#ifndef _BCACHE_UTIL_H #define _BCACHE_UTIL_H #include #include #include #include #include #include #include #include #include #include #include #include #include #define PAGE_SECTOR_SHIFT (PAGE_SHIFT - 9) #define PAGE_SECTORS (1UL << PAGE_SECTOR_SHIFT) struct closure; #ifdef CONFIG_BCACHEFS_DEBUG #define EBUG_ON(cond) BUG_ON(cond) #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) #define atomic_sub_bug(i, v) BUG_ON(atomic_sub_return(i, v) < 0) #define atomic_add_bug(i, v) BUG_ON(atomic_add_return(i, v) < 0) #define atomic_long_dec_bug(v) BUG_ON(atomic_long_dec_return(v) < 0) #define atomic_long_sub_bug(i, v) BUG_ON(atomic_long_sub_return(i, v) < 0) #define atomic64_dec_bug(v) BUG_ON(atomic64_dec_return(v) < 0) #define atomic64_inc_bug(v, i) BUG_ON(atomic64_inc_return(v) <= i) #define atomic64_sub_bug(i, v) BUG_ON(atomic64_sub_return(i, v) < 0) #define atomic64_add_bug(i, v) BUG_ON(atomic64_add_return(i, v) < 0) #define memcpy(_dst, _src, _len) \ do { \ BUG_ON(!((void *) (_dst) >= (void *) (_src) + (_len) || \ (void *) (_dst) + (_len) <= (void *) (_src))); \ memcpy(_dst, _src, _len); \ } while (0) #else /* DEBUG */ #define EBUG_ON(cond) #define atomic_dec_bug(v) atomic_dec(v) #define atomic_inc_bug(v, i) atomic_inc(v) #define atomic_sub_bug(i, v) atomic_sub(i, v) #define atomic_add_bug(i, v) atomic_add(i, v) #define atomic_long_dec_bug(v) atomic_long_dec(v) #define atomic_long_sub_bug(i, v) atomic_long_sub(i, v) #define atomic64_dec_bug(v) atomic64_dec(v) #define atomic64_inc_bug(v, i) atomic64_inc(v) #define atomic64_sub_bug(i, v) atomic64_sub(i, v) #define atomic64_add_bug(i, v) atomic64_add(i, v) #endif #ifndef __CHECKER__ #define __flatten __attribute__((flatten)) #else /* sparse doesn't know about attribute((flatten)) */ #define __flatten #endif #ifdef __LITTLE_ENDIAN #define CPU_BIG_ENDIAN 0 #else #define CPU_BIG_ENDIAN 1 #endif /* type hackery */ #define type_is_exact(_val, _type) \ __builtin_types_compatible_p(typeof(_val), _type) #define type_is(_val, _type) \ (__builtin_types_compatible_p(typeof(_val), _type) || \ __builtin_types_compatible_p(typeof(_val), const _type)) static inline void kvpfree(void *p, size_t size) { if (size < PAGE_SIZE) kfree(p); else if (is_vmalloc_addr(p)) vfree(p); else free_pages((unsigned long) p, get_order(size)); } static inline void *kvpmalloc(size_t size, gfp_t gfp_mask) { return size < PAGE_SIZE ? kmalloc(size, gfp_mask) : (void *) __get_free_pages(gfp_mask|__GFP_NOWARN, get_order(size)) ?: __vmalloc(size, gfp_mask, PAGE_KERNEL); } #define DECLARE_HEAP(type, name) \ struct { \ size_t size, used; \ type *data; \ } name #define init_heap(heap, _size, gfp) \ ({ \ (heap)->used = 0; \ (heap)->size = (_size); \ (heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\ (gfp)); \ }) #define free_heap(heap) \ do { \ kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0])); \ (heap)->data = NULL; \ } while (0) #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) #define heap_sift(h, i, cmp) \ do { \ size_t _r, _j = i; \ \ for (; _j * 2 + 1 < (h)->used; _j = _r) { \ _r = _j * 2 + 1; \ if (_r + 1 < (h)->used && \ cmp((h)->data[_r], (h)->data[_r + 1])) \ _r++; \ \ if (cmp((h)->data[_r], (h)->data[_j])) \ break; \ heap_swap(h, _r, _j); \ } \ } while (0) #define heap_sift_down(h, i, cmp) \ do { \ while (i) { \ size_t p = (i - 1) / 2; \ if (cmp((h)->data[i], (h)->data[p])) \ break; \ heap_swap(h, i, p); \ i = p; \ } \ } while (0) #define heap_add(h, d, cmp) \ ({ \ bool _r = !heap_full(h); \ if (_r) { \ size_t _i = (h)->used++; \ (h)->data[_i] = d; \ \ heap_sift_down(h, _i, cmp); \ heap_sift(h, _i, cmp); \ } \ _r; \ }) #define heap_del(h, i, cmp) \ do { \ size_t _i = (i); \ \ BUG_ON(_i >= (h)->used); \ (h)->used--; \ heap_swap(h, _i, (h)->used); \ heap_sift_down(h, _i, cmp); \ heap_sift(h, _i, cmp); \ } while (0) #define heap_pop(h, d, cmp) \ ({ \ bool _r = (h)->used; \ if (_r) { \ (d) = (h)->data[0]; \ heap_del(h, 0, cmp); \ } \ _r; \ }) #define heap_peek(h) \ ({ \ EBUG_ON(!