summaryrefslogtreecommitdiff
path: root/fs/xfs/libxfs/xfs_bmap.c
diff options
context:
space:
mode:
authorDarrick J. Wong <djwong@kernel.org>2022-11-28 17:23:58 -0800
committerDarrick J. Wong <djwong@kernel.org>2022-11-28 17:23:58 -0800
commit7dd73802f97d2a1602b1cf5c1d6623fb08cb15c5 (patch)
treea328cd35cf62e6dcc565068e36708be2e3be50b7 /fs/xfs/libxfs/xfs_bmap.c
parent28b4b0596343d19d140da059eee0e5c2b5328731 (diff)
parent6e8af15ccdc4e138a5b529c1901a0013e1dcaa09 (diff)
Merge tag 'xfs-iomap-stale-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-6.2-mergeBxfs-6.2-merge-4
xfs, iomap: fix data corruption due to stale cached iomaps This patch series fixes a data corruption that occurs in a specific multi-threaded write workload. The workload combined racing unaligned adjacent buffered writes with low memory conditions that caused both writeback and memory reclaim to race with the writes. The result of this was random partial blocks containing zeroes instead of the correct data. The underlying problem is that iomap caches the write iomap for the duration of the write() operation, but it fails to take into account that the extent underlying the iomap can change whilst the write is in progress. The short story is that an iomap can span mutliple folios, and so under low memory writeback can be cleaning folios the write() overlaps. Whilst the overlapping data is cached in memory, this isn't a problem, but because the folios are now clean they can be reclaimed. Once reclaimed, the write() does the wrong thing when re-instantiating partial folios because the iomap no longer reflects the underlying state of the extent. e.g. it thinks the extent is unwritten, so it zeroes the partial range, when in fact the underlying extent is now written and so it should have read the data from disk. This is how we get random zero ranges in the file instead of the correct data. The gory details of the race condition can be found here: https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/ Fixing the problem has two aspects. The first aspect of the problem is ensuring that iomap can detect a stale cached iomap during a write in a race-free manner. We already do this stale iomap detection in the writeback path, so we have a mechanism for detecting that the iomap backing the data range may have changed and needs to be remapped. In the case of the write() path, we have to ensure that the iomap is validated at a point in time when the page cache is stable and cannot be reclaimed from under us. We also need to validate the extent before we start performing any modifications to the folio state or contents. Combine these two requirements together, and the only "safe" place to validate the iomap is after we have looked up and locked the folio we are going to copy the data into, but before we've performed any initialisation operations on that folio. If the iomap fails validation, we then mark it stale, unlock the folio and end the write. This effectively means a stale iomap results in a short write. Filesystems should already be able to handle this, as write operations can end short for many reasons and need to iterate through another mapping cycle to be completed. Hence the iomap changes needed to detect and handle stale iomaps during write() operations is relatively simple... However, the assumption is that filesystems should already be able to handle write failures safely, and that's where the second (first?) part of the problem exists. That is, handling a partial write is harder than just "punching out the unused delayed allocation extent". This is because mmap() based faults can race with writes, and if they land in the delalloc region that the write allocated, then punching out the delalloc region can cause data corruption. This data corruption problem is exposed by generic/346 when iomap is converted to detect stale iomaps during write() operations. Hence write failure in the filesytems needs to handle the fact that the write() in progress doesn't necessarily own the data in the page cache over the range of the delalloc extent it just allocated. As a result, we can't just truncate the page cache over the range the write() didn't reach and punch all the delalloc extent. We have to walk the page cache over the untouched range and skip over any dirty data region in the cache in that range. Which is .... non-trivial. That is, iterating the page cache has to handle partially populated folios (i.e. block size < page size) that contain data. The data might be discontiguous within a folio. Indeed, there might be *multiple* discontiguous data regions within a single folio. And to make matters more complex, multi-page folios mean we just don't know how many sub-folio regions we might have to iterate to find all these regions. All the corner cases between the conversions and rounding between filesystem block size, folio size and multi-page folio size combined with unaligned write offsets kept breaking my brain. However, if we convert the code to track the processed write regions by byte ranges instead of fileystem block or page cache index, we could simply use mapping_seek_hole_data() to find the start and end of each discrete data region within the range we needed to scan. SEEK_DATA finds the start of the cached data region, SEEK_HOLE finds the end of the region. These are byte based interfaces that understand partially uptodate folio regions, and so can iterate discrete sub-folio data regions directly. This largely solved the problem of discovering the dirty regions we need to keep the delalloc extent over. However, to use mapping_seek_hole_data() without needing to export it, we have to move all the delalloc extent cleanup to the iomap core and so now the iomap core can clean up delayed allocation extents in a safe, sane and filesystem neutral manner. With all this done, the original data corruption never occurs anymore, and we now have a generic mechanism for ensuring that page cache writes do not do the wrong thing when writeback and reclaim change the state of the physical extent and/or page cache contents whilst the write is in progress. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Darrick J. Wong <djwong@kernel.org> * tag 'xfs-iomap-stale-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: xfs: drop write error injection is unfixable, remove it xfs: use iomap_valid method to detect stale cached iomaps iomap: write iomap validity checks xfs: xfs_bmap_punch_delalloc_range() should take a byte range iomap: buffered write failure should not truncate the page cache xfs,iomap: move delalloc punching to iomap xfs: use byte ranges for write cleanup ranges xfs: punching delalloc extents on write failure is racy xfs: write page faults in iomap are not buffered writes
Diffstat (limited to 'fs/xfs/libxfs/xfs_bmap.c')
-rw-r--r--fs/xfs/libxfs/xfs_bmap.c6
1 files changed, 4 insertions, 2 deletions
diff --git a/fs/xfs/libxfs/xfs_bmap.c b/fs/xfs/libxfs/xfs_bmap.c
index 49d0d4ea63fc..56b9b7db38bb 100644
--- a/fs/xfs/libxfs/xfs_bmap.c
+++ b/fs/xfs/libxfs/xfs_bmap.c
@@ -4551,7 +4551,8 @@ xfs_bmapi_convert_delalloc(
* the extent. Just return the real extent at this offset.
*/
if (!isnullstartblock(bma.got.br_startblock)) {
- xfs_bmbt_to_iomap(ip, iomap, &bma.got, 0, flags);
+ xfs_bmbt_to_iomap(ip, iomap, &bma.got, 0, flags,
+ xfs_iomap_inode_sequence(ip, flags));
*seq = READ_ONCE(ifp->if_seq);
goto out_trans_cancel;
}
@@ -4599,7 +4600,8 @@ xfs_bmapi_convert_delalloc(
XFS_STATS_INC(mp, xs_xstrat_quick);
ASSERT(!isnullstartblock(bma.got.br_startblock));
- xfs_bmbt_to_iomap(ip, iomap, &bma.got, 0, flags);
+ xfs_bmbt_to_iomap(ip, iomap, &bma.got, 0, flags,
+ xfs_iomap_inode_sequence(ip, flags));
*seq = READ_ONCE(ifp->if_seq);
if (whichfork == XFS_COW_FORK)