// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "bkey_buf.h" #include "alloc_background.h" #include "btree_gc.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_io.h" #include "buckets.h" #include "dirent.h" #include "ec.h" #include "error.h" #include "fs-common.h" #include "fsck.h" #include "journal_io.h" #include "journal_reclaim.h" #include "journal_seq_blacklist.h" #include "move.h" #include "quota.h" #include "recovery.h" #include "replicas.h" #include "subvolume.h" #include "super-io.h" #include #include #define QSTR(n) { { { .len = strlen(n) } }, .name = n } /* for -o reconstruct_alloc: */ static void drop_alloc_keys(struct journal_keys *keys) { size_t src, dst; for (src = 0, dst = 0; src < keys->nr; src++) if (keys->d[src].btree_id != BTREE_ID_alloc) keys->d[dst++] = keys->d[src]; keys->nr = dst; } /* * Btree node pointers have a field to stack a pointer to the in memory btree * node; we need to zero out this field when reading in btree nodes, or when * reading in keys from the journal: */ static void zero_out_btree_mem_ptr(struct journal_keys *keys) { struct journal_key *i; for (i = keys->d; i < keys->d + keys->nr; i++) if (i->k->k.type == KEY_TYPE_btree_ptr_v2) bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0; } /* iterate over keys read from the journal: */ static int __journal_key_cmp(enum btree_id l_btree_id, unsigned l_level, struct bpos l_pos, struct journal_key *r) { return (cmp_int(l_btree_id, r->btree_id) ?: cmp_int(l_level, r->level) ?: bpos_cmp(l_pos, r->k->k.p)); } static int journal_key_cmp(struct journal_key *l, struct journal_key *r) { return (cmp_int(l->btree_id, r->btree_id) ?: cmp_int(l->level, r->level) ?: bpos_cmp(l->k->k.p, r->k->k.p)); } static size_t journal_key_search(struct journal_keys *journal_keys, enum btree_id id, unsigned level, struct bpos pos) { size_t l = 0, r = journal_keys->nr, m; while (l < r) { m = l + ((r - l) >> 1); if (__journal_key_cmp(id, level, pos, &journal_keys->d[m]) > 0) l = m + 1; else r = m; } BUG_ON(l < journal_keys->nr && __journal_key_cmp(id, level, pos, &journal_keys->d[l]) > 0); BUG_ON(l && __journal_key_cmp(id, level, pos, &journal_keys->d[l - 1]) <= 0); return l; } static void journal_iter_fix(struct bch_fs *c, struct journal_iter *iter, unsigned idx) { struct bkey_i *n = iter->keys->d[idx].k; struct btree_and_journal_iter *biter = container_of(iter, struct btree_and_journal_iter, journal); if (iter->idx > idx || (iter->idx == idx && biter->last && bpos_cmp(n->k.p, biter->unpacked.p) <= 0)) iter->idx++; } int bch2_journal_key_insert(struct bch_fs *c, enum btree_id id, unsigned level, struct bkey_i *k) { struct journal_key n = { .btree_id = id, .level = level, .k = k, .allocated = true }; struct journal_keys *keys = &c->journal_keys; struct journal_iter *iter; unsigned idx = journal_key_search(keys, id, level, k->k.p); if (idx < keys->nr && journal_key_cmp(&n, &keys->d[idx]) == 0) { if (keys->d[idx].allocated) kfree(keys->d[idx].k); keys->d[idx] = n; return 0; } if (keys->nr == keys->size) { struct journal_keys new_keys = { .nr = keys->nr, .size = keys->size * 2, .journal_seq_base = keys->journal_seq_base, }; new_keys.d = kvmalloc(sizeof(new_keys.d[0]) * new_keys.size, GFP_KERNEL); if (!new_keys.d) { bch_err(c, "%s: error allocating new key array (size %zu)", __func__, new_keys.size); return -ENOMEM; } memcpy(new_keys.d, keys->d, sizeof(keys->d[0]) * keys->nr); kvfree(keys->d); *keys = new_keys; } array_insert_item(keys->d, keys->nr, idx, n); list_for_each_entry(iter, &c->journal_iters, list) journal_iter_fix(c, iter, idx); return 0; } int bch2_journal_key_delete(struct bch_fs *c, enum btree_id id, unsigned level, struct bpos pos) { struct bkey_i *whiteout = kmalloc(sizeof(struct bkey), GFP_KERNEL); int ret; if (!whiteout) { bch_err(c, "%s: error allocating new key", __func__); return -ENOMEM; } bkey_init(&whiteout->k); whiteout->k.p = pos; ret = bch2_journal_key_insert(c, id, level, whiteout); if (ret) kfree(whiteout); return ret; } static struct bkey_i *bch2_journal_iter_peek(struct journal_iter *iter) { struct journal_key *k = iter->idx - iter->keys->nr ? iter->keys->d + iter->idx : NULL; if (k && k->btree_id == iter->btree_id && k->level == iter->level) return k->k; iter->idx = iter->keys->nr; return