(h)->used); \ (h)->data[0]; \ }) #define heap_full(h) ((h)->used == (h)->size) #define heap_resort(heap, cmp) \ do { \ ssize_t _i; \ for (_i = (ssize_t) (heap)->used / 2 - 1; _i >= 0; --_i) \ heap_sift(heap, _i, cmp); \ } while (0) /* * Simple array based allocator - preallocates a number of elements and you can * never allocate more than that, also has no locking. * * Handy because if you know you only need a fixed number of elements you don't * have to worry about memory allocation failure, and sometimes a mempool isn't * what you want. * * We treat the free elements as entries in a singly linked list, and the * freelist as a stack - allocating and freeing push and pop off the freelist. */ #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ struct { \ type *freelist; \ type data[size]; \ } name #define array_alloc(array) \ ({ \ typeof((array)->freelist) _ret = (array)->freelist; \ \ if (_ret) \ (array)->freelist = *((typeof((array)->freelist) *) _ret);\ \ _ret; \ }) #define array_free(array, ptr) \ do { \ typeof((array)->freelist) _ptr = ptr; \ \ *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ (array)->freelist = _ptr; \ } while (0) #define array_allocator_init(array) \ do { \ typeof((array)->freelist) _i; \ \ BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ (array)->freelist = NULL; \ \ for (_i = (array)->data; \ _i < (array)->data + ARRAY_SIZE((array)->data); \ _i++) \ array_free(array, _i); \ } while (0) #define array_freelist_empty(array) ((array)->freelist == NULL) #define ANYSINT_MAX(t) \ ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) int bch2_strtoint_h(const char *, int *); int bch2_strtouint_h(const char *, unsigned int *); int bch2_strtoll_h(const char *, long long *); int bch2_strtoull_h(const char *, unsigned long long *); static inline int bch2_strtol_h(const char *cp, long *res) { #if BITS_PER_LONG == 32 return bch2_strtoint_h(cp, (int *) res); #else return bch2_strtoll_h(cp, (long long *) res); #endif } static inline int bch2_strtoul_h(const char *cp, long *res) { #if BITS_PER_LONG == 32 return bch2_strtouint_h(cp, (unsigned int *) res); #else return bch2_strtoull_h(cp, (unsigned long long *) res); #endif } #define strtoi_h(cp, res) \ ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\ : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\ : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\ : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\ : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\ : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\ : -EINVAL) #define strtoul_safe(cp, var) \ ({ \ unsigned long _v; \ int _r = kstrtoul(cp, 10, &_v); \ if (!_r) \ var = _v; \ _r; \ }) #define strtoul_safe_clamp(cp, var, min, max) \ ({ \ unsigned long _v; \ int _r = kstrtoul(cp, 10, &_v); \ if (!_r) \ var = clamp_t(typeof(var), _v, min, max); \ _r; \ }) #define strtoul_safe_restrict(cp, var, min, max) \ ({ \ unsigned long _v; \ int _r = kstrtoul(cp, 10, &_v); \ if (!