j->seq_blacklist, list) if (seq == bl->seq) return bl; return NULL; } static struct journal_seq_blacklist * bch2_journal_seq_blacklisted_new(struct journal *j, u64 seq) { struct journal_seq_blacklist *bl; lockdep_assert_held(&j->blacklist_lock); /* * When we start the journal, bch2_journal_start() will skip over @seq: */ bl = kzalloc(sizeof(*bl), GFP_KERNEL); if (!bl) return NULL; bl->seq = seq; list_add_tail(&bl->list, &j->seq_blacklist); return bl; } /* * Returns true if @seq is newer than the most recent journal entry that got * written, and data corresponding to @seq should be ignored - also marks @seq * as blacklisted so that on future restarts the corresponding data will still * be ignored: */ int bch2_journal_seq_should_ignore(struct bch_fs *c, u64 seq, struct btree *b) { struct journal *j = &c->journal; struct journal_seq_blacklist *bl = NULL; struct blacklisted_node *n; u64 journal_seq, i; int ret = 0; if (!seq) return 0; journal_seq = atomic64_read(&j->seq); /* Interier updates aren't journalled: */ BUG_ON(b->level); BUG_ON(seq > journal_seq && test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags)); /* * Decrease this back to j->seq + 2 when we next rev the on disk format: * increasing it temporarily to work around bug in old kernels */ bch2_fs_inconsistent_on(seq > journal_seq + 4, c, "bset journal seq too far in the future: %llu > %llu", seq, journal_seq); if (seq <= journal_seq && list_empty_careful(&j->seq_blacklist)) return 0; mutex_lock(&j->blacklist_lock); if (seq <= journal_seq) { bl = journal_seq_blacklist_find(j, seq); if (!bl) goto out; } else { bch_verbose(c, "btree node %u:%llu:%llu has future journal sequence number %llu, blacklisting", b->btree_id, b->key.k.p.inode, b->key.k.p.offset, seq); for (i = journal_seq + 1; i <= seq; i++) { bl = journal_seq_blacklist_find(j, i) ?: bch2_journal_seq_blacklisted_new(j, i); if (!bl) { ret = -ENOMEM; goto out; } } } for (n = bl->entries; n < bl->entries + bl->nr_entries; n++) if (b->data->keys.seq == n->seq && b->btree_id == n->btree_id && !bkey_cmp(b->key.k.p, n->pos)) goto found_entry; if (!bl->nr_entries || is_power_of_2(bl->nr_entries)) { n = krealloc(bl->entries, max(bl->nr_entries * 2, 8UL) * sizeof(*n), GFP_KERNEL); if (!n) { ret = -ENOMEM; goto out; } bl->entries = n; } bl->entries[bl->nr_entries++] = (struct blacklisted_node) { .seq = b->data->keys.seq, .btree_id = b->btree_id, .pos = b->key.k.p, }; found_entry: ret = 1; out: mutex_unlock(&j->blacklist_lock); return ret; } /* * Journal replay/recovery: * * This code is all driven from bch2_fs_start(); we first read the journal * entries, do some other stuff, then we mark all the keys in the journal * entries (same as garbage collection would), then we replay them - reinserting * them into the cache in precisely the same order as they appear in the * journal. * * We only journal keys that go in leaf nodes, which simplifies things quite a * bit. */ struct journal_list { struct closure cl; struct mutex lock; struct list_head *head; int ret; }; #define JOURNAL_ENTRY_ADD_OK 0 #define JOURNAL_ENTRY_ADD_OUT_OF_RANGE 5 /* * Given a journal entry we just read, add it to the list of journal entries to * be replayed: */ static int journal_entry_add(struct bch_fs *c, struct journal_list *jlist, struct jset *j) { struct journal_replay *i, *pos; struct list_head *where; size_t bytes = vstruct_bytes(j); __le64 last_seq; int ret; mutex_lock(&jlist->lock); last_seq = !list_empty(jlist->head) ? list_last_entry(jlist->head, struct journal_replay, list)->j.last_seq : 0; /* Is this entry older than the range we need? */ if (le64_to_cpu(j->seq) < le64_to_cpu(last_seq)) { ret = JOURNAL_ENTRY_ADD_OUT_OF_RANGE; goto out; } /* Drop entries we don't need anymore */ list_for_each_entry_safe(i, pos, jlist->head, list) { if (le64_to_cpu(i->j.seq) >= le64_to_cpu(j->last_seq)) break; list_del(&i->list); kvpfree(i, offsetof(struct journal_replay, j) + vstruct_bytes(&i->j)); } list_for_each_entry_reverse(i, jlist->head, list) { /* Duplicate? */ if (le64_to_cpu(j->seq) == le64_to_cpu(i->j.seq)) { fsck_err_on(bytes != vstruct_bytes(&i->j) || memcmp(j, &i->j, bytes), c, "found duplicate but non identical journal entries (seq %llu)", le64_to_cpu(j->seq)); ret = JOURNAL_ENTRY_ADD_OK; goto out; } if (le64_to_cpu(j->seq) > le64_to_cpu(i->j.seq)) { where = &i->list; goto add; } } where = jlist->head; add: i = kvpmalloc(offsetof(struct journal_replay, j) + bytes, GFP_KERNEL); if (!i) { ret = -ENOMEM; goto out; } memcpy(&i->j, j, bytes); list_add(&i->list, where); ret = JOURNAL_ENTRY_ADD_OK; out: fsck_err: mutex_unlock(&jlist->lock); return ret; } static struct nonce journal_nonce(const struct jset *jset) { return (struct nonce) {{ [0] = 0, [1] = ((__le32 *) &jset->seq)[0], [2] = ((__le32 *) &jset->seq)[1], [3] = BCH_NONCE_JOURNAL, }}; } static void journal_entry_null_range(void *start, void *end) { struct jset_entry *entry; for (entry = start; entry != end; entry = vstruct_next(entry)) { entry->u64s = 0; entry->btree_id = 0; entry->level = 0; entry->flags = 0; SET_JOURNAL_ENTRY_TYPE(entry, 0); } } static int journal_validate_key(struct bch_fs *c, struct jset *j, struct jset_entry *entry, struct bkey_i *k, enum bkey_type key_type, const char *type) { void *next = vstruct_next(entry); const char *invalid; char buf[160]; int ret = 0; if (mustfix_fsck_err_on(!k->k.u64s, c, "invalid %s in journal: k->u64s 0", type)) { entry->u64s = cpu_to_le16((u64 *) k - entry->_data); journal_entry_null_range(vstruct_next(entry), next); return 0; } if (mustfix_fsck_err_on((void *) bkey_next(k) > (void *) vstruct_next(entry), c, "invalid %s in journal: extends past end of journal entry", type)) { entry->u64s = cpu_to_le16((u64 *) k - entry->_data); journal_entry_null_range(vstruct_next(entry), next); return 0; } if (mustfix_fsck_err_on(k->k.format != KEY_FORMAT_CURRENT, c, "invalid %s in journal: bad format %u", type, k->k.format)) { le16_add_cpu(&entry->u64s, -k->k.u64s); memmove(k, bkey_next(k), next - (void *) bkey_next(k)); journal_entry_null_range(vstruct_next(entry), next); return 0; } if (JSET_BIG_ENDIAN(j) != CPU_BIG_ENDIAN) bch2_bkey_swab(key_type, NULL, bkey_to_packed(k)); invalid = bch2_bkey_invalid(c, key_type, bkey_i_to_s_c(k)); if (invalid) { bch2_bkey_val_to_text(c, key_type, buf, sizeof(buf), bkey_i_to_s_c(k)); mustfix_fsck_err(c, "invalid %s in journal: %s", type, buf); le16_add_cpu(&entry->u64s, -k->k.u64s); memmove(k, bkey_next(k), next - (void *) bkey_next(k)); journal_entry_null_range(vstruct_next(entry), next); return 0; } fsck_err: return ret; } #define JOURNAL_ENTRY_REREAD 5 #define JOURNAL_ENTRY_NONE 6 #define JOURNAL_ENTRY_BAD 7 #define journal_entry_err(c, msg, ...) \ ({ \ if (write == READ) { \ mustfix_fsck_err(c, msg, ##__VA_ARGS__); \ } else { \ bch_err(c, "detected corrupt metadata before write:\n" \ msg, ##__VA_ARGS__); \ ret = BCH_FSCK_ERRORS_NOT_FIXED; \ goto fsck_err; \ } \ true; \ }) #define journal_entry_err_on(cond, c, msg, ...) \ ((cond) ? journal_entry_err(c, msg, ##__VA_ARGS__) : false) static int __journal_entry_validate(struct bch_fs *c, struct jset *j, int write) { struct jset_entry *entry; int ret = 0; vstruct_for_each(j, entry) { struct bkey_i *k; if (journal_entry_err_on(vstruct_next(entry) > vstruct_last(j), c, "journal entry extends past end of jset")) { j->u64s = cpu_to_le64((u64 *) entry - j->_data); break; } switch (JOURNAL_ENTRY_TYPE(entry)) { case JOURNAL_ENTRY_BTREE_KEYS: vstruct_for_each(entry, k) { ret = journal_validate_key(c, j, entry, k, bkey_type(entry->level, entry->btree_id), "key"); if (ret) goto fsck_err; } break; case JOURNAL_ENTRY_BTREE_ROOT: k = entry->start; if (journal_entry_err_on(!entry->u64s || le16_to_cpu(entry->u64s) != k->k.u64s, c, "invalid btree root journal entry: wrong number of keys")) { journal_entry_null_range(entry, vstruct_next(entry)); continue; } ret = journal_validate_key(c, j, entry, k, BKEY_TYPE_BTREE, "btree root"); if (ret) goto fsck_err; break; case