NULL; } static void bch2_journal_iter_advance(struct journal_iter *iter) { if (iter->idx < iter->keys->nr) iter->idx++; } static void bch2_journal_iter_exit(struct journal_iter *iter) { list_del(&iter->list); } static void bch2_journal_iter_init(struct bch_fs *c, struct journal_iter *iter, enum btree_id id, unsigned level, struct bpos pos) { iter->btree_id = id; iter->level = level; iter->keys = &c->journal_keys; iter->idx = journal_key_search(&c->journal_keys, id, level, pos); list_add(&iter->list, &c->journal_iters); } static struct bkey_s_c bch2_journal_iter_peek_btree(struct btree_and_journal_iter *iter) { return bch2_btree_node_iter_peek_unpack(&iter->node_iter, iter->b, &iter->unpacked); } static void bch2_journal_iter_advance_btree(struct btree_and_journal_iter *iter) { bch2_btree_node_iter_advance(&iter->node_iter, iter->b); } void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *iter) { switch (iter->last) { case none: break; case btree: bch2_journal_iter_advance_btree(iter); break; case journal: bch2_journal_iter_advance(&iter->journal); break; } iter->last = none; } struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *iter) { struct bkey_s_c ret; while (1) { struct bkey_s_c btree_k = bch2_journal_iter_peek_btree(iter); struct bkey_s_c journal_k = bkey_i_to_s_c(bch2_journal_iter_peek(&iter->journal)); if (btree_k.k && journal_k.k) { int cmp = bpos_cmp(btree_k.k->p, journal_k.k->p); if (!cmp) bch2_journal_iter_advance_btree(iter); iter->last = cmp < 0 ? btree : journal; } else if (btree_k.k) { iter->last = btree; } else if (journal_k.k) { iter->last = journal; } else { iter->last = none; return bkey_s_c_null; } ret = iter->last == journal ? journal_k : btree_k; if (iter->b && bpos_cmp(ret.k->p, iter->b->data->max_key) > 0) { iter->journal.idx = iter->journal.keys->nr; iter->last = none; return bkey_s_c_null; } if (!bkey_deleted(ret.k)) break; bch2_btree_and_journal_iter_advance(iter); } return ret; } struct bkey_s_c bch2_btree_and_journal_iter_next(struct btree_and_journal_iter *iter) { bch2_btree_and_journal_iter_advance(iter); return bch2_btree_and_journal_iter_peek(iter); } void bch2_btree_and_journal_iter_exit(struct btree_and_journal_iter *iter) { bch2_journal_iter_exit(&iter->journal); } void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter, struct bch_fs *c, struct btree *b) { memset(iter, 0, sizeof(*iter)); iter->b = b; bch2_btree_node_iter_init_from_start(&iter->node_iter, iter->b); bch2_journal_iter_init(c, &iter->journal, b->c.btree_id, b->c.level, b->data->min_key); } /* Walk btree, overlaying keys from the journal: */ static void btree_and_journal_iter_prefetch(struct bch_fs *c, struct btree *b, struct btree_and_journal_iter iter) { unsigned i = 0, nr = b->c.level > 1 ? 2 : 16; struct bkey_s_c k; struct bkey_buf tmp; BUG_ON(!b->c.level); bch2_bkey_buf_init(&tmp); while (i < nr && (k = bch2_btree_and_journal_iter_peek(&iter)).k) { bch2_bkey_buf_reassemble(&tmp, c, k); bch2_btree_node_prefetch(c, NULL, NULL, tmp.k, b->c.btree_id, b->c.level - 1); bch2_btree_and_journal_iter_advance(&iter); i++; } bch2_bkey_buf_exit(&tmp, c); } static int bch2_btree_and_journal_walk_recurse(struct btree_trans *trans, struct btree *b, enum btree_id btree_id, btree_walk_key_fn key_fn) { struct bch_fs *c = trans->c; struct btree_and_journal_iter iter; struct bkey_s_c k; struct bkey_buf tmp; struct btree *child; int ret = 0; bch2_bkey_buf_init(&tmp); bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { if (b->c.level) { bch2_bkey_buf_reassemble(&tmp, c, k); child = bch2_btree_node_get_noiter(c, tmp.k, b->c.btree_id, b->c.level - 1, false); ret = PTR_ERR_OR_ZERO(child); if (ret) break; btree_and_journal_iter_prefetch(c, b, iter); ret = bch2_btree_and_journal_walk_recurse(trans, child, btree_id, key_fn); six_unlock_read(&child->c.lock); } else { ret = key_fn(trans, k); } if (ret) break; bch2_btree_and_journal_iter_advance(&iter); } bch2_btree_and_journal_iter_exit(&iter); bch2_bkey_buf_exit(&tmp, c); return ret; } int bch2_btree_and_journal_walk(struct btree_trans *trans, enum btree_id btree_id, btree_walk_key_fn key_fn) { struct bch_fs *c = trans->c; struct btree *b = c->btree_roots[btree_id].b; int ret = 0; if (btree_node_fake(b)) return 0; six_lock_read(&b->c.lock, NULL, NULL); ret = bch2_btree_and_journal_walk_recurse(trans, b, btree_id, key_fn); six_unlock_read(&b->c.lock); return ret; } /* sort and dedup all keys in the journal: */ void bch2_journal_entries_free(struct list_head *list) { while (!list_empty(list)) { struct journal_replay *i = list_first_entry(list, struct journal_replay, list); list_del(&i->list); kvpfree(i, offsetof(struct journal_replay, j) + vstruct_bytes(&i->j)); } } /* * When keys compare equal, oldest compares first: */ static int journal_sort_key_cmp(const void *_l, const void *_r) { const struct journal_key *l = _l; const struct journal_key *r = _r; return cmp_int(l->btree_id, r->btree_id) ?: cmp_int(l->level, r->level) ?: bpos_cmp(l->k->k.p, r->k->k.p) ?: cmp_int(l->journal_seq, r->journal_seq) ?: cmp_int(l->journal_offset, r->journal_offset); } void bch2_journal_keys_free(struct journal_keys *keys) { struct journal_key *i; for (i = keys->d; i < keys->d + keys->nr; i++) if (i->allocated) kfree(i->k); kvfree(keys->d); keys->d = NULL; keys->nr = 0; } static struct journal_keys journal_keys_sort(struct list_head *journal_entries) { struct journal_replay *i; struct jset_entry *entry; struct bkey_i *k, *_n; struct journal_keys keys = { NULL }; struct journal_key *src, *dst; size_t nr_keys = 0; if (list_empty(journal_entries)) return keys; list_for_each_entry(i, journal_entries, list) { if (i->ignore) continue; if (!keys.journal_seq_base) keys.journal_seq_base = le64_to_cpu(i->j.seq); for_each_jset_key(k, _n, entry, &i->j) nr_keys++; } keys.size = roundup_pow_of_two(nr_keys); keys.d = kvmalloc(sizeof(keys.d[0]) * keys.size, GFP_KERNEL); if (!keys.d) goto err; list_for_each_entry(i, journal_entries, list) { if (i->ignore) continue; BUG_ON(le64_to_cpu(i->j.seq) - keys.journal_seq_base > U32_MAX); for_each_jset_key(k, _n, entry, &i->j) keys.d[keys.nr++] = (struct journal_key) { .btree_id = entry->btree_id, .level = entry->level, .k = k, .journal_seq = le64_to_cpu(i->j.seq) - keys.journal_seq_base, .journal_offset = k->_data - i->j._data, }; } sort(keys.d, keys.nr, sizeof(keys.d[0]), journal_sort_key_cmp, NULL); src = dst = keys.d; while (src < keys.d + keys.nr) { while (src + 1 < keys.d + keys.nr && src[0].btree_id == src[1].btree_id && src[0].level == src[1].level && !bpos_cmp(src[0].k->k.p, src[1].k->k.p)) src++; *dst++ = *src++; } keys.nr = dst - keys.d; err: return keys; } /* journal replay: */ static void replay_now_at(struct journal *j, u64 seq) { BUG_ON(seq < j->replay_journal_seq); BUG_ON(seq > j->replay_journal_seq_end); while (j->replay_journal_seq < seq) bch2_journal_pin_put(j, j->replay_journal_seq++); } static int __bch2_journal_replay_key(struct btree_trans *trans, enum btree_id id, unsigned level, struct bkey_i *k) { struct btree_iter iter; int ret; bch2_trans_node_iter_init(trans, &iter, id, k->k.p, BTREE_MAX_DEPTH, level, BTREE_ITER_INTENT| BTREE_ITER_NOT_EXTENTS); ret = bch2_btree_iter_traverse(&iter) ?: bch2_trans_update(trans, &iter, k, BTREE_TRIGGER_NORUN); bch2_trans_iter_exit(trans, &iter); return ret; } static int bch2_journal_replay_key(struct bch_fs *c, struct journal_key *k) { unsigned commit_flags = BTREE_INSERT_NOFAIL| BTREE_INSERT_LAZY_RW; if (!k->allocated) commit_flags |= BTREE_INSERT_JOURNAL_REPLAY; return bch2_trans_do(c, NULL, NULL, commit_flags, __bch2_journal_replay_key(&trans, k->btree_id, k->level, k->k)); } static int __bch2_alloc_replay_key(struct btree_trans *trans, struct bkey_i *k) { struct btree_iter iter; int ret; bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, k->k.p, BTREE_ITER_CACHED| BTREE_ITER_CACHED_NOFILL| BTREE_ITER_INTENT); ret = bch2_btree_iter_traverse(&iter) ?: bch2_trans_update(trans, &iter, k, BTREE_TRIGGER_NORUN); bch2_trans_iter_exit(trans, &iter); return ret; } static int bch2_alloc_replay_key(struct bch_fs *c, struct bkey_i *k) { return bch2_trans_do(c, NULL, NULL, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE| BTREE_INSERT_LAZY_RW| BTREE_INSERT_JOURNAL_REPLAY, __bch2_alloc_replay_key(&trans, k)); } static int journal_sort_seq_cmp(const void *_l, const void *_r) { const struct journal_key *l = _l; const struct journal_key *r = _r; return cmp_int(r->level, l->level) ?: cmp_int(l->journal_seq, r->journal_seq) ?: cmp_int(l->btree_id, r->btree_id) ?: bpos_cmp(l->k->k.p, r->k->k.p); } static int bch2_journal_replay(struct bch_fs *c, struct journal_keys keys) { struct journal *j = &c->journal; struct journal_key *i; u64 seq; int ret; sort(keys.d, keys.nr, sizeof(keys.d[0]), journal_sort_seq_cmp, NULL); if (keys.nr) replay_now_at(j, keys.journal_seq_base); seq = j->replay_journal_seq; /* * First replay updates to the alloc btree - these will only update the * btree key cache: */ for_each_journal_key(keys, i) { cond_resched(); if (!i->level && i->btree_id == BTREE_ID_alloc) { j->replay_journal_seq = keys.journal_seq_base + i->journal_seq; ret = bch2_alloc_replay_key(c, i->k); if (ret) goto err; } } /* * Next replay updates to interior btree nodes: */ for_each_journal_key(keys, i) { cond_resched(); if (i->level) { j->replay_journal_seq = keys.journal_seq_base + i->journal_seq; ret = bch2_journal_replay_key(c, i); if (ret) goto err; } } /* * Now that the btree is in a consistent state, we can start journal * reclaim (which will be flushing entries from the btree key cache back * to the btree: */ set_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags); set_bit(JOURNAL_RECLAIM_STARTED, &j->flags); journal_reclaim_kick(j); j->replay_journal_seq = seq; /* * Now replay leaf node updates: */ for_each_journal_key(keys, i) { cond_resched(); if (i->level || i->btree_id == BTREE_ID_alloc) continue; replay_now_at(j, keys.journal_seq_base + i->journal_seq); ret = bch2_journal_replay_key(c, i); if (ret) goto err; } replay_now_at(j, j->replay_journal_seq_end); j->replay_journal_seq = 0; bch2_journal_set_replay_done(j); bch2_journal_flush_all_pins(j); return bch2_journal_error(j); err: bch_err(c, "journal replay: error %d while replaying key at btree %s level %u", ret, bch2_btree_ids[i->btree_id], i->level); return ret; } /* journal replay early: */ static int journal_replay_entry_early(struct bch_fs *c, struct jset_entry *entry) { int ret = 0; switch (entry->type) { case BCH_JSET_ENTRY_btree_root: { struct btree_root *r; if (entry->btree_id >= BTREE_ID_NR) { bch_err(c, "filesystem has unknown btree type %u", entry->btree_id); return -EINVAL; } r = &c->btree_roots[entry->btree_id]; if (entry->u64s) { r->level = entry->level; bkey_copy(&r->key, &entry->start[0]); r->error = 0; } else { r->error = -EIO; } r->alive = true; break; } case BCH_JSET_ENTRY_usage: { struct jset_entry_usage *u = container_of(entry, struct jset_entry_usage, entry); switch (entry->btree_id) { case FS_USAGE_RESERVED: if (entry->level < BCH_REPLICAS_MAX) c->usage_base->persistent_reserved[entry->level] = le64_to_cpu(u->v); break; case FS_USAGE_INODES: c->usage_base->nr_inodes = le64_to_cpu(u->v); break; case FS_USAGE_KEY_VERSION: atomic64_set(&c->key_version, le64_to_cpu(u->v)); break; } break; } case BCH_JSET_ENTRY_data_usage: { struct jset_entry_data_usage *u = container_of(entry, struct jset_entry_data_usage, entry); ret = bch2_replicas_set_usage(c, &u->r, le64_to_cpu(u->v)); break; } case BCH_JSET_ENTRY_dev_usage: { struct jset_entry_dev_usage *u = container_of(entry, struct jset_entry_dev_usage, entry); struct bch_dev *ca = bch_dev_bkey_exists(c, le32_to_cpu(u->dev)); unsigned bytes = jset_u64s(le16_to_cpu(entry->u64s)) * sizeof(u64); unsigned nr_types = (bytes - sizeof(struct jset_entry_dev_usage)) / sizeof(struct jset_entry_dev_usage_type); unsigned i; ca->usage_base->buckets_ec = le64_to_cpu(u->buckets_ec); ca->usage_base->buckets_unavailable = le64_to_cpu(u->buckets_unavailable); for (i = 0; i < min_t(unsigned, nr_types, BCH_DATA_NR); i++) { ca->usage_base->d[i].buckets = le64_to_cpu(u->d[i].buckets); ca->usage_base->d[i].sectors = le64_to_cpu(u->d[i].sectors); ca->usage_base->d[i].fragmented = le64_to_cpu(u->d[i].fragmented); } break; } case BCH_JSET_ENTRY_blacklist: { struct jset_entry_blacklist *bl_entry = container_of(entry, struct jset_entry_blacklist, entry); ret = bch2_journal_seq_blacklist_add(c, le64_to_cpu(bl_entry->seq), le64_to_cpu(bl_entry->seq) + 1); break; } case BCH_JSET_ENTRY_blacklist_v2: { struct jset_entry_blacklist_v2 *bl_entry = container_of(entry, struct jset_entry_blacklist_v2, entry); ret = bch2_journal_seq_blacklist_add(c, le64_to_cpu(bl_entry->start), le64_to_cpu(bl_entry->end) + 1); break; } case BCH_JSET_ENTRY_clock: { struct jset_entry_clock *clock = container_of(entry, struct jset_entry_clock, entry); atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time)); } } return ret; } static int journal_replay_early(struct bch_fs *c, struct bch_sb_field_clean *clean, struct list_head *journal) { struct journal_replay *i; struct jset_entry *entry; int ret; if (clean) { for (entry = clean->start; entry != vstruct_end(&clean->field); entry = vstruct_next(entry)) { ret = journal_replay_entry_early(c, entry); if (ret) return ret; } } else { list_for_each_entry(i, journal, list) { if (i->ignore) continue; vstruct_for_each(&i->j, entry) { ret = journal_replay_entry_early(c, entry); if (ret) return ret; } } } bch2_fs_usage_initialize(c); return 0; } /* sb clean section: */ static struct bkey_i *btree_root_find(struct bch_fs *c, struct bch_sb_field_clean *clean, struct jset *j, enum btree_id id, unsigned *level) { struct bkey_i *k; struct jset_entry *entry, *start, *end; if (clean) { start = clean->start; end = vstruct_end(&clean->field); } else { start = j->start; end = vstruct_last(j); } for (entry = start; entry < end; entry = vstruct_next(entry)) if (entry->type == BCH_JSET_ENTRY_btree_root && entry->btree_id == id) goto found; return NULL; found: if (!entry->u64s) return ERR_PTR(-EINVAL); k = entry->start; *level = entry->level; return k; } static int verify_superblock_clean(struct bch_fs *c, struct bch_sb_field_clean **cleanp, struct jset *j) { unsigned i; struct bch_sb_field_clean *clean = *cleanp; int ret = 0; if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c, "superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown", le64_to_cpu(clean->journal_seq), le64_to_cpu(j->seq))) { kfree(clean); *cleanp = NULL; return 0; } for (i = 0; i < BTREE_ID_NR; i++) { char buf1[200], buf2[200]; struct bkey_i *k1, *k2; unsigned l1 = 0, l2 = 0; k1 = btree_root_find(c, clean, NULL, i, &l1); k2 = btree_root_find(c, NULL, j, i, &l2); if (!k1 && !k2) continue; mustfix_fsck_err_on(!k1 || !k2 || IS_ERR(k1) || IS_ERR(k2) || k1->k.u64s != k2->k.u64s || memcmp(k1, k2, bkey_bytes(k1)) || l1 != l2, c, "superblock btree root %u doesn't match journal after clean shutdown\n" "sb: l=%u %s\n" "journal: l=%u %s\n", i, l1, (bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(k1)), buf1), l2, (bch2_bkey_val_to_text(&PBUF(buf2), c, bkey_i_to_s_c(k2)), buf2)); } fsck_err: return ret; } static struct bch_sb_field_clean *read_superblock_clean(struct bch_fs *c) { struct bch_sb_field_clean *clean, *sb_clean; int ret; mutex_lock(&c->sb_lock); sb_clean = bch2_sb_get_clean(c->disk_sb.sb); if (fsck_err_on(!sb_clean, c, "superblock marked clean but clean section not present")) { SET_BCH_SB_CLEAN(c->disk_sb.sb, false); c->sb.clean = false; mutex_unlock(&c->sb_lock); return NULL; } clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field), GFP_KERNEL); if (!clean) { mutex_unlock(&c->sb_lock); return ERR_PTR(-ENOMEM); } ret = bch2_sb_clean_validate(c, clean, READ); if (ret) { mutex_unlock(&c->sb_lock); return ERR_PTR(ret); } mutex_unlock(&c->sb_lock); return clean; fsck_err: mutex_unlock(&c->sb_lock); return ERR_PTR(ret); } static int read_btree_roots(struct bch_fs *c) { unsigned i; int ret = 0; for (i = 0; i < BTREE_ID_NR; i++) { struct btree_root *r = &c->btree_roots[i]; if (!r->alive) continue; if (i == BTREE_ID_alloc && c->opts.reconstruct_alloc) { c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); continue; } if (r->error) { __fsck_err(c, i == BTREE_ID_alloc ? FSCK_CAN_IGNORE : 0, "invalid btree root %s", bch2_btree_ids[i]); if (i == BTREE_ID_alloc) c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); } ret = bch2_btree_root_read(c, i, &r->key, r->level); if (ret) { __fsck_err(c, i == BTREE_ID_alloc ? FSCK_CAN_IGNORE : 0, "error reading btree root %s", bch2_btree_ids[i]); if (i == BTREE_ID_alloc) c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); } } for (i = 0; i < BTREE_ID_NR; i++) if (!c->btree_roots[i].b) bch2_btree_root_alloc(c, i); fsck_err: return ret; } static int bch2_fs_initialize_subvolumes(struct bch_fs *c) { struct bkey_i_snapshot root_snapshot; struct bkey_i_subvolume root_volume; int ret; bkey_snapshot_init(&root_snapshot.k_i); root_snapshot.k.p.offset = U32_MAX; root_snapshot.v.flags = 0; root_snapshot.v.parent = 