_r && _v >= min && _v <= max) \ var = _v; \ else \ _r = -EINVAL; \ _r; \ }) #define snprint(buf, size, var) \ snprintf(buf, size, \ type_is(var, int) ? "%i\n" \ : type_is(var, unsigned) ? "%u\n" \ : type_is(var, long) ? "%li\n" \ : type_is(var, unsigned long) ? "%lu\n" \ : type_is(var, s64) ? "%lli\n" \ : type_is(var, u64) ? "%llu\n" \ : type_is(var, char *) ? "%s\n" \ : "%i\n", var) ssize_t bch2_hprint(char *buf, s64 v); bool bch2_is_zero(const void *, size_t); ssize_t bch2_snprint_string_list(char *buf, size_t size, const char * const list[], size_t selected); ssize_t bch2_read_string_list(const char *buf, const char * const list[]); struct time_stats { spinlock_t lock; u64 count; /* * all fields are in nanoseconds, averages are ewmas stored left shifted * by 8 */ u64 last_duration; u64 max_duration; u64 average_duration; u64 average_frequency; u64 last; }; void bch2_time_stats_clear(struct time_stats *stats); void __bch2_time_stats_update(struct time_stats *stats, u64 time); void bch2_time_stats_update(struct time_stats *stats, u64 time); static inline unsigned local_clock_us(void) { return local_clock() >> 10; } #define NSEC_PER_ns 1L #define NSEC_PER_us NSEC_PER_USEC #define NSEC_PER_ms NSEC_PER_MSEC #define NSEC_PER_sec NSEC_PER_SEC #define __print_time_stat(stats, name, stat, units) \ sysfs_print(name ## _ ## stat ## _ ## units, \ div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) #define sysfs_print_time_stats(stats, name, \ frequency_units, \ duration_units) \ do { \ __print_time_stat(stats, name, \ average_frequency, frequency_units); \ __print_time_stat(stats, name, \ average_duration, duration_units); \ sysfs_print(name ## _ ##count, (stats)->count); \ sysfs_print(name ## _ ##last_duration ## _ ## duration_units, \ div_u64((stats)->last_duration, \ NSEC_PER_ ## duration_units)); \ sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ div_u64((stats)->max_duration, \ NSEC_PER_ ## duration_units)); \ \ sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ ? div_s64(local_clock() - (stats)->last, \ NSEC_PER_ ## frequency_units) \ : -1LL); \ } while (0) #define sysfs_clear_time_stats(stats, name) \ do { \ if (attr == &sysfs_ ## name ## _clear) \ bch2_time_stats_clear(stats); \ } while (0) #define sysfs_time_stats_attribute(name, \ frequency_units, \ duration_units) \ write_attribute(name ## _clear); \ read_attribute(name ## _count); \ read_attribute(name ## _average_frequency_ ## frequency_units); \ read_attribute(name ## _average_duration_ ## duration_units); \ read_attribute(name ## _last_duration_ ## duration_units); \ read_attribute(name ## _max_duration_ ## duration_units); \ read_attribute(name ## _last_ ## frequency_units) #define sysfs_time_stats_attribute_list(name, \ frequency_units, \ duration_units) \ &sysfs_ ## name ## _clear, \ &sysfs_ ## name ## _count, \ &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ &sysfs_ ## name ## _average_duration_ ## duration_units, \ &sysfs_ ## name ## _last_duration_ ## duration_units, \ &sysfs_ ## name ## _max_duration_ ## duration_units, \ &sysfs_ ## name ## _last_ ## frequency_units, #define ewma_add(ewma, val, weight) \ ({ \ typeof(ewma) _ewma = (ewma); \ typeof(weight) _weight = (weight); \ \ (((_ewma << _weight) - _ewma) + (val)) >> _weight; \ }) struct bch_ratelimit { /* Next time we want to do some work, in nanoseconds */ u64 next; /* * Rate at which we want to do work, in units per nanosecond * The units here correspond to the units passed to * bch2_ratelimit_increment() */ unsigned rate; }; static inline