JOURNAL_ENTRY_PRIO_PTRS: break; case JOURNAL_ENTRY_JOURNAL_SEQ_BLACKLISTED: if (journal_entry_err_on(le16_to_cpu(entry->u64s) != 1, c, "invalid journal seq blacklist entry: bad size")) { journal_entry_null_range(entry, vstruct_next(entry)); } break; default: journal_entry_err(c, "invalid journal entry type %llu", JOURNAL_ENTRY_TYPE(entry)); journal_entry_null_range(entry, vstruct_next(entry)); break; } } fsck_err: return ret; } static int journal_entry_validate(struct bch_fs *c, struct jset *j, u64 sector, unsigned bucket_sectors_left, unsigned sectors_read, int write) { size_t bytes = vstruct_bytes(j); struct bch_csum csum; int ret = 0; if (le64_to_cpu(j->magic) != jset_magic(c)) return JOURNAL_ENTRY_NONE; if (le32_to_cpu(j->version) != BCACHE_JSET_VERSION) { bch_err(c, "unknown journal entry version %u", le32_to_cpu(j->version)); return BCH_FSCK_UNKNOWN_VERSION; } if (journal_entry_err_on(bytes > bucket_sectors_left << 9, c, "journal entry too big (%zu bytes), sector %lluu", bytes, sector)) { /* XXX: note we might have missing journal entries */ return JOURNAL_ENTRY_BAD; } if (bytes > sectors_read << 9) return JOURNAL_ENTRY_REREAD; if (fsck_err_on(!bch2_checksum_type_valid(c, JSET_CSUM_TYPE(j)), c, "journal entry with unknown csum type %llu sector %lluu", JSET_CSUM_TYPE(j), sector)) return JOURNAL_ENTRY_BAD; csum = csum_vstruct(c, JSET_CSUM_TYPE(j), journal_nonce(j), j); if (journal_entry_err_on(bch2_crc_cmp(csum, j->csum), c, "journal checksum bad, sector %llu", sector)) { /* XXX: retry IO, when we start retrying checksum errors */ /* XXX: note we might have missing journal entries */ return JOURNAL_ENTRY_BAD; } bch2_encrypt(c, JSET_CSUM_TYPE(j), journal_nonce(j), j->encrypted_start, vstruct_end(j) - (void *) j->encrypted_start); if (journal_entry_err_on(le64_to_cpu(j->last_seq) > le64_to_cpu(j->seq), c, "invalid journal entry: last_seq > seq")) j->last_seq = j->seq; return __journal_entry_validate(c, j, write); fsck_err: return ret; } struct journal_read_buf { void *data; size_t size; }; static int journal_read_buf_realloc(struct journal_read_buf *b, size_t new_size) { void *n; /* the bios are sized for this many pages, max: */ if (new_size > JOURNAL_ENTRY_SIZE_MAX) return -ENOMEM; new_size = roundup_pow_of_two(new_size); n = kvpmalloc(new_size, GFP_KERNEL); if (!n) return -ENOMEM; kvpfree(b->data, b->size); b->data = n; b->size = new_size; return 0; } static int journal_read_bucket(struct bch_dev *ca, struct journal_read_buf *buf, struct journal_list *jlist, unsigned bucket, u64 *seq, bool *entries_found) { struct bch_fs *c = ca->fs; struct journal_device *ja = &ca->journal; struct bio *bio = ja->bio; struct jset *j = NULL; unsigned sectors, sectors_read = 0; u64 offset = bucket_to_sector(ca, ja->buckets[bucket]), end = offset + ca->mi.bucket_size; bool saw_bad = false; int ret = 0; pr_debug("reading %u", bucket); while (offset < end) { if (!sectors_read) { reread: sectors_read = min_t(unsigned, end - offset, buf->size >> 9); bio_reset(bio); bio->bi_bdev = ca->disk_sb.bdev; bio->bi_iter.bi_sector = offset; bio->bi_iter.bi_size = sectors_read << 9; bio_set_op_attrs(bio, REQ_OP_READ, 0); bch2_bio_map(bio, buf->data); ret = submit_bio_wait(bio); if (bch2_dev_fatal_io_err_on(ret, ca, "journal read from sector %llu", offset) || bch2_meta_read_fault("journal")) return -EIO; j = buf->data; } ret = journal_entry_validate(c, j, offset, end - offset, sectors_read, READ); switch (ret) { case BCH_FSCK_OK: break; case JOURNAL_ENTRY_REREAD: if (vstruct_bytes(j) > buf->size) { ret = journal_read_buf_realloc(buf, vstruct_bytes(j)); if (ret) return ret; } goto reread; case JOURNAL_ENTRY_NONE: if (!saw_bad) return 0; sectors = c->sb.block_size; goto next_block; case JOURNAL_ENTRY_BAD: saw_bad = true; sectors = c->sb.block_size; goto next_block; default: return ret; } /* * This happens sometimes if we don't have discards on - * when we've partially overwritten a bucket with new * journal entries. We don't need the rest of the * bucket: */ if (le64_to_cpu(j->seq) < ja->bucket_seq[bucket]) return 0; ja->bucket_seq[bucket] = le64_to_cpu(j->seq); ret = journal_entry_add(c, jlist, j); switch (ret) { case JOURNAL_ENTRY_ADD_OK: *entries_found = true; break; case JOURNAL_ENTRY_ADD_OUT_OF_RANGE: break; default: return ret; } if (le64_to_cpu(j->seq) > *seq) *seq = le64_to_cpu(j->seq); sectors = vstruct_sectors(j, c->block_bits); next_block: pr_debug("next"); offset += sectors; sectors_read -= sectors; j = ((void *) j) + (sectors << 9); } return 0; } static void bch2_journal_read_device(struct closure *cl) { #define read_bucket(b) \ ({ \ bool entries_found = false; \ ret = journal_read_bucket(ca, &buf, jlist, b, &seq, \ &entries_found); \ if (ret) \ goto err; \ __set_bit(b, bitmap); \ entries_found; \ }) struct journal_device *ja = container_of(cl, struct journal_device, read); struct bch_dev *ca = container_of(ja, struct bch_dev, journal); struct journal_list *jlist = container_of(cl->parent, struct journal_list, cl); struct request_queue *q = bdev_get_queue(ca->disk_sb.bdev); struct journal_read_buf buf = { NULL, 0 }; DECLARE_BITMAP(bitmap, ja->nr); unsigned i, l, r; u64 seq = 0; int ret; if (!ja->nr) goto out; bitmap_zero(bitmap, ja->nr); ret = journal_read_buf_realloc(&buf, PAGE_SIZE); if (ret) goto err; pr_debug("%u journal buckets", ja->nr); /* * If the device supports discard but not secure discard, we can't do * the fancy fibonacci hash/binary search because the live journal * entries might not form a contiguous range: */ for (i = 0; i < ja->nr; i++) read_bucket(i); goto search_done; if (!blk_queue_nonrot(q)) goto linear_scan; /* * Read journal buckets ordered by golden ratio hash to quickly * find a sequence of buckets with valid journal entries */ for (i = 0; i < ja->nr; i++) { l = (i * 2654435769U) % ja->nr; if (test_bit(l, bitmap)) break; if (read_bucket(l)) goto bsearch; } /* * If that fails, check all the buckets we haven't checked * already */ pr_debug("falling back to linear search"); linear_scan: for (l = find_first_zero_bit(bitmap, ja->nr); l < ja->nr; l = find_next_zero_bit(bitmap, ja->nr, l + 1)) if (read_bucket(l)) goto bsearch; /* no journal entries on this device? */ if (l == ja->nr) goto out; bsearch: /* Binary search */ r = find_next_bit(bitmap, ja->nr, l + 1); pr_debug("starting binary search, l %u r %u", l, r); while (l + 1 < r) { unsigned m = (l + r) >> 1; u64 cur_seq = seq; read_bucket(m); if (cur_seq != seq) l = m; else r = m; } search_done: /* * Find the journal bucket with the highest sequence number: * * If there's duplicate journal entries in multiple buckets (which * definitely isn't supposed to happen, but...) - make sure to start * cur_idx at the last of those buckets, so we don't deadlock trying to * allocate */ seq = 0; for (i = 0; i < ja->nr; i++) if (ja->bucket_seq[i] >= seq && ja->bucket_seq[i] != ja->bucket_seq[(i + 1) % ja->nr]) { /* * When journal_next_bucket() goes to allocate for * the first time, it'll use the bucket after * ja->cur_idx */ ja->cur_idx = i; seq = ja->bucket_seq[i]; } /* * Set last_idx to indicate the entire journal is full and needs to be * reclaimed - journal reclaim will immediately reclaim whatever isn't * pinned when it first runs: */ ja->last_idx = (ja->cur_idx + 1) % ja->nr; /* * Read buckets in reverse order until we stop finding more journal * entries: */ for (i = (ja->cur_idx + ja->nr - 1) % ja->nr; i != ja->cur_idx; i = (i + ja->nr - 1) % ja->nr) if (!test_bit(i, bitmap) && !read_bucket(i)) break; out: kvpfree(buf.data, buf.size); percpu_ref_put(&ca->io_ref); closure_return(cl); err: mutex_lock(&jlist->lock); jlist->ret = ret; mutex_unlock(&jlist->lock); goto out; #undef read_bucket } void bch2_journal_entries_free(struct list_head *list) { while (!list_empty(list)) { struct journal_replay *i = list_first_entry(list, struct journal_replay, list); list_del(&i->list); kvpfree(i, offsetof(struct journal_replay, j) + vstruct_bytes(&i->j)); } } static