summaryrefslogtreecommitdiff
path: root/libbcachefs/movinggc.c
blob: efb09e1c36520bea55f187024dac7dcced292c33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// SPDX-License-Identifier: GPL-2.0
/*
 * Moving/copying garbage collector
 *
 * Copyright 2012 Google, Inc.
 */

#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "btree_iter.h"
#include "btree_update.h"
#include "buckets.h"
#include "clock.h"
#include "disk_groups.h"
#include "error.h"
#include "extents.h"
#include "eytzinger.h"
#include "io.h"
#include "keylist.h"
#include "move.h"
#include "movinggc.h"
#include "super-io.h"

#include <trace/events/bcachefs.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/math64.h>
#include <linux/sched/task.h>
#include <linux/sort.h>
#include <linux/wait.h>

static inline int fragmentation_cmp(copygc_heap *heap,
				   struct copygc_heap_entry l,
				   struct copygc_heap_entry r)
{
	return cmp_int(l.fragmentation, r.fragmentation);
}

static int find_buckets_to_copygc(struct bch_fs *c)
{
	copygc_heap *h = &c->copygc_heap;
	struct btree_trans trans;
	struct btree_iter iter;
	struct bkey_s_c k;
	struct bch_alloc_v4 a;
	int ret;

	bch2_trans_init(&trans, c, 0, 0);

	/*
	 * Find buckets with lowest sector counts, skipping completely
	 * empty buckets, by building a maxheap sorted by sector count,
	 * and repeatedly replacing the maximum element until all
	 * buckets have been visited.
	 */
	h->used = 0;

	for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN,
			   BTREE_ITER_PREFETCH, k, ret) {
		struct bch_dev *ca = bch_dev_bkey_exists(c, iter.pos.inode);
		struct copygc_heap_entry e;

		bch2_alloc_to_v4(k, &a);

		if ((a.data_type != BCH_DATA_btree &&
		     a.data_type != BCH_DATA_user) ||
		    a.dirty_sectors >= ca->mi.bucket_size ||
		    bch2_bucket_is_open(c, iter.pos.inode, iter.pos.offset))
			continue;

		e = (struct copygc_heap_entry) {
			.dev		= iter.pos.inode,
			.gen		= a.gen,
			.replicas	= 1 + a.stripe_redundancy,
			.fragmentation	= div_u64((u64) a.dirty_sectors * (1ULL << 31),
						  ca->mi.bucket_size),
			.sectors	= a.dirty_sectors,
			.bucket		= iter.pos.offset,
		};
		heap_add_or_replace(h, e, -fragmentation_cmp, NULL);

	}
	bch2_trans_iter_exit(&trans, &iter);

	bch2_trans_exit(&trans);
	return ret;
}

static int bch2_copygc(struct bch_fs *c)
{
	copygc_heap *h = &c->copygc_heap;
	struct copygc_heap_entry e;
	struct bch_move_stats move_stats;
	struct bch_dev *ca;
	unsigned dev_idx;
	size_t heap_size = 0;
	struct data_opts data_opts = {
		.nr_replicas		= 1,
		.btree_insert_flags	= BTREE_INSERT_USE_RESERVE|JOURNAL_WATERMARK_copygc,
	};
	int ret;

	bch_move_stats_init(&move_stats, "copygc");

	for_each_rw_member(ca, c, dev_idx)
		heap_size += ca->mi.nbuckets >> 7;

	if (h->size < heap_size) {
		free_heap(&c->copygc_heap);
		if (!init_heap(&c->copygc_heap, heap_size, GFP_KERNEL)) {
			bch_err(c, "error allocating copygc heap");
			return 0;
		}
	}

	ret = find_buckets_to_copygc(c);
	if (ret) {
		bch2_fs_fatal_error(c, "error walking buckets to copygc!");
		return ret;
	}

	if (!h->used) {
		bch_err_ratelimited(c, "copygc requested to run but found no buckets to move!");
		return 0;
	}

	heap_resort(h, fragmentation_cmp, NULL);

	while (h->used) {
		BUG_ON(!heap_pop(h, e, -fragmentation_cmp, NULL));
		/* not correct w.r.t. device removal */

		ret = bch2_evacuate_bucket(c, POS(e.dev, e.bucket), e.gen, NULL,
					   writepoint_ptr(&c->copygc_write_point),
					   DATA_REWRITE, &data_opts,
					   &move_stats);
		if (ret < 0)
			bch_err(c, "error %i from bch2_move_data() in copygc", ret);
		if (ret)
			return ret;
	}

	trace_copygc(c, atomic64_read(&move_stats.sectors_moved), 0, 0, 0);
	return ret;
}

/*
 * Copygc runs when the amount of fragmented data is above some arbitrary
 * threshold:
 *
 * The threshold at the limit - when the device is full - is the amount of space
 * we reserved in bch2_recalc_capacity; we can't have more than that amount of
 * disk space stranded due to fragmentation and store everything we have
 * promised to store.
 *
 * But we don't want to be running copygc unnecessarily when the device still
 * has plenty of free space - rather, we want copygc to smoothly run every so
 * often and continually reduce the amount of fragmented space as the device
 * fills up. So, we increase the threshold by half the current free space.
 */
unsigned long bch2_copygc_wait_amount(struct bch_fs *c)
{
	struct bch_dev *ca;
	unsigned dev_idx;
	s64 wait = S64_MAX, fragmented_allowed, fragmented;

	for_each_rw_member(ca, c, dev_idx) {
		struct bch_dev_usage usage = bch2_dev_usage_read(ca);

		fragmented_allowed = ((__dev_buckets_available(ca, usage, RESERVE_none) *
				       ca->mi.bucket_size) >> 1);
		fragmented = usage.d[BCH_DATA_user].fragmented;

		wait = min(wait, max(0LL, fragmented_allowed - fragmented));
	}

	return wait;
}

static int bch2_copygc_thread(void *arg)
{
	struct bch_fs *c = arg;
	struct io_clock *clock = &c->io_clock[WRITE];
	u64 last, wait;

	set_freezable();

	while (!kthread_should_stop()) {
		cond_resched();

		if (kthread_wait_freezable(c->copy_gc_enabled))
			break;

		last = atomic64_read(&clock->now);
		wait = bch2_copygc_wait_amount(c);

		if (wait > clock->max_slop) {
			trace_copygc_wait(c, wait, last + wait);
			c->copygc_wait = last + wait;
			bch2_kthread_io_clock_wait(clock, last + wait,
					MAX_SCHEDULE_TIMEOUT);
			continue;
		}

		c->copygc_wait = 0;

		if (bch2_copygc(c))
			break;
	}

	return 0;
}

void bch2_copygc_stop(struct bch_fs *c)
{
	if (c->copygc_thread) {
		kthread_stop(c->copygc_thread);
		put_task_struct(c->copygc_thread);
	}
	c->copygc_thread = NULL;
}

int bch2_copygc_start(struct bch_fs *c)
{
	struct task_struct *t;

	if (c->copygc_thread)
		return 0;

	if (c->opts.nochanges)
		return 0;

	if (bch2_fs_init_fault("copygc_start"))
		return -ENOMEM;

	t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name);
	if (IS_ERR(t)) {
		bch_err(c, "error creating copygc thread: %li", PTR_ERR(t));
		return PTR_ERR(t);
	}

	get_task_struct(t);

	c->copygc_thread = t;
	wake_up_process(c->copygc_thread);

	return 0;
}

void bch2_fs_copygc_init(struct bch_fs *c)
{
}