void bch2_ratelimit_reset(struct bch_ratelimit *d) { d->next = local_clock(); } u64 bch2_ratelimit_delay(struct bch_ratelimit *); void bch2_ratelimit_increment(struct bch_ratelimit *, u64); int bch2_ratelimit_wait_freezable_stoppable(struct bch_ratelimit *); struct bch_pd_controller { struct bch_ratelimit rate; unsigned long last_update; s64 last_actual; s64 smoothed_derivative; unsigned p_term_inverse; unsigned d_smooth; unsigned d_term; /* for exporting to sysfs (no effect on behavior) */ s64 last_derivative; s64 last_proportional; s64 last_change; s64 last_target; /* If true, the rate will not increase if bch2_ratelimit_delay() * is not being called often enough. */ bool backpressure; }; void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int); void bch2_pd_controller_init(struct bch_pd_controller *); size_t bch2_pd_controller_print_debug(struct bch_pd_controller *, char *); #define sysfs_pd_controller_attribute(name) \ rw_attribute(name##_rate); \ rw_attribute(name##_rate_bytes); \ rw_attribute(name##_rate_d_term); \ rw_attribute(name##_rate_p_term_inverse); \ read_attribute(name##_rate_debug) #define sysfs_pd_controller_files(name) \ &sysfs_##name##_rate, \ &sysfs_##name##_rate_bytes, \ &sysfs_##name##_rate_d_term, \ &sysfs_##name##_rate_p_term_inverse, \ &sysfs_##name##_rate_debug #define sysfs_pd_controller_show(name, var) \ do { \ sysfs_hprint(name##_rate, (var)->rate.rate); \ sysfs_print(name##_rate_bytes, (var)->rate.rate); \ sysfs_print(name##_rate_d_term, (var)->d_term); \ sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \ \ if (attr == &sysfs_##name##_rate_debug) \ return bch2_pd_controller_print_debug(var, buf); \ } while (0) #define sysfs_pd_controller_store(name, var) \ do { \ sysfs_strtoul_clamp(name##_rate, \ (var)->rate.rate, 1, UINT_MAX); \ sysfs_strtoul_clamp(name##_rate_bytes, \ (var)->rate.rate, 1, UINT_MAX); \ sysfs_strtoul(name##_rate_d_term, (var)->d_term); \ sysfs_strtoul_clamp(name##_rate_p_term_inverse, \ (var)->p_term_inverse, 1, INT_MAX); \ } while (0) #define __DIV_SAFE(n, d, zero) \ ({ \ typeof(n) _n = (n); \ typeof(d) _d = (d); \ _d ? _n / _d : zero; \ }) #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) #define container_of_or_null(ptr, type, member) \ ({ \ typeof(ptr) _ptr = ptr; \ _ptr ? container_of(_ptr, type, member) : NULL; \ }) #define RB_INSERT(root, new, member, cmp) \ ({ \ __label__ dup; \ struct rb_node **n = &(root)->rb_node, *parent = NULL; \ typeof(new) this; \ int res, ret = -1; \ \ while (*n) { \ parent = *n; \ this = container_of(*n, typeof(*(new)), member); \ res = cmp(new, this); \ if (!res) \ goto dup; \ n = res < 0 \ ? &(*n)->rb_left \ : &(*n)->rb_right; \ } \ \ rb_link_node(&(new)->member, parent, n); \ rb_insert_color(&(new)->member, root); \ ret = 0; \ dup: \ ret; \ }) #define RB_SEARCH(root, search, member, cmp) \ ({ \ struct rb_node *n = (root)->rb_node; \ typeof(&(search)) this, ret = NULL; \ int res; \ \ while (n) { \ this = container_of(n, typeof(search), member); \ res = cmp(&(search), this); \ if (!res) { \ ret = this; \ break; \ } \ n = res < 0 \ ? n->rb_left \ : n->rb_right; \ } \ ret; \ }) #define RB_GREATER(root, search, member, cmp) \ ({ \ struct rb_node *n = (root)->rb_node; \ typeof(&(search)) this, ret = NULL; \ int res; \ \ while (n) { \ this = container_of(n, typeof(search), member); \ res = cmp(&(search), this); \ if (res < 0) { \ ret = this; \ n = n->rb_left; \ } else \ n = n->rb_right; \ } \ ret; \ }) #define RB_FIRST(root, type, member) \ container_of_or_null(rb_first(root), type, member) #define RB_LAST(root, type, member) \ container_of_or_null(rb_last(root), type, member) #define RB_NEXT(ptr, member) \ container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) #define RB_PREV(ptr, member) \ container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) /* Does linear interpolation between powers of two */ static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) { unsigned fract = x & ~(~0 << fract_bits); x >>= fract_bits; x = 1 << x; x += (x * fract) >> fract_bits; return x; } void bch2_bio_map(struct bio *bio, void *base); static inline sector_t bdev_sectors(struct block_device *bdev) { return bdev->bd_inode->i_size >> 9; } #define closure_bio_submit(bio, cl) \ do { \ closure_get(cl); \ submit_bio(bio); \ } while (0) #define kthread_wait_freezable(cond) \ ({ \ int _ret = 0; \ while (1) { \ set_current_state(TASK_INTERRUPTIBLE); \ if (kthread_should_stop()) { \ _ret = -1; \ break; \ } \ \ if (cond) \ break; \ \ schedule(); \ try_to_freeze(); \ } \ set_current_state(TASK_RUNNING); \ _ret; \ }) size_t bch2_rand_range(size_t); void memcpy_to_bio(struct bio *, struct bvec_iter, void *); void memcpy_from_bio(void *, struct bio *, struct bvec_iter); static inline void __memcpy_u64s(void *dst, const void *src, unsigned u64s) { #ifdef CONFIG_X86_64 long d0, d1, d2; asm volatile("rep ; movsq" : "=&c" (d0), "=&D" (d1), "=&S" (d2) : "0" (u64s), "1" (dst), "2" (src) : "memory"); #else u64 *d = dst; const u64 *s = src; while (u64s--) *d++ = *s++; #endif } static inline void memcpy_u64s(void *dst, const void *src, unsigned u64s) { EBUG_ON(!(dst >= src + u64s * sizeof(u64) || dst + u64s * sizeof(u64) <= src)); __memcpy_u64s(dst, src, u64s); } static inline void __memmove_u64s_down(void *dst, const void *src, unsigned u64s) { __memcpy_u64s(dst, src, u64s); } static inline void memmove_u64s_down(void *dst, const void *src, unsigned u64s) { EBUG_ON(dst > src); __memmove_u64s_down(dst, src, u64s); } static inline void __memmove_u64s_up(void *_dst, const void *_src, unsigned u64s) { u64 *dst = (u64 *) _dst + u64s - 1; u64 *src = (u64 *) _src + u64s - 1; #ifdef CONFIG_X86_64 long d0, d1, d2; asm volatile("std ;\n" "rep ; movsq\n" "cld ;\n" : "=&c" (d0), "=&D" (d1), "=&S" (d2) : "0" (u64s), "1" (dst), "2" (src) : "memory"); #else while (u64s--) *dst-- = *src--; #endif } static inline void memmove_u64s_up(void *dst, const void *src, unsigned u64s) { EBUG_ON(dst < src); __memmove_u64s_up(dst, src, u64s); } static inline void memmove_u64s(void *dst, const void *src, unsigned u64s) { if (dst < src) __memmove_u64s_down(dst, src, u64s); else __memmove_u64s_up(dst, src, u64s); } static inline struct bio_vec next_contig_bvec(struct bio *bio, struct bvec_iter *iter) { struct bio_vec bv = bio_iter_iovec(bio, *iter); bio_advance_iter(bio, iter, bv.bv_len); #ifndef CONFIG_HIGHMEM while (iter->bi_size) { struct bio_vec next = bio_iter_iovec(bio, *iter); if (page_address(bv.bv_page) + bv.bv_offset + bv.bv_len != page_address(next.bv_page) + next.bv_offset) break; bv.bv_len += next.bv_len; bio_advance_iter(bio, iter, next.bv_len); } #endif return bv; } #define __bio_for_each_contig_segment(bv, bio, iter, start) \ for (iter = (start); \ (iter).bi_size && \ ((bv = next_contig_bvec((bio), &(iter))), 1);) #define bio_for_each_contig_segment(bv, bio, iter) \ __bio_for_each_contig_segment(bv, bio, iter, (bio)->bi_iter) size_t bch_scnmemcpy(char *, size_t, const char *, size_t); #endif /* _BCACHE_UTIL_H */