int journal_seq_blacklist_read(struct journal *j, struct journal_replay *i, struct journal_entry_pin_list *p) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct jset_entry *entry; struct journal_seq_blacklist *bl; u64 seq; for_each_jset_entry_type(entry, &i->j, JOURNAL_ENTRY_JOURNAL_SEQ_BLACKLISTED) { seq = le64_to_cpu(entry->_data[0]); bch_verbose(c, "blacklisting existing journal seq %llu", seq); bl = bch2_journal_seq_blacklisted_new(j, seq); if (!bl) return -ENOMEM; journal_pin_add_entry(j, p, &bl->pin, journal_seq_blacklist_flush); bl->written = true; } return 0; } static inline bool journal_has_keys(struct list_head *list) { struct journal_replay *i; struct jset_entry *entry; struct bkey_i *k, *_n; list_for_each_entry(i, list, list) for_each_jset_key(k, _n, entry, &i->j) return true; return false; } int bch2_journal_read(struct bch_fs *c, struct list_head *list) { struct journal *j = &c->journal; struct jset_entry *prio_ptrs; struct journal_list jlist; struct journal_replay *i; struct journal_entry_pin_list *p; struct bch_dev *ca; u64 cur_seq, end_seq; unsigned iter, keys = 0, entries = 0; int ret = 0; closure_init_stack(&jlist.cl); mutex_init(&jlist.lock); jlist.head = list; jlist.ret = 0; for_each_readable_member(ca, c, iter) { percpu_ref_get(&ca->io_ref); closure_call(&ca->journal.read, bch2_journal_read_device, system_unbound_wq, &jlist.cl); } closure_sync(&jlist.cl); if (jlist.ret) return jlist.ret; if (list_empty(list)){ bch_err(c, "no journal entries found"); return BCH_FSCK_REPAIR_IMPOSSIBLE; } fsck_err_on(c->sb.clean && journal_has_keys(list), c, "filesystem marked clean but journal has keys to replay"); i = list_last_entry(list, struct journal_replay, list); unfixable_fsck_err_on(le64_to_cpu(i->j.seq) - le64_to_cpu(i->j.last_seq) + 1 > j->pin.size, c, "too many journal entries open for refcount fifo"); atomic64_set(&j->seq, le64_to_cpu(i->j.seq)); j->last_seq_ondisk = le64_to_cpu(i->j.last_seq); j->pin.front = le64_to_cpu(i->j.last_seq); j->pin.back = le64_to_cpu(i->j.seq) + 1; BUG_ON(last_seq(j) != le64_to_cpu(i->j.last_seq)); BUG_ON(journal_seq_pin(j, atomic64_read(&j->seq)) != &fifo_peek_back(&j->pin)); fifo_for_each_entry_ptr(p, &j->pin, iter) { INIT_LIST_HEAD(&p->list); INIT_LIST_HEAD(&p->flushed); atomic_set(&p->count, 0); } mutex_lock(&j->blacklist_lock); list_for_each_entry(i, list, list) { p = journal_seq_pin(j, le64_to_cpu(i->j.seq)); atomic_set(&p->count, 1); if (journal_seq_blacklist_read(j, i, p)) { mutex_unlock(&j->blacklist_lock); return -ENOMEM; } } mutex_unlock(&j->blacklist_lock); cur_seq = last_seq(j); end_seq = le64_to_cpu(list_last_entry(list, struct journal_replay, list)->j.seq); list_for_each_entry(i, list, list) { struct jset_entry *entry; struct bkey_i *k, *_n; bool blacklisted; mutex_lock(&j->blacklist_lock); while (cur_seq < le64_to_cpu(i->j.seq) && journal_seq_blacklist_find(j, cur_seq)) cur_seq++; blacklisted = journal_seq_blacklist_find(j, le64_to_cpu(i->j.seq)); mutex_unlock(&j->blacklist_lock); fsck_err_on(blacklisted, c, "found blacklisted journal entry %llu", le64_to_cpu(i->j.seq)); fsck_err_on(le64_to_cpu(i->j.seq) != cur_seq, c, "journal entries %llu-%llu missing! (replaying %llu-%llu)", cur_seq, le64_to_cpu(i->j.seq) - 1, last_seq(j), end_seq); cur_seq = le64_to_cpu(i->j.seq) + 1; for_each_jset_key(k, _n, entry, &i->j) keys++; entries++; } bch_info(c, "journal read done, %i keys in %i entries, seq %llu", keys, entries, (u64) atomic64_read(&j->seq)); i = list_last_entry(list, struct journal_replay, list); prio_ptrs = bch2_journal_find_entry(&i->j, JOURNAL_ENTRY_PRIO_PTRS, 0); if (prio_ptrs) { memcpy_u64s(j->prio_buckets, prio_ptrs->_data, le16_to_cpu(prio_ptrs->u64s)); j->nr_prio_buckets = le16_to_cpu(prio_ptrs->u64s); } fsck_err: return ret; } int bch2_journal_mark(struct bch_fs *c, struct list_head *list) { struct bkey_i *k, *n; struct jset_entry *j; struct journal_replay *r; int ret; list_for_each_entry(r, list, list) for_each_jset_key(k, n, j, &r->j) { enum bkey_type type = bkey_type(j->level, j->btree_id); struct bkey_s_c k_s_c = bkey_i_to_s_c(k); if (btree_type_has_ptrs(type)) { ret = bch2_btree_mark_key_initial(c, type, k_s_c); if (ret) return ret; } } return 0; } static bool journal_entry_is_open(struct journal *j) { return j->reservations.cur_entry_offset < JOURNAL_ENTRY_CLOSED_VAL; } void bch2_journal_buf_put_slowpath(struct journal *j, bool need_write_just_set) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct journal_buf *w = journal_prev_buf(j); atomic_dec_bug(&journal_seq_pin(j, w->data->seq)->count); if (!need_write_just_set && test_bit(JOURNAL_NEED_WRITE, &j->flags)) __bch2_time_stats_update(j->delay_time, j->need_write_time); #if 0 closure_call(&j->io, journal_write, NULL, &c->cl); #else /* Shut sparse up: */ closure_init(&j->io, &c->cl); set_closure_fn(&j->io, journal_write, NULL); journal_write(&j->io); #endif } static void __journal_entry_new(struct journal *j, int count) { struct journal_entry_pin_list *p = fifo_push_ref(&j->pin); /* * The fifo_push() needs to happen at the same time as j->seq is * incremented for last_seq() to be calculated correctly */ atomic64_inc(&j->seq); BUG_ON(journal_seq_pin(j, atomic64_read(&j->seq)) != &fifo_peek_back(&j->pin)); INIT_LIST_HEAD(&p->list); INIT_LIST_HEAD(&p->flushed); atomic_set(&p->count, count); } static void __bch2_journal_next_entry(struct journal *j) { struct journal_buf *buf; __journal_entry_new(j, 1); buf = journal_cur_buf(j); memset(buf->has_inode, 0, sizeof(buf->has_inode)); memset(buf->data, 0, sizeof(*buf->data)); buf->data->seq = cpu_to_le64(atomic64_read(&j->seq)); buf->data->u64s = 0; } static inline size_t journal_entry_u64s_reserve(struct journal_buf *buf) { unsigned ret = BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_EXTENT_U64s_MAX); if (buf->nr_prio_buckets) ret += JSET_KEYS_U64s + buf->nr_prio_buckets; return ret; } static enum { JOURNAL_ENTRY_ERROR, JOURNAL_ENTRY_INUSE, JOURNAL_ENTRY_CLOSED, JOURNAL_UNLOCKED, } journal_buf_switch(struct journal *j, bool need_write_just_set) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct journal_buf *buf; union journal_res_state old, new; u64 v = atomic64_read(&j->reservations.counter); lockdep_assert_held(&j->lock); do { old.v = new.v = v; if (old.cur_entry_offset == JOURNAL_ENTRY_CLOSED_VAL) return JOURNAL_ENTRY_CLOSED; if (old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL) return JOURNAL_ENTRY_ERROR; if (new.prev_buf_unwritten) return JOURNAL_ENTRY_INUSE; /* * avoid race between setting buf->data->u64s and * journal_res_put starting write: */ journal_state_inc(&new); new.cur_entry_offset = JOURNAL_ENTRY_CLOSED_VAL; new.idx++; new.prev_buf_unwritten = 1; BUG_ON(journal_state_count(new, new.idx)); } while ((v = atomic64_cmpxchg(&j->reservations.counter, old.v, new.v)) != old.v); journal_reclaim_fast(j); clear_bit(JOURNAL_NEED_WRITE, &j->flags); buf = &j->buf[old.idx]; buf->data->u64s = cpu_to_le32(old.cur_entry_offset); buf->data->last_seq = cpu_to_le64(last_seq(j)); j->prev_buf_sectors = vstruct_blocks_plus(buf->data, c->block_bits, journal_entry_u64s_reserve(buf)) * c->sb.block_size; BUG_ON(j->prev_buf_sectors > j->cur_buf_sectors); __bch2_journal_next_entry(j); cancel_delayed_work(&j->write_work); spin_unlock(&j->lock); if (c->bucket_journal_seq > 1 << 14) { c->bucket_journal_seq = 0; bch2_bucket_seq_cleanup(c); } /* ugh - might be called from __journal_res_get() under wait_event() */ __set_current_state(TASK_RUNNING); bch2_journal_buf_put(j, old.idx, need_write_just_set); return JOURNAL_UNLOCKED; } void bch2_journal_halt(struct journal *j) { union journal_res_state old, new; u64 v = atomic64_read(&j->reservations.counter); do { old.v = new.v = v; if (old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL) return; new.cur_entry_offset = JOURNAL_ENTRY_ERROR_VAL; } while ((v = atomic64_cmpxchg(&j->reservations.counter, old.v, new.v)) != old.v); wake_up(&j->wait); closure_wake_up(&journal_cur_buf(j)->wait); closure_wake_up(&journal_prev_buf(j)->wait); } static