#include #include #include #include #include #include "six.h" #define six_acquire(l, t) lock_acquire(l, 0, t, 0, 0, NULL, _RET_IP_) #define six_release(l) lock_release(l, 0, _RET_IP_) #define __SIX_LOCK_HELD_read __SIX_VAL(read_lock, ~0) #define __SIX_LOCK_HELD_intent __SIX_VAL(intent_lock, ~0) #define __SIX_LOCK_HELD_write __SIX_VAL(seq, 1) struct six_lock_vals { /* Value we add to the lock in order to take the lock: */ u64 lock_val; /* If the lock has this value (used as a mask), taking the lock fails: */ u64 lock_fail; /* Value we add to the lock in order to release the lock: */ u64 unlock_val; /* Mask that indicates lock is held for this type: */ u64 held_mask; /* Waitlist we wakeup when releasing the lock: */ enum six_lock_type unlock_wakeup; }; #define LOCK_VALS { \ [SIX_LOCK_read] = { \ .lock_val = __SIX_VAL(read_lock, 1), \ .lock_fail = __SIX_LOCK_HELD_write, \ .unlock_val = -__SIX_VAL(read_lock, 1), \ .held_mask = __SIX_LOCK_HELD_read, \ .unlock_wakeup = SIX_LOCK_write, \ }, \ [SIX_LOCK_intent] = { \ .lock_val = __SIX_VAL(intent_lock, 1), \ .lock_fail = __SIX_LOCK_HELD_intent, \ .unlock_val = -__SIX_VAL(intent_lock, 1), \ .held_mask = __SIX_LOCK_HELD_intent, \ .unlock_wakeup = SIX_LOCK_intent, \ }, \ [SIX_LOCK_write] = { \ .lock_val = __SIX_VAL(seq, 1), \ .lock_fail = __SIX_LOCK_HELD_read, \ .unlock_val = __SIX_VAL(seq, 1), \ .held_mask = __SIX_LOCK_HELD_write, \ .unlock_wakeup = SIX_LOCK_read, \ }, \ } static void six_set_owner(struct six_lock *lock, enum six_lock_type type) { if (type == SIX_LOCK_intent) lock->owner = current; } static void six_clear_owner(struct six_lock *lock, enum six_lock_type type) { if (type == SIX_LOCK_intent) lock->owner = NULL; } static inline bool __six_trylock_type(struct six_lock *lock, enum six_lock_type type) { const struct six_lock_vals l[] = LOCK_VALS; union six_lock_state old; u64 v = READ_ONCE(lock->state.v); do { old.v = v; EBUG_ON(type == SIX_LOCK_write && ((old.v & __SIX_LOCK_HELD_write) || !(old.v & __SIX_LOCK_HELD_intent))); if (old.v & l[type].lock_fail) return false; } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, old.v, old.v + l[type].lock_val)) != old.v); return true; } bool six_trylock_type(struct six_lock *lock, enum six_lock_type type) { bool ret = __six_trylock_type(lock, type); if (ret) { six_acquire(&lock->dep_map, 1); six_set_owner(lock, type); } return ret; } bool six_relock_type(struct six_lock *lock, enum six_lock_type type, unsigned seq) { const struct six_lock_vals l[] = LOCK_VALS; union six_lock_state old; u64 v = READ_ONCE(lock->state.v); do { old.v = v; if (old.seq != seq || old.v & l[type].lock_fail) return false; } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, old.v, old.v + l[type].lock_val)) != old.v); six_acquire(&lock->dep_map, 1); six_set_owner(lock, type); return true; } struct six_lock_waiter { struct list_head list; struct task_struct *task; }; /* This is probably up there with the more evil things I've done */ #define waitlist_bitnr(id) ilog2((((union six_lock_state) { .waiters = 1 << (id) }).l)) static inline int six_can_spin_on_owner(struct six_lock *lock) { struct task_struct *owner; int retval = 1; if (need_resched()) return 0; rcu_read_lock(); owner = READ_ONCE(lock->owner); if (owner) retval = owner->on_cpu; rcu_read_unlock(); /* * if lock->owner is not set, the mutex owner may have just acquired * it and not set the owner yet or the mutex has been released. */ return retval; } static bool six_spin_on_owner(struct six_lock *lock, struct task_struct *owner) { bool ret = true; rcu_read_lock(); while (lock->owner == owner) { /* * Ensure we emit the owner->on_cpu, dereference _after_ * checking lock->owner still matches owner. If that fails, * owner might point to freed memory. If it still matches, * the rcu_read_lock() ensures the memory stays valid. */ barrier(); if (!owner->on_cpu || need_resched()) { ret = false; break; } cpu_relax_lowlatency(); } rcu_read_unlock(); return ret; } static bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type) { struct task_struct *task = current; if (type == SIX_LOCK_write) return false; preempt_disable(); if (!six_can_spin_on_owner(lock)) goto fail; if (!osq_lock(&lock->osq)) goto fail; while (1) { struct task_struct *owner; /* * If there's an owner, wait for it to either * release the lock or go to sleep. */ owner = READ_ONCE(lock->owner); if (owner && !six_spin_on_owner(lock, owner)) break; if (__six_trylock_type(lock, type)) { osq_unlock(&lock->osq); preempt_enable(); return true; } /* * When there's no owner, we might have preempted between the * owner acquiring the lock and setting the owner field. If * we're an RT task that will live-lock because we won't let * the owner complete. */ if (!owner && (need_resched() || rt_task(task))) break; /* * The cpu_relax() call is a compiler barrier which forces * everything in this loop to be re-loaded. We don't need * memory barriers as we'll eventually observe the right * values at the cost of a few extra spins. */ cpu_relax_lowlatency(); } osq_unlock(&lock->osq); fail: preempt_enable(); /* * If we fell out of the spin path because of need_resched(), * reschedule now, before we try-lock again. This avoids getting * scheduled out right after we obtained the lock. */ if (need_resched()) schedule(); return false; } void six_lock_type(struct six_lock *lock, enum six_lock_type type) { const struct six_lock_vals l[] = LOCK_VALS; union six_lock_state old, new; struct six_lock_waiter wait; u64 v; six_acquire(&lock->dep_map, 0); if (__six_trylock_type(lock, type)) goto done; if (six_optimistic_spin(lock, type)) goto done; lock_contended(&lock->dep_map, _RET_IP_); INIT_LIST_HEAD(&wait.list); wait.task = current; while (1) { set_current_state(TASK_UNINTERRUPTIBLE); if (list_empty_careful(&wait.list)) { raw_spin_lock(&lock->wait_lock); list_add_tail(&wait.list, &lock->wait_list[type]); raw_spin_unlock(&lock->wait_lock); } v = READ_ONCE(lock->state.v); do { new.v = old.v = v; if (!(old.v & l[type].lock_fail)) new.v += l[type].lock_val; else if (!(new.waiters & (1 << type))) new.waiters |= 1 << type; else break; /* waiting bit already set */ } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, old.v, new.v)) != old.v); if (!(old.v & l[type].lock_fail)) break; schedule(); } __set_current_state(TASK_RUNNING); if (!list_empty_careful(&wait.list)) { raw_spin_lock(&lock->wait_lock); list_del_init(&wait.list); raw_spin_unlock(&lock->wait_lock); } done: lock_acquired(&lock->dep_map, _RET_IP_); six_set_owner(lock, type); } static inline void six_lock_wakeup(struct six_lock *lock, union six_lock_state state, unsigned waitlist_id) { struct list_head *wait_list = &lock->wait_list[waitlist_id]; struct six_lock_waiter *w, *next; if (waitlist_id == SIX_LOCK_write && state.read_lock) return; if (!(state.waiters & (1 << waitlist_id))) return; clear_bit(waitlist_bitnr(waitlist_id), (unsigned long *) &lock->state.v); raw_spin_lock(&lock->wait_lock); list_for_each_entry_safe(w, next, wait_list, list) { list_del_init(&w->list); if (wake_up_process(w->task) && waitlist_id != SIX_LOCK_read) { if (!list_empty(wait_list)) set_bit(waitlist_bitnr(waitlist_id), (unsigned long *) &lock->state.v); break; } } raw_spin_unlock(&lock->wait_lock); } void six_unlock_type(struct six_lock *lock, enum six_lock_type type) { const struct six_lock_vals l[] = LOCK_VALS; union six_lock_state state; six_clear_owner(lock, type); EBUG_ON(!(lock->state.v & l[type].held_mask)); EBUG_ON(type == SIX_LOCK_write && !(lock->state.v & __SIX_LOCK_HELD_intent)); state.v = atomic64_add_return_release(l[type].unlock_val, &lock->state.counter); six_release(&lock->dep_map); six_lock_wakeup(lock, state, l[type].unlock_wakeup); } bool six_trylock_convert(struct six_lock *lock, enum six_lock_type from, enum six_lock_type to) { const struct six_lock_vals l[] = LOCK_VALS; union six_lock_state old, new; u64 v = READ_ONCE(lock->state.v); do { new.v = old.v = v; new.v += l[from].unlock_val; if (new.v & l[to].lock_fail) return false; } while ((v = atomic64_cmpxchg_acquire(&lock->state.counter, old.v, new.v + l[to].lock_val)) != old.v); six_clear_owner(lock, from); six_set_owner(lock, to); six_lock_wakeup(lock, new, l[from].unlock_wakeup); return true; } /* * Increment read/intent lock count, assuming we already have it read or intent * locked: */ void six_lock_increment(struct six_lock *lock, enum six_lock_type type) { const struct six_lock_vals l[] = LOCK_VALS; EBUG_ON(type == SIX_LOCK_write); six_acquire(&lock->dep_map, 0); /* XXX: assert already locked, and that we don't overflow: */ atomic64_add(l[type].lock_val, &lock->state.counter); } /* Convert from intent to read: */ void six_lock_downgrade(struct six_lock *lock) { six_lock_increment(lock, SIX_LOCK_read); six_unlock_intent(lock); }