0; root_snapshot.v.subvol = BCACHEFS_ROOT_SUBVOL; root_snapshot.v.pad = 0; SET_BCH_SNAPSHOT_SUBVOL(&root_snapshot.v, true); ret = bch2_btree_insert(c, BTREE_ID_snapshots, &root_snapshot.k_i, NULL, NULL, 0); if (ret) return ret; bkey_subvolume_init(&root_volume.k_i); root_volume.k.p.offset = BCACHEFS_ROOT_SUBVOL; root_volume.v.flags = 0; root_volume.v.snapshot = cpu_to_le32(U32_MAX); root_volume.v.inode = cpu_to_le64(BCACHEFS_ROOT_INO); ret = bch2_btree_insert(c, BTREE_ID_subvolumes, &root_volume.k_i, NULL, NULL, 0); if (ret) return ret; return 0; } static int bch2_fs_upgrade_for_subvolumes(struct btree_trans *trans) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_s_c k; struct bch_inode_unpacked inode; int ret; bch2_trans_iter_init(trans, &iter, BTREE_ID_inodes, SPOS(0, BCACHEFS_ROOT_INO, U32_MAX), 0); k = bch2_btree_iter_peek_slot(&iter); ret = bkey_err(k); if (ret) goto err; if (k.k->type != KEY_TYPE_inode) { bch_err(c, "root inode not found"); ret = -ENOENT; goto err; } ret = bch2_inode_unpack(bkey_s_c_to_inode(k), &inode); BUG_ON(ret); inode.bi_subvol = BCACHEFS_ROOT_SUBVOL; ret = bch2_inode_write(trans, &iter, &inode); err: bch2_trans_iter_exit(trans, &iter); return ret; } int bch2_fs_recovery(struct bch_fs *c) { const char *err = "cannot allocate memory"; struct bch_sb_field_clean *clean = NULL; struct jset *last_journal_entry = NULL; u64 blacklist_seq, journal_seq; bool write_sb = false; int ret = 0; if (c->sb.clean) clean = read_superblock_clean(c); ret = PTR_ERR_OR_ZERO(clean); if (ret) goto err; if (c->sb.clean) bch_info(c, "recovering from clean shutdown, journal seq %llu", le64_to_cpu(clean->journal_seq)); if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) { bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported"); ret = -EINVAL; goto err; } if (!c->sb.clean && !(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) { bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix"); ret = -EINVAL; goto err; } if (!(c->sb.compat & (1ULL << BCH_COMPAT_bformat_overflow_done))) { bch_err(c, "filesystem may have incompatible bkey formats; run fsck from the compat branch to fix"); ret = -EINVAL; goto err; } if (!(c->sb.features & (1ULL << BCH_FEATURE_alloc_v2))) { bch_info(c, "alloc_v2 feature bit not set, fsck required"); c->opts.fsck = true; c->opts.fix_errors = FSCK_OPT_YES; } if (!c->replicas.entries || c->opts.rebuild_replicas) { bch_info(c, "building replicas info"); set_bit(BCH_FS_REBUILD_REPLICAS, &c->flags); } if (!c->opts.nochanges) { if (c->sb.version < bcachefs_metadata_version_inode_backpointers) { bch_info(c, "version prior to inode backpointers, upgrade and fsck required"); c->opts.version_upgrade = true; c->opts.fsck = true; c->opts.fix_errors = FSCK_OPT_YES; } else if (c->sb.version < bcachefs_metadata_version_subvol_dirent) { bch_info(c, "filesystem version is prior to subvol_dirent - upgrading"); c->opts.version_upgrade = true; c->opts.fsck = true; } } ret = bch2_blacklist_table_initialize(c); if (ret) { bch_err(c, "error initializing blacklist table"); goto err; } if (!c->sb.clean || c->opts.fsck || c->opts.keep_journal) { struct journal_replay *i; ret = bch2_journal_read(c, &c->journal_entries, &blacklist_seq, &journal_seq); if (ret) goto err; list_for_each_entry_reverse(i, &c->journal_entries, list) if (!i->ignore) { last_journal_entry = &i->j; break; } if (mustfix_fsck_err_on(c->sb.clean && last_journal_entry && !journal_entry_empty(last_journal_entry), c, "filesystem marked clean but journal not empty")) { c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); SET_BCH_SB_CLEAN(c->disk_sb.sb, false); c->sb.clean = false; } if (!last_journal_entry) { fsck_err_on(!c->sb.clean, c, "no journal entries found"); goto use_clean; } c->journal_keys = journal_keys_sort(&c->journal_entries); if (!c->journal_keys.d) { ret = -ENOMEM; goto err; } if (c->sb.clean && last_journal_entry) { ret = verify_superblock_clean(c, &clean, last_journal_entry); if (ret) goto err; } } else { use_clean: if (!clean) { bch_err(c, "no superblock clean section found"); ret = BCH_FSCK_REPAIR_IMPOSSIBLE; goto err; } blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1; } if (c->opts.reconstruct_alloc) { c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); drop_alloc_keys(&c->journal_keys); } zero_out_btree_mem_ptr(&c->journal_keys); ret = journal_replay_early(c, clean, &c->journal_entries); if (ret) goto err; /* * After an unclean shutdown, skip then next few journal sequence * numbers as they may have been referenced by btree writes that * happened before their corresponding journal writes - those btree * writes need to be ignored, by skipping and blacklisting the next few * journal sequence numbers: */ if (!c->sb.clean) journal_seq += 8; if (blacklist_seq != journal_seq) { ret = bch2_journal_seq_blacklist_add(c, blacklist_seq, journal_seq); if (ret) { bch_err(c, "error creating new journal seq blacklist entry"); goto err; } } ret = bch2_fs_journal_start(&c->journal, journal_seq, &c->journal_entries); if (ret) goto err; ret = read_btree_roots(c); if (ret) goto err; bch_verbose(c, "starting alloc read"); err = "error reading allocation information"; ret = bch2_alloc_read(c); if (ret) goto err; bch_verbose(c, "alloc read done"); bch_verbose(c, "starting stripes_read"); err = "error reading stripes"; ret = bch2_stripes_read(c); if (ret) goto err; bch_verbose(c, "stripes_read done"); set_bit(BCH_FS_ALLOC_READ_DONE, &c->flags); if (c->opts.fsck || !(c->sb.compat & (1ULL << BCH_COMPAT_alloc_info)) || !(c->sb.compat & (1ULL << BCH_COMPAT_alloc_metadata)) || test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags)) { bool metadata_only = c->opts.norecovery; bch_info(c, "starting mark and sweep"); err = "error in mark and sweep"; ret = bch2_gc(c, true, metadata_only); if (ret) goto err; bch_verbose(c, "mark and sweep done"); } bch2_stripes_heap_start(c); clear_bit(BCH_FS_REBUILD_REPLICAS, &c->flags); set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags); /* * Skip past versions that might have possibly been used (as nonces), * but hadn't had their pointers written: */ if (c->sb.encryption_type && !c->sb.clean) atomic64_add(1 << 16, &c->key_version); if (c->opts.norecovery) goto out; bch_verbose(c, "starting journal replay"); err = "journal replay failed"; ret = bch2_journal_replay(c, c->journal_keys); if (ret) goto err; bch_verbose(c, "journal replay done"); if (test_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags) && !c->opts.nochanges) { /* * note that even when filesystem was clean there might be work * to do here, if we ran gc (because of fsck) which recalculated * oldest_gen: */ bch_verbose(c, "writing allocation info"); err = "error writing out alloc info"; ret = bch2_stripes_write(c, BTREE_INSERT_LAZY_RW) ?: bch2_alloc_write(c, BTREE_INSERT_LAZY_RW); if (ret) { bch_err(c, "error writing alloc info"); goto err; } bch_verbose(c, "alloc write done"); } if (c->sb.version < bcachefs_metadata_version_snapshot_2) { bch2_fs_lazy_rw(c); err = "error creating root snapshot node"; ret = bch2_fs_initialize_subvolumes(c); if (ret) goto err; } bch_verbose(c, "reading snapshots table"); err = "error reading snapshots table"; ret = bch2_fs_snapshots_start(c); if (ret) goto err; bch_verbose(c, "reading snapshots done"); if (c->sb.version < bcachefs_metadata_version_snapshot_2) { /* set bi_subvol on root inode */ err = "error upgrade root inode for subvolumes"; ret = bch2_trans_do(c, NULL, NULL, BTREE_INSERT_LAZY_RW, bch2_fs_upgrade_for_subvolumes(&trans)); if (ret) goto err; } if (c->opts.fsck) { bch_info(c, "starting fsck"); err = "error in fsck"; ret = bch2_fsck_full(c); if (ret) goto err; bch_verbose(c, "fsck done"); } else if (!c->sb.clean) { bch_verbose(c, "checking for deleted inodes"); err = "error in recovery"; ret = bch2_fsck_walk_inodes_only(c); if (ret) goto err; bch_verbose(c, "check inodes done"); } if (enabled_qtypes(c)) { bch_verbose(c, "reading quotas"); ret = bch2_fs_quota_read(c); if (ret) goto err; bch_verbose(c, "quotas done"); } if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) || !