unsigned journal_dev_buckets_available(struct journal *j, struct bch_dev *ca) { struct journal_device *ja = &ca->journal; unsigned next = (ja->cur_idx + 1) % ja->nr; unsigned available = (ja->last_idx + ja->nr - next) % ja->nr; /* * Hack to avoid a deadlock during journal replay: * journal replay might require setting a new btree * root, which requires writing another journal entry - * thus, if the journal is full (and this happens when * replaying the first journal bucket's entries) we're * screwed. * * So don't let the journal fill up unless we're in * replay: */ if (test_bit(JOURNAL_REPLAY_DONE, &j->flags)) available = max((int) available - 2, 0); /* * Don't use the last bucket unless writing the new last_seq * will make another bucket available: */ if (ja->bucket_seq[ja->last_idx] >= last_seq(j)) available = max((int) available - 1, 0); return available; } /* returns number of sectors available for next journal entry: */ static int journal_entry_sectors(struct journal *j) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bch_dev *ca; struct bkey_s_extent e = bkey_i_to_s_extent(&j->key); unsigned sectors_available = UINT_MAX; unsigned i, nr_online = 0, nr_devs = 0; lockdep_assert_held(&j->lock); spin_lock(&j->devs.lock); group_for_each_dev(ca, &j->devs, i) { unsigned buckets_required = 0; sectors_available = min_t(unsigned, sectors_available, ca->mi.bucket_size); /* * Note that we don't allocate the space for a journal entry * until we write it out - thus, if we haven't started the write * for the previous entry we have to make sure we have space for * it too: */ if (bch2_extent_has_device(e.c, ca->dev_idx)) { if (j->prev_buf_sectors > ca->journal.sectors_free) buckets_required++; if (j->prev_buf_sectors + sectors_available > ca->journal.sectors_free) buckets_required++; } else { if (j->prev_buf_sectors + sectors_available > ca->mi.bucket_size) buckets_required++; buckets_required++; } if (journal_dev_buckets_available(j, ca) >= buckets_required) nr_devs++; nr_online++; } spin_unlock(&j->devs.lock); if (nr_online < c->opts.metadata_replicas_required) return -EROFS; if (nr_devs < min_t(unsigned, nr_online, c->opts.metadata_replicas)) return 0; return sectors_available; } /* * should _only_ called from journal_res_get() - when we actually want a * journal reservation - journal entry is open means journal is dirty: */ static int journal_entry_open(struct journal *j) { struct journal_buf *buf = journal_cur_buf(j); ssize_t u64s; int ret = 0, sectors; lockdep_assert_held(&j->lock); BUG_ON(journal_entry_is_open(j)); if (!fifo_free(&j->pin)) return 0; sectors = journal_entry_sectors(j); if (sectors <= 0) return sectors; buf->disk_sectors = sectors; sectors = min_t(unsigned, sectors, buf->size >> 9); j->cur_buf_sectors = sectors; buf->nr_prio_buckets = j->nr_prio_buckets; u64s = (sectors << 9) / sizeof(u64); /* Subtract the journal header */ u64s -= sizeof(struct jset) / sizeof(u64); /* * Btree roots, prio pointers don't get added until right before we do * the write: */ u64s -= journal_entry_u64s_reserve(buf); u64s = max_t(ssize_t, 0L, u64s); BUG_ON(u64s >= JOURNAL_ENTRY_CLOSED_VAL); if (u64s > le32_to_cpu(buf->data->u64s)) { union journal_res_state old, new; u64 v = atomic64_read(&j->reservations.counter); /* * Must be set before marking the journal entry as open: */ j->cur_entry_u64s = u64s; do { old.v = new.v = v; if (old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL) return false; /* Handle any already added entries */ new.cur_entry_offset = le32_to_cpu(buf->data->u64s); } while ((v = atomic64_cmpxchg(&j->reservations.counter, old.v, new.v)) != old.v); ret = 1; wake_up(&j->wait); if (j->res_get_blocked_start) { __bch2_time_stats_update(j->blocked_time, j->res_get_blocked_start); j->res_get_blocked_start = 0; } mod_delayed_work(system_freezable_wq, &j->write_work, msecs_to_jiffies(j->write_delay_ms)); } return ret; } void bch2_journal_start(struct bch_fs *c) { struct journal *j = &c->journal; struct journal_seq_blacklist *bl; u64 new_seq = 0; list_for_each_entry(bl, &j->seq_blacklist, list) new_seq = max(new_seq, bl->seq); spin_lock(&j->lock); set_bit(JOURNAL_STARTED, &j->flags); while (atomic64_read(&j->seq) < new_seq) __journal_entry_new(j, 0); /* * journal_buf_switch() only inits the next journal entry when it * closes an open journal entry - the very first journal entry gets * initialized here: */ __bch2_journal_next_entry(j); /* * Adding entries to the next journal entry before allocating space on * disk for the next journal entry - this is ok, because these entries * only have to go down with the next journal entry we write: */ list_for_each_entry(bl, &j->seq_blacklist, list) if (!bl->written) { bch2_journal_add_entry(journal_cur_buf(j), &bl->seq, 1, JOURNAL_ENTRY_JOURNAL_SEQ_BLACKLISTED, 0, 0); journal_pin_add_entry(j, &fifo_peek_back(&j->pin), &bl->pin, journal_seq_blacklist_flush); bl->written = true; } spin_unlock(&j->lock); queue_delayed_work(system_freezable_wq, &j->reclaim_work, 0); } int bch2_journal_replay(struct bch_fs *c, struct list_head *list) { struct journal *j = &c->journal; struct bkey_i *k, *_n; struct jset_entry *entry; struct journal_replay *i, *n; int ret = 0, did_replay = 0; list_for_each_entry_safe(i, n, list, list) { j->replay_pin_list = journal_seq_pin(j, le64_to_cpu(i->j.seq)); for_each_jset_key(k, _n, entry, &i->j) { struct disk_reservation disk_res; /* * We might cause compressed extents to be split, so we * need to pass in a disk_reservation: */ BUG_ON(bch2_disk_reservation_get(c, &disk_res, 0, 0)); ret = bch2_btree_insert(c, entry->btree_id, k, &disk_res, NULL, NULL, BTREE_INSERT_NOFAIL| BTREE_INSERT_JOURNAL_REPLAY); bch2_disk_reservation_put(c, &disk_res); if (ret) { bch_err(c, "journal replay: error %d while replaying key", ret); goto err; } cond_resched(); did_replay = true; } if (atomic_dec_and_test(&j->replay_pin_list->count)) wake_up(&j->wait); } j->replay_pin_list = NULL; if (did_replay) { bch2_journal_flush_pins(&c->journal, U64_MAX); /* * Write a new journal entry _before_ we start journalling new data - * otherwise, we could end up with btree node bsets with journal seqs * arbitrarily far in the future vs. the most recently written journal * entry on disk, if we crash before writing the next journal entry: */ ret = bch2_journal_meta(j); if (ret) { bch_err(c, "journal replay: error %d flushing journal", ret); goto err; } } bch2_journal_set_replay_done(j); err: bch2_journal_entries_free(list); return ret; } #if 0 /* * Allocate more journal space at runtime - not currently making use if it, but * the code works: */ static int bch2_set_nr_journal_buckets(struct bch_fs *c, struct bch_dev *ca, unsigned nr) { struct journal *j = &c->journal; struct journal_device *ja = &ca->journal; struct bch_sb_field_journal *journal_buckets; struct disk_reservation disk_res = { 0, 0 }; struct closure cl; u64 *new_bucket_seq = NULL, *new_buckets = NULL; int ret = 0; closure_init_stack(&cl); /* don't handle reducing nr of buckets yet: */ if (nr <= ja->nr) return 0; /* * note: journal buckets aren't really counted as _sectors_ used yet, so * we don't need the disk reservation to avoid the BUG_ON() in buckets.c * when space used goes up without a reservation - but we do need the * reservation to ensure we'll actually be able to allocate: */ if (bch2_disk_reservation_get(c, &disk_res, (nr - ja->nr) << ca->bucket_bits, 0)) return -ENOSPC; mutex_lock(&c->sb_lock); ret = -ENOMEM; new_buckets = kzalloc(nr * sizeof(u64), GFP_KERNEL); new_bucket_seq = kzalloc(nr * sizeof(u64), GFP_KERNEL); if (!new_buckets || !new_bucket_seq) goto err; journal_buckets = bch2_sb_resize_journal(&ca->disk_sb, nr + sizeof(*journal_buckets) / sizeof(u64)); if (!journal_buckets) goto err; spin_lock(&j->lock); memcpy(new_buckets, ja->buckets, ja->nr * sizeof(u64)); memcpy(new_bucket_seq, ja->bucket_seq, ja->nr * sizeof(u64)); swap(new_buckets, ja->buckets); swap(new_bucket_seq, ja->bucket_seq); while (ja->nr < nr) { /* must happen under journal lock, to avoid racing with gc: */ u64 b = bch2_bucket_alloc(ca, RESERVE_NONE); if (!b) { if (!closure_wait(&c->freelist_wait, &cl)) { spin_unlock(&j->lock); closure_sync(&cl); spin_lock(&j->lock); } continue; } bch2_mark_metadata_bucket(ca, &ca->buckets[b], BUCKET_JOURNAL, false); bch2_mark_alloc_bucket(ca, &ca->buckets[b], false); memmove(ja->buckets + ja->last_idx + 1, ja->buckets + ja->last_idx, (ja->nr - ja->last_idx) * sizeof(u64)); memmove(ja->bucket_seq + ja->last_idx + 1, ja->bucket_seq + ja->last_idx, (ja->nr - ja->last_idx) * sizeof(u64)); memmove(journal_buckets->buckets + ja->last_idx + 1, journal_buckets->buckets + ja->last_idx, (ja->nr - ja->last_idx) * sizeof(u64)); ja->buckets[ja->last_idx] = b; journal_buckets->buckets[ja->last_idx] = cpu_to_le64(b); if (ja->last_idx < ja->nr) { if (ja->cur_idx >= ja->last_idx) ja->cur_idx++; ja->last_idx++; } ja->nr++; } spin_unlock(&j->lock); BUG_ON(bch2_validate_journal_layout(ca->disk_sb.sb, ca->mi)); bch2_write_super(c); ret = 0; err: mutex_unlock(&c->sb_lock); kfree(new_bucket_seq); kfree(new_buckets); bch2_disk_reservation_put(c, &disk_res); return ret; } #endif int bch2_dev_journal_alloc(struct bch_dev *ca) { struct journal_device *ja = &ca->journal; struct bch_sb_field_journal *journal_buckets; unsigned i, nr; u64 b, *p; if (dynamic_fault("bcachefs:add:journal_alloc")) return -ENOMEM; /* * clamp journal size to 1024 buckets or 512MB (in sectors), whichever * is smaller: */ nr = clamp_t(unsigned, ca->mi.nbuckets >> 8, BCH_JOURNAL_BUCKETS_MIN, min(1 << 10, (1 << 20) / ca->mi.bucket_size)); p = krealloc(ja->bucket_seq, nr * sizeof(u64), GFP_KERNEL|__GFP_ZERO); if (!p) return -ENOMEM; ja->bucket_seq = p; p = krealloc(ja->buckets, nr * sizeof(u64), GFP_KERNEL|__GFP_ZERO); if (!p) return -ENOMEM; ja->buckets = p; journal_buckets = bch2_sb_resize_journal(&ca->disk_sb, nr + sizeof(*journal_buckets) / sizeof(u64)); if (!journal_buckets) return -ENOMEM; for (i = 0, b = ca->mi.first_bucket; i < nr && b < ca->mi.nbuckets; b++) { if (!is_available_bucket(ca->buckets[b].mark)) continue; bch2_mark_metadata_bucket(ca, &ca->buckets[b], BUCKET_JOURNAL, true); ja->buckets[i] = b; journal_buckets->buckets[i] = cpu_to_le64(b); i++; } if (i < nr) return -ENOSPC; BUG_ON(bch2_validate_journal_layout(ca->disk_sb.sb, ca->mi)); ja->nr = nr; return 0; } /* Journalling */ /** * journal_reclaim_fast - do the fast part of journal reclaim * * Called from IO submission context, does not block. Cleans up after btree * write completions by advancing the journal pin and each cache's last_idx, * kicking off discards and background reclaim as necessary. */ static void journal_reclaim_fast(struct journal *j) { struct journal_entry_pin_list temp; bool popped = false; lockdep_assert_held(&j->lock); /* * Unpin journal entries whose reference counts reached zero, meaning * all btree nodes got written out */ while (!atomic_read(&fifo_peek_front(&j->pin).count)) { BUG_ON(!list_empty(&fifo_peek_front(&j->pin).list)); BUG_ON(!fifo_pop(&j->pin, temp)); popped = true; } if (popped) wake_up(&j->wait); } /* * Journal entry pinning - machinery for holding a reference on a given journal * entry, marking it as dirty: */ static inline void __journal_pin_add(struct journal *j, struct journal_entry_pin_list *pin_list, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { BUG_ON(journal_pin_active(pin)); atomic_inc(&pin_list->count); pin->pin_list = pin_list; pin->flush = flush_fn; if (flush_fn) list_add(&pin->list, &pin_list->list); else INIT_LIST_HEAD(&pin->list); } static void journal_pin_add_entry(struct journal *j, struct journal_entry_pin_list *pin_list, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { spin_lock_irq(&j->pin_lock); __journal_pin_add(j, pin_list, pin, flush_fn); spin_unlock_irq(&j->pin_lock); } void bch2_journal_pin_add(struct journal *j, struct journal_res *res, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { struct journal_entry_pin_list *pin_list = res->ref ? journal_seq_pin(j, res->seq) : j->replay_pin_list; spin_lock_irq(&j->pin_lock); __journal_pin_add(j, pin_list, pin, flush_fn); spin_unlock_irq(&j->pin_lock); } static inline bool __journal_pin_drop(struct journal *j, struct journal_entry_pin *pin) { struct journal_entry_pin_list *pin_list = pin->pin_list; pin->pin_list = NULL; /* journal_reclaim_work() might have already taken us off the list */ if (!list_empty_careful(&pin->list)) list_del_init(&pin->list); return atomic_dec_and_test(&pin_list->count); } void bch2_journal_pin_drop(struct journal *j, struct journal_entry_pin *pin) { unsigned long flags; bool wakeup; if (!journal_pin_active(pin)) return; spin_lock_irqsave(&j->pin_lock, flags); wakeup = __journal_pin_drop(j, pin); spin_unlock_irqrestore(&j->pin_lock, flags); /* * Unpinning a journal entry make make journal_next_bucket() succeed, if * writing a new last_seq will now make another bucket available: * * Nested irqsave is expensive, don't do the wakeup with lock held: */ if (wakeup) wake_up(&j->wait); } void bch2_journal_pin_add_if_older(struct journal *j, struct journal_entry_pin *src_pin, struct journal_entry_pin *pin, journal_pin_flush_fn flush_fn) { spin_lock_irq(&j->pin_lock); if (journal_pin_active(src_pin) && (!journal_pin_active(pin) || fifo_entry_idx(&j->pin, src_pin->pin_list) < fifo_entry_idx(&j->pin, pin->pin_list))) { if (journal_pin_active(pin)) __journal_pin_drop(j, pin); __journal_pin_add(j, src_pin->pin_list, pin, flush_fn); } spin_unlock_irq(&j->pin_lock); } static struct journal_entry_pin * journal_get_next_pin(struct journal *j, u64 seq_to_flush, u64 *seq) { struct journal_entry_pin_list *pin_list; struct journal_entry_pin *ret = NULL; unsigned iter; /* so we don't iterate over empty fifo entries below: */ if (!atomic_read(&fifo_peek_front(&j->pin).count)) { spin_lock(&j->lock); journal_reclaim_fast(j); spin_unlock(&j->lock); } spin_lock_irq(&j->pin_lock); fifo_for_each_entry_ptr(pin_list, &j->pin, iter) { if (journal_pin_seq(j, pin_list) > seq_to_flush) break; ret = list_first_entry_or_null(&pin_list->list, struct journal_entry_pin, list); if (ret) { /* must be list_del_init(), see bch2_journal_pin_drop() */ list_move(&ret->list, &pin_list->flushed); *seq = journal_pin_seq(j, pin_list); break; } } spin_unlock_irq(&j->pin_lock); return ret; } static bool journal_flush_done(struct journal *j, u64 seq_to_flush) { bool ret; spin_lock(&j->lock); journal_reclaim_fast(j); ret = (fifo_used(&j->pin) == 1 && atomic_read(&fifo_peek_front(&j->pin).count) == 1) || last_seq(j) > seq_to_flush; spin_unlock(&j->lock); return ret; } void bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) { struct journal_entry_pin *pin; u64 pin_seq; while ((pin = journal_get_next_pin(j, seq_to_flush, &pin_seq))) pin->flush(j, pin, pin_seq); wait_event(j->wait, journal_flush_done(j, seq_to_flush) || bch2_journal_error(j)); } static bool should_discard_bucket(struct journal *j, struct journal_device *ja) { bool ret; spin_lock(&j->lock); ret = ja->nr && (ja->last_idx != ja->cur_idx && ja->bucket_seq[ja->last_idx] < j->last_seq_ondisk); spin_unlock(&j->lock); return ret; } /** * journal_reclaim_work - free up journal buckets * * Background journal reclaim writes out btree nodes. It should be run * early enough so that we never completely run out of journal buckets. * * High watermarks for triggering background reclaim: * - FIFO has fewer than 512 entries left * - fewer than 25% journal buckets free * * Background reclaim runs until low watermarks are reached: * - FIFO has more than 1024 entries left * - more than 50% journal buckets free * * As long as a reclaim can complete in the time it takes to fill up * 512 journal entries or 25% of all journal buckets, then * journal_next_bucket() should not stall. */ static void journal_reclaim_work(struct work_struct *work) { struct bch_fs *c = container_of(to_delayed_work(work), struct bch_fs, journal.reclaim_work); struct journal *j = &c->journal; struct bch_dev *ca; struct journal_entry_pin *pin; u64 seq, seq_to_flush = 0; unsigned iter, bucket_to_flush; unsigned long next_flush; bool reclaim_lock_held = false, need_flush; /* * Advance last_idx to point to the oldest journal entry containing * btree node updates that have not yet been written out */ for_each_rw_member(ca, c, iter) { struct journal_device *ja = &ca->journal; if (!ja->nr) continue; while (should_discard_bucket(j, ja)) { if (!reclaim_lock_held) { /* * ugh: * might be called from __journal_res_get() * under wait_event() - have to go back to * TASK_RUNNING before doing something that * would block, but only if we're doing work: */ __set_current_state(TASK_RUNNING); mutex_lock(&j->reclaim_lock); reclaim_lock_held = true; /* recheck under reclaim_lock: */ continue; } if (ca->mi.discard && blk_queue_discard(bdev_get_queue(ca->disk_sb.bdev))) blkdev_issue_discard(ca->disk_sb.bdev, bucket_to_sector(ca, ja->buckets[ja->last_idx]), ca->mi.bucket_size, GFP_NOIO, 0); spin_lock(&j->lock); ja->last_idx = (ja->last_idx + 1) % ja->nr; spin_unlock(&j->lock); wake_up(&j->wait); } /* * Write out enough btree nodes to free up 50% journal * buckets */ spin_lock(&j->lock); bucket_to_flush = (ja->cur_idx + (ja->nr >> 1)) % ja->nr; seq_to_flush = max_t(u64, seq_to_flush, ja->bucket_seq[bucket_to_flush]); spin_unlock(&j->lock); } if (reclaim_lock_held) mutex_unlock(&j->reclaim_lock); /* Also flush if the pin fifo is more than half full */ seq_to_flush = max_t(s64, seq_to_flush, (s64) atomic64_read(&j->seq) - (j->pin.size >> 1)); /* * If it's been longer than j->reclaim_delay_ms since we last flushed, * make sure to flush at least one journal pin: */ next_flush = j->last_flushed + msecs_to_jiffies(j->reclaim_delay_ms); need_flush = time_after(jiffies, next_flush); while ((pin = journal_get_next_pin(j, need_flush ? U64_MAX : seq_to_flush, &seq))) { __set_current_state(TASK_RUNNING); pin->flush(j, pin, seq); need_flush = false; j->last_flushed = jiffies; } if (!test_bit(BCH_FS_RO, &c->flags)) queue_delayed_work(system_freezable_wq, &j->reclaim_work, msecs_to_jiffies(j->reclaim_delay_ms)); } /** * journal_next_bucket - move on to the next journal bucket if possible */ static int journal_write_alloc(struct journal *j, unsigned sectors) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bkey_s_extent e = bkey_i_to_s_extent(&j->key); struct bch_extent_ptr *ptr; struct journal_device *ja; struct bch_dev *ca; bool swapped; unsigned i, replicas, replicas_want = READ_ONCE(c->opts.metadata_replicas); spin_lock(&j->lock); /* * Drop any pointers to devices that have been removed, are no longer * empty, or filled up their current journal bucket: * * Note that a device may have had a small amount of free space (perhaps * one sector) that wasn't enough for the smallest possible journal * entry - that's why we drop pointers to devices <= current free space, * i.e. whichever device was limiting the current journal entry size. */ extent_for_each_ptr_backwards(e, ptr) { ca = c->devs[ptr->dev]; if (ca->mi.state != BCH_MEMBER_STATE_RW || ca->journal.sectors_free <= sectors) __bch2_extent_drop_ptr(e, ptr); else ca->journal.sectors_free -= sectors; } replicas = bch2_extent_nr_ptrs(e.c); spin_lock(&j->devs.lock); /* Sort by tier: */ do { swapped = false; for (i = 0; i + 1 < j->devs.nr; i++) if (j->devs.d[i + 0].dev->mi.tier > j->devs.d[i + 1].dev->mi.tier) { swap(j->devs.d[i], j->devs.d[i + 1]); swapped = true; } } while (swapped); /* * Pick devices for next journal write: * XXX: sort devices by free journal space? */ group_for_each_dev(ca, &j->devs, i) { ja = &ca->journal; if (replicas >= replicas_want) break; /* * Check that we can use this device, and aren't already using * it: */ if (bch2_extent_has_device(e.c, ca->dev_idx) || !journal_dev_buckets_available(j, ca) || sectors > ca->mi.bucket_size) continue; ja->sectors_free = ca->mi.bucket_size - sectors; ja->cur_idx = (ja->cur_idx + 1) % ja->nr; ja->bucket_seq[ja->cur_idx] = atomic64_read(&j->seq); extent_ptr_append(bkey_i_to_extent(&j->key), (struct bch_extent_ptr) { .offset = bucket_to_sector(ca, ja->buckets[ja->cur_idx]), .dev = ca->dev_idx, }); replicas++; } spin_unlock(&j->devs.lock); j->prev_buf_sectors = 0; spin_unlock(&j->lock); if (replicas < c->opts.metadata_replicas_required) return -EROFS; BUG_ON(!replicas); return 0; } static void journal_write_compact(struct jset *jset) { struct jset_entry *i, *next, *prev = NULL; /* * Simple compaction, dropping empty jset_entries (from journal * reservations that weren't fully used) and merging jset_entries that * can be. * * If we wanted to be really fancy here, we could sort all the keys in * the jset and drop keys that were overwritten - probably not worth it: */ vstruct_for_each_safe(jset, i, next) { unsigned u64s = le16_to_cpu(i->u64s); /* Empty entry: */ if (!u64s) continue; /* Can we merge with previous entry? */ if (prev && i->btree_id == prev->btree_id && i->level == prev->level && JOURNAL_ENTRY_TYPE(i) == JOURNAL_ENTRY_TYPE(prev) && JOURNAL_ENTRY_TYPE(i) == JOURNAL_ENTRY_BTREE_KEYS && le16_to_cpu(prev->u64s) + u64s <= U16_MAX) { memmove_u64s_down(vstruct_next(prev), i->_data, u64s); le16_add_cpu(&prev->u64s, u64s); continue; } /* Couldn't merge, move i into new position (after prev): */ prev = prev ? vstruct_next(prev) : jset->start; if (i != prev) memmove_u64s_down(prev, i, jset_u64s(u64s)); } prev = prev ? vstruct_next(prev) : jset->start; jset->u64s = cpu_to_le32((u64 *) prev - jset->_data); } static void journal_write_endio(struct bio *bio) { struct bch_dev *ca = bio->bi_private; struct journal *j = &ca->fs->journal; if (bch2_dev_fatal_io_err_on(bio->bi_error, ca, "journal write") || bch2_meta_write_fault("journal")) bch2_journal_halt(j); closure_put(&j->io); percpu_ref_put(&ca->io_ref); } static void journal_write_done(struct closure *cl) { struct journal *j = container_of(cl, struct journal, io); struct journal_buf *w = journal_prev_buf(j); __bch2_time_stats_update(j->write_time, j->write_start_time); j->last_seq_ondisk = le64_to_cpu(w->data->last_seq); /* * Updating last_seq_ondisk may let journal_reclaim_work() discard more * buckets: * * Must come before signaling write completion, for * bch2_fs_journal_stop(): */ mod_delayed_work(system_freezable_wq, &j->reclaim_work, 0); BUG_ON(!j->reservations.prev_buf_unwritten); atomic64_sub(((union journal_res_state) { .prev_buf_unwritten = 1 }).v, &j->reservations.counter); /* * XXX: this is racy, we could technically end up doing the wake up * after the journal_buf struct has been reused for the next write * (because we're clearing JOURNAL_IO_IN_FLIGHT) and wake up things that * are waiting on the _next_ write, not this one. * * The wake up can't come before, because journal_flush_seq_async() is * looking at JOURNAL_IO_IN_FLIGHT when it has to wait on a journal * write that was already in flight. * * The right fix is to use a lock here, but using j.lock here means it * has to be a spin_lock_irqsave() lock which then requires propagating * the irq()ness to other locks and it's all kinds of nastiness. */ closure_wake_up(&w->wait); wake_up(&j->wait); } static void journal_buf_realloc(struct journal *j, struct journal_buf *buf) { /* we aren't holding j->lock: */ unsigned new_size = READ_ONCE(j->buf_size_want); void *new_buf; if (buf->size >= new_size) return; new_buf = kvpmalloc(new_size, GFP_NOIO|__GFP_NOWARN); if (!new_buf) return; memcpy(new_buf, buf->data, buf->size); kvpfree(buf->data, buf->size); buf->data = new_buf; buf->size = new_size; } static void journal_write(struct closure *cl) { struct journal *j = container_of(cl, struct journal, io); struct bch_fs *c = container_of(j, struct bch_fs, journal); struct bch_dev *ca; struct journal_buf *w = journal_prev_buf(j); struct jset *jset; struct bio *bio; struct bch_extent_ptr *ptr; unsigned i, sectors, bytes; journal_buf_realloc(j, w); jset = w->data; j->write_start_time = local_clock(); bch2_journal_add_prios(j, w); mutex_lock(&c->btree_root_lock); for (i = 0; i < BTREE_ID_NR; i++) { struct btree_root *r = &c->btree_roots[i]; if (r->alive) bch2_journal_add_btree_root(w, i, &r->key, r->level); } mutex_unlock(&c->btree_root_lock); journal_write_compact(jset); jset->read_clock = cpu_to_le16(c->prio_clock[READ].hand); jset->write_clock = cpu_to_le16(c->prio_clock[WRITE].hand); jset->magic = cpu_to_le64(jset_magic(c)); jset->version = cpu_to_le32(BCACHE_JSET_VERSION); SET_JSET_BIG_ENDIAN(jset, CPU_BIG_ENDIAN); SET_JSET_CSUM_TYPE(jset, bch2_meta_checksum_type(c)); if (bch2_csum_type_is_encryption(JSET_CSUM_TYPE(jset)) && __journal_entry_validate(c, jset, WRITE)) goto err; bch2_encrypt(c, JSET_CSUM_TYPE(jset), journal_nonce(jset), jset->encrypted_start, vstruct_end(jset) - (void *) jset->encrypted_start); jset->csum = csum_vstruct(c, JSET_CSUM_TYPE(jset), journal_nonce(jset), jset); if (!bch2_csum_type_is_encryption(JSET_CSUM_TYPE(jset)) && __journal_entry_validate(c, jset, WRITE)) goto err; sectors = vstruct_sectors(jset, c->block_bits); BUG_ON(sectors > j->prev_buf_sectors); bytes = vstruct_bytes(w->data); memset((void *) w->data + bytes, 0, (sectors << 9) - bytes); if (journal_write_alloc(j, sectors)) { bch2_journal_halt(j); bch_err(c, "Unable to allocate journal write"); bch2_fatal_error(c); closure_return_with_destructor(cl, journal_write_done); } bch2_check_mark_super(c, &j->key, true); /* * XXX: we really should just disable the entire journal in nochanges * mode */ if (c->opts.nochanges) goto no_io; extent_for_each_ptr(bkey_i_to_s_extent(&j->key), ptr) { ca = c->devs[ptr->dev]; if (!percpu_ref_tryget(&ca->io_ref)) { /* XXX: fix this */ bch_err(c, "missing device for journal write\n"); continue; } atomic64_add(sectors, &ca->meta_sectors_written); bio = ca->journal.bio; bio_reset(bio); bio->bi_iter.bi_sector = ptr->offset; bio->bi_bdev = ca->disk_sb.bdev; bio->bi_iter.bi_size = sectors << 9; bio->bi_end_io = journal_write_endio; bio->bi_private = ca; bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA); bch2_bio_map(bio, jset); trace_journal_write(bio); closure_bio_submit(bio, cl); ca->journal.bucket_seq[ca->journal.cur_idx] = le64_to_cpu(w->data->seq); } for_each_rw_member(ca, c, i) if (journal_flushes_device(ca) && !bch2_extent_has_device(bkey_i_to_s_c_extent(&j->key), i)) { percpu_ref_get(&ca->io_ref); bio = ca->journal.bio; bio_reset(bio); bio->bi_bdev = ca->disk_sb.bdev; bio->bi_end_io = journal_write_endio; bio->bi_private = ca; bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); closure_bio_submit(bio, cl); } no_io: extent_for_each_ptr(bkey_i_to_s_extent(&j->key), ptr) ptr->offset += sectors; closure_return_with_destructor(cl, journal_write_done); err: bch2_fatal_error(c); closure_return_with_destructor(cl, journal_write_done); } static void journal_write_work(struct work_struct *work) { struct journal *j = container_of(to_delayed_work(work), struct journal, write_work); spin_lock(&j->lock); if (!journal_entry_is_open(j)) { spin_unlock(&j->lock); return; } set_bit(JOURNAL_NEED_WRITE, &j->flags); if (journal_buf_switch(j, false) != JOURNAL_UNLOCKED) spin_unlock(&j->lock); } /* * Given an inode number, if that inode number has data in the journal that * hasn't yet been flushed, return the journal sequence number that needs to be * flushed: */ u64 bch2_inode_journal_seq(struct journal *j, u64 inode) { size_t h = hash_64(inode, ilog2(sizeof(j->buf[0].has_inode) * 8)); u64 seq = 0; if (!test_bit(h, j->buf[0].has_inode) && !test_bit(h, j->buf[1].has_inode)) return 0; spin_lock(&j->lock); if (test_bit(h, journal_cur_buf(j)->has_inode)) seq = atomic64_read(&j->seq); else if (test_bit(h, journal_prev_buf(j)->has_inode)) seq = atomic64_read(&j->seq) - 1; spin_unlock(&j->lock); return seq; } static int __journal_res_get(struct journal *j, struct journal_res *res, unsigned u64s_min, unsigned u64s_max) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct journal_buf *buf; int ret; retry: ret = journal_res_get_fast(j, res, u64s_min, u64s_max); if (ret) return ret; spin_lock(&j->lock); /* * Recheck after taking the lock, so we don't race with another thread * that just did journal_entry_open() and call journal_entry_close() * unnecessarily */ ret = journal_res_get_fast(j, res, u64s_min, u64s_max); if (ret) { spin_unlock(&j->lock); return 1; } /* * If we couldn't get a reservation because the current buf filled up, * and we had room for a bigger entry on disk, signal that we want to * realloc the journal bufs: */ buf = journal_cur_buf(j); if (journal_entry_is_open(j) && buf->size >> 9 < buf->disk_sectors && buf->size < JOURNAL_ENTRY_SIZE_MAX) j->buf_size_want = max(j->buf_size_want, buf->size << 1); /* * Close the current journal entry if necessary, then try to start a new * one: */ switch (journal_buf_switch(j, false)) { case JOURNAL_ENTRY_ERROR: spin_unlock(&j->lock); return -EROFS; case JOURNAL_ENTRY_INUSE: /* haven't finished writing out the previous one: */ spin_unlock(&j->lock); trace_journal_entry_full(c); goto blocked; case JOURNAL_ENTRY_CLOSED: break; case JOURNAL_UNLOCKED: goto retry; } /* We now have a new, closed journal buf - see if we can open it: */ ret = journal_entry_open(j); spin_unlock(&j->lock); if (ret < 0) return ret; if (ret) goto retry; /* Journal's full, we have to wait */ /* * Direct reclaim - can't rely on reclaim from work item * due to freezing.. */ journal_reclaim_work(&j->reclaim_work.work); trace_journal_full(c); blocked: if (!j->res_get_blocked_start) j->res_get_blocked_start = local_clock() ?: 1; return 0; } /* * Essentially the entry function to the journaling code. When bcachefs is doing * a btree insert, it calls this function to get the current journal write. * Journal write is the structure used set up journal writes. The calling * function will then add its keys to the structure, queuing them for the next * write. * * To ensure forward progress, the current task must not be holding any * btree node write locks. */ int bch2_journal_res_get_slowpath(struct journal *j, struct journal_res *res, unsigned u64s_min, unsigned u64s_max) { int ret; wait_event(j->wait, (ret = __journal_res_get(j, res, u64s_min, u64s_max))); return ret < 0 ? ret : 0; } void bch2_journal_wait_on_seq(struct journal *j, u64 seq, struct closure *parent) { spin_lock(&j->lock); BUG_ON(seq > atomic64_read(&j->seq)); if (bch2_journal_error(j)) { spin_unlock(&j->lock); return; } if (seq == atomic64_read(&j->seq)) { if (!closure_wait(&journal_cur_buf(j)->wait, parent)) BUG(); } else if (seq + 1 == atomic64_read(&j->seq) && j->reservations.prev_buf_unwritten) { if (!closure_wait(&journal_prev_buf(j)->wait, parent)) BUG(); smp_mb(); /* check if raced with write completion (or failure) */ if (!j->reservations.prev_buf_unwritten || bch2_journal_error(j)) closure_wake_up(&journal_prev_buf(j)->wait); } spin_unlock(&j->lock); } void bch2_journal_flush_seq_async(struct journal *j, u64 seq, struct closure *parent) { struct journal_buf *buf; spin_lock(&j->lock); BUG_ON(seq > atomic64_read(&j->seq)); if (bch2_journal_error(j)) { spin_unlock(&j->lock); return; } if (seq == atomic64_read(&j->seq)) { bool set_need_write = false; buf = journal_cur_buf(j); if (parent && !closure_wait(&buf->wait, parent)) BUG(); if (!test_and_set_bit(JOURNAL_NEED_WRITE, &j->flags)) { j->need_write_time = local_clock(); set_need_write = true; } switch (journal_buf_switch(j, set_need_write)) { case JOURNAL_ENTRY_ERROR: if (parent) closure_wake_up(&buf->wait); break; case JOURNAL_ENTRY_CLOSED: /* * Journal entry hasn't been opened yet, but caller * claims it has something (seq == j->seq): */ BUG(); case JOURNAL_ENTRY_INUSE: break; case JOURNAL_UNLOCKED: return; } } else if (parent && seq + 1 == atomic64_read(&j->seq) && j->reservations.prev_buf_unwritten) { buf = journal_prev_buf(j); if (!closure_wait(&buf->wait, parent)) BUG(); smp_mb(); /* check if raced