(c->sb.compat & (1ULL << BCH_COMPAT_bformat_overflow_done))) { struct bch_move_stats stats; bch_move_stats_init(&stats, "recovery"); bch_info(c, "scanning for old btree nodes"); ret = bch2_fs_read_write(c); if (ret) goto err; ret = bch2_scan_old_btree_nodes(c, &stats); if (ret) goto err; bch_info(c, "scanning for old btree nodes done"); } mutex_lock(&c->sb_lock); if (c->opts.version_upgrade) { c->disk_sb.sb->version = cpu_to_le16(bcachefs_metadata_version_current); c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALL); write_sb = true; } if (!test_bit(BCH_FS_ERROR, &c->flags)) { c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info); write_sb = true; } if (c->opts.fsck && !test_bit(BCH_FS_ERROR, &c->flags) && !test_bit(BCH_FS_ERRORS_NOT_FIXED, &c->flags)) { SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0); SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0); write_sb = true; } if (write_sb) bch2_write_super(c); mutex_unlock(&c->sb_lock); if (c->journal_seq_blacklist_table && c->journal_seq_blacklist_table->nr > 128) queue_work(system_long_wq, &c->journal_seq_blacklist_gc_work); ret = 0; out: set_bit(BCH_FS_FSCK_DONE, &c->flags); bch2_flush_fsck_errs(c); if (!c->opts.keep_journal) { bch2_journal_keys_free(&c->journal_keys); bch2_journal_entries_free(&c->journal_entries); } kfree(clean); if (ret) bch_err(c, "Error in recovery: %s (%i)", err, ret); else bch_verbose(c, "ret %i", ret); return ret; err: fsck_err: bch2_fs_emergency_read_only(c); goto out; } int bch2_fs_initialize(struct bch_fs *c) { struct bch_inode_unpacked root_inode, lostfound_inode; struct bkey_inode_buf packed_inode; struct qstr lostfound = QSTR("lost+found"); const char *err = "cannot allocate memory"; struct bch_dev *ca; LIST_HEAD(journal); unsigned i; int ret; bch_notice(c, "initializing new filesystem"); mutex_lock(&c->sb_lock); c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done); c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done); if (c->opts.version_upgrade) { c->disk_sb.sb->version = cpu_to_le16(bcachefs_metadata_version_current); c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALL); bch2_write_super(c); } for_each_online_member(ca, c, i) bch2_mark_dev_superblock(c, ca, 0); mutex_unlock(&c->sb_lock); set_bit(BCH_FS_ALLOC_READ_DONE, &c->flags); set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags); for (i = 0; i < BTREE_ID_NR; i++) bch2_btree_root_alloc(c, i); set_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags); set_bit(JOURNAL_RECLAIM_STARTED, &c->journal.flags); err = "unable to allocate journal buckets"; for_each_online_member(ca, c, i) { ret = bch2_dev_journal_alloc(ca); if (ret) { percpu_ref_put(&ca->io_ref); goto err; } } /* * journal_res_get() will crash if called before this has * set up the journal.pin FIFO and journal.cur pointer: */ bch2_fs_journal_start(&c->journal, 1, &journal); bch2_journal_set_replay_done(&c->journal); err = "error going read-write"; ret = bch2_fs_read_write_early(c); if (ret) goto err; /* * Write out the superblock and journal buckets, now that we can do * btree updates */ err = "error marking superblock and journal"; for_each_member_device(ca, c, i) { ret = bch2_trans_mark_dev_sb(c, ca); if (ret) { percpu_ref_put(&ca->ref); goto err; } } err = "error creating root snapshot node"; ret = bch2_fs_initialize_subvolumes(c); if (ret) goto err; bch_verbose(c, "reading snapshots table"); err = "error reading snapshots table"; ret = bch2_fs_snapshots_start(c); if (ret) goto err; bch_verbose(c, "reading snapshots done"); bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|S_IRWXU|S_IRUGO|S_IXUGO, 0, NULL); root_inode.bi_inum = BCACHEFS_ROOT_INO; root_inode.bi_subvol = BCACHEFS_ROOT_SUBVOL; bch2_inode_pack(c, &packed_inode, &root_inode); packed_inode.inode.k.p.snapshot = U32_MAX; err = "error creating root directory"; ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, NULL, 0); if (ret) goto err; bch2_inode_init_early(c, &lostfound_inode); err = "error creating lost+found"; ret = bch2_trans_do(c, NULL, NULL, 0, bch2_create_trans(&trans, BCACHEFS_ROOT_SUBVOL_INUM, &root_inode, &lostfound_inode, &lostfound, 0, 0, S_IFDIR|0700, 0, NULL, NULL, (subvol_inum) { 0 }, 0)); if (ret) { bch_err(c, "error creating lost+found"); goto err; } if (enabled_qtypes(c)) { ret = bch2_fs_quota_read(c); if (ret) goto err; } err = "error writing first journal entry"; ret = bch2_journal_meta(&c->journal); if (ret) goto err; mutex_lock(&c->sb_lock); SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true); SET_BCH_SB_CLEAN(c->disk_sb.sb, false); bch2_write_super(c); mutex_unlock(&c->sb_lock); return 0; err: pr_err("Error initializing new filesystem: %s (%i)", err, ret); return ret; }