with write completion (or failure) */ if (!j->reservations.prev_buf_unwritten || bch2_journal_error(j)) closure_wake_up(&buf->wait); } spin_unlock(&j->lock); } int bch2_journal_flush_seq(struct journal *j, u64 seq) { struct closure cl; u64 start_time = local_clock(); closure_init_stack(&cl); bch2_journal_flush_seq_async(j, seq, &cl); closure_sync(&cl); bch2_time_stats_update(j->flush_seq_time, start_time); return bch2_journal_error(j); } void bch2_journal_meta_async(struct journal *j, struct closure *parent) { struct journal_res res; unsigned u64s = jset_u64s(0); memset(&res, 0, sizeof(res)); bch2_journal_res_get(j, &res, u64s, u64s); bch2_journal_res_put(j, &res); bch2_journal_flush_seq_async(j, res.seq, parent); } int bch2_journal_meta(struct journal *j) { struct journal_res res; unsigned u64s = jset_u64s(0); int ret; memset(&res, 0, sizeof(res)); ret = bch2_journal_res_get(j, &res, u64s, u64s); if (ret) return ret; bch2_journal_res_put(j, &res); return bch2_journal_flush_seq(j, res.seq); } void bch2_journal_flush_async(struct journal *j, struct closure *parent) { u64 seq, journal_seq; spin_lock(&j->lock); journal_seq = atomic64_read(&j->seq); if (journal_entry_is_open(j)) { seq = journal_seq; } else if (journal_seq) { seq = journal_seq - 1; } else { spin_unlock(&j->lock); return; } spin_unlock(&j->lock); bch2_journal_flush_seq_async(j, seq, parent); } int bch2_journal_flush(struct journal *j) { u64 seq, journal_seq; spin_lock(&j->lock); journal_seq = atomic64_read(&j->seq); if (journal_entry_is_open(j)) { seq = journal_seq; } else if (journal_seq) { seq = journal_seq - 1; } else { spin_unlock(&j->lock); return 0; } spin_unlock(&j->lock); return bch2_journal_flush_seq(j, seq); } ssize_t bch2_journal_print_debug(struct journal *j, char *buf) { union journal_res_state *s = &j->reservations; struct bch_dev *ca; unsigned iter; ssize_t ret = 0; rcu_read_lock(); spin_lock(&j->lock); ret += scnprintf(buf + ret, PAGE_SIZE - ret, "active journal entries:\t%zu\n" "seq:\t\t\t%llu\n" "last_seq:\t\t%llu\n" "last_seq_ondisk:\t%llu\n" "reservation count:\t%u\n" "reservation offset:\t%u\n" "current entry u64s:\t%u\n" "io in flight:\t\t%i\n" "need write:\t\t%i\n" "dirty:\t\t\t%i\n" "replay done:\t\t%i\n", fifo_used(&j->pin), (u64) atomic64_read(&j->seq), last_seq(j), j->last_seq_ondisk, journal_state_count(*s, s->idx), s->cur_entry_offset, j->cur_entry_u64s, s->prev_buf_unwritten, test_bit(JOURNAL_NEED_WRITE, &j->flags), journal_entry_is_open(j), test_bit(JOURNAL_REPLAY_DONE, &j->flags)); spin_lock(&j->devs.lock); group_for_each_dev(ca, &j->devs, iter) { struct journal_device *ja = &ca->journal; ret += scnprintf(buf + ret, PAGE_SIZE - ret, "dev %u:\n" "\tnr\t\t%u\n" "\tcur_idx\t\t%u (seq %llu)\n" "\tlast_idx\t%u (seq %llu)\n", iter, ja->nr, ja->cur_idx, ja->bucket_seq[ja->cur_idx], ja->last_idx, ja->bucket_seq[ja->last_idx]); } spin_unlock(&j->devs.lock); spin_unlock(&j->lock); rcu_read_unlock(); return ret; } ssize_t bch2_journal_print_pins(struct journal *j, char *buf) { struct journal_entry_pin_list *pin_list; struct journal_entry_pin *pin; ssize_t ret = 0; unsigned i; spin_lock_irq(&j->pin_lock); fifo_for_each_entry_ptr(pin_list, &j->pin, i) { ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%llu: count %u\n", journal_pin_seq(j, pin_list), atomic_read(&pin_list->count)); list_for_each_entry(pin, &pin_list->list, list) ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\t%p %pf\n", pin, pin->flush); if (!list_empty(&pin_list->flushed)) ret += scnprintf(buf + ret, PAGE_SIZE - ret, "flushed:\n"); list_for_each_entry(pin, &pin_list->flushed, list) ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\t%p %pf\n", pin, pin->flush); } spin_unlock_irq(&j->pin_lock); return ret; } static bool bch2_journal_writing_to_device(struct bch_dev *ca) { struct journal *j = &ca->fs->journal; bool ret; spin_lock(&j->lock); ret = bch2_extent_has_device(bkey_i_to_s_c_extent(&j->key), ca->dev_idx); spin_unlock(&j->lock); return ret; } /* * This asumes that ca has already been marked read-only so that * journal_next_bucket won't pick buckets out of ca any more. * Hence, if the journal is not currently pointing to ca, there * will be no new writes to journal entries in ca after all the * pending ones have been flushed to disk. * * If the journal is being written to ca, write a new record, and * journal_next_bucket will notice that the device is no longer * writeable and pick a new set of devices to write to. */ int bch2_journal_move(struct bch_dev *ca) { struct journal_device *ja = &ca->journal; struct journal *j = &ca->fs->journal; u64 seq_to_flush = 0; unsigned i; int ret; if (bch2_journal_writing_to_device(ca)) { /* * bch_journal_meta will write a record and we'll wait * for the write to complete. * Actually writing the journal (journal_write_locked) * will call journal_next_bucket which notices that the * device is no longer writeable, and picks a new one. */ bch2_journal_meta(j); BUG_ON(bch2_journal_writing_to_device(ca)); } for (i = 0; i < ja->nr; i++) seq_to_flush = max(seq_to_flush, ja->bucket_seq[i]); bch2_journal_flush_pins(j, seq_to_flush); /* * Force a meta-data journal entry to be written so that * we have newer journal entries in devices other than ca, * and wait for the meta data write to complete. */ bch2_journal_meta(j); /* * Verify that we no longer need any of the journal entries in * the device */ spin_lock(&j->lock); ret = j->last_seq_ondisk > seq_to_flush ? 0 : -EIO; spin_unlock(&j->lock); return ret; } void bch2_fs_journal_stop(struct journal *j) { if (!test_bit(JOURNAL_STARTED, &j->flags)) return; /* * Empty out the journal by first flushing everything pinning existing * journal entries, then force a brand new empty journal entry to be * written: */ bch2_journal_flush_pins(j, U64_MAX); bch2_journal_flush_async(j, NULL); bch2_journal_meta(j); cancel_delayed_work_sync(&j->write_work); cancel_delayed_work_sync(&j->reclaim_work); } void bch2_dev_journal_exit(struct bch_dev *ca) { kfree(ca->journal.bio); kfree(ca->journal.buckets); kfree(ca->journal.bucket_seq); ca->journal.bio = NULL; ca->journal.buckets = NULL; ca->journal.bucket_seq = NULL; } int bch2_dev_journal_init(struct bch_dev *ca, struct bch_sb *sb) { struct journal_device *ja = &ca->journal; struct bch_sb_field_journal *journal_buckets = bch2_sb_get_journal(sb); unsigned i; ja->nr = bch2_nr_journal_buckets(journal_buckets); ja->bucket_seq = kcalloc(ja->nr, sizeof(u64), GFP_KERNEL); if (!ja->bucket_seq) return -ENOMEM; ca->journal.bio = bio_kmalloc(GFP_KERNEL, DIV_ROUND_UP(JOURNAL_ENTRY_SIZE_MAX, PAGE_SIZE)); if (!ca->journal.bio) return -ENOMEM; ja->buckets = kcalloc(ja->nr, sizeof(u64), GFP_KERNEL); if (!ja->buckets) return -ENOMEM; for (i = 0; i < ja->nr; i++) ja->buckets[i] = le64_to_cpu(journal_buckets->buckets[i]); return 0; } void bch2_fs_journal_exit(struct journal *j) { kvpfree(j->buf[1].data, j->buf[1].size); kvpfree(j->buf[0].data, j->buf[0].size); free_fifo(&j->pin); } int bch2_fs_journal_init(struct journal *j) { static struct lock_class_key res_key; spin_lock_init(&j->lock); spin_lock_init(&j->pin_lock); init_waitqueue_head(&j->wait); INIT_DELAYED_WORK(&j->write_work, journal_write_work); INIT_DELAYED_WORK(&j->reclaim_work, journal_reclaim_work); mutex_init(&j->blacklist_lock); INIT_LIST_HEAD(&j->seq_blacklist); spin_lock_init(&j->devs.lock); mutex_init(&j->reclaim_lock); lockdep_init_map(&j->res_map, "journal res", &res_key, 0); j->buf[0].size = JOURNAL_ENTRY_SIZE_MIN; j->buf[1].size = JOURNAL_ENTRY_SIZE_MIN; j->write_delay_ms = 100; j->reclaim_delay_ms = 100; bkey_extent_init(&j->key); atomic64_set(&j->reservations.counter, ((union journal_res_state) { .cur_entry_offset = JOURNAL_ENTRY_CLOSED_VAL }).v); if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) || !(j->buf[0].data = kvpmalloc(j->buf[0].size, GFP_KERNEL)) || !(j->buf[1].data = kvpmalloc(j->buf[1].size, GFP_KERNEL))) return -ENOMEM; j->pin.front = j->pin.back = 1; return 0; }