summaryrefslogtreecommitdiff
path: root/fs
diff options
context:
space:
mode:
authorDarrick J. Wong <djwong@kernel.org>2021-09-01 10:40:21 -0700
committerDarrick J. Wong <djwong@kernel.org>2021-10-22 16:40:34 -0700
commit6030625a0c1fb86a8848d87581cc83e39f9df16a (patch)
treeb3f7e6212faa1269ad70e9c6f212062453c204b6 /fs
parent2a870807ca4d47b2947403a27857536c7ad44313 (diff)
xfs: create a big array data structure
Create a simple 'big array' data structure for storage of fixed-size metadata records that will be used to reconstruct a btree index. For repair operations, the most important operations are append, iterate, and sort. Earlier implementations of the big array used linked lists and suffered from severe problems -- pinning all records in kernel memory was not a good idea and frequently lead to OOM situations; random access was very inefficient; and record overhead for the lists was unacceptably high at 40-60%. Therefore, the big memory array relies on the 'xfile' abstraction, which creates a memfd file and stores the records in page cache pages. Since the memfd is created in tmpfs, the memory pages can be pushed out to disk if necessary and we have a built-in usage limit of 50% of physical memory. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Diffstat (limited to 'fs')
-rw-r--r--fs/xfs/Kconfig1
-rw-r--r--fs/xfs/Makefile2
-rw-r--r--fs/xfs/scrub/trace.c4
-rw-r--r--fs/xfs/scrub/trace.h121
-rw-r--r--fs/xfs/scrub/xfarray.c665
-rw-r--r--fs/xfs/scrub/xfarray.h49
-rw-r--r--fs/xfs/scrub/xfile.c314
-rw-r--r--fs/xfs/scrub/xfile.h56
8 files changed, 1211 insertions, 1 deletions
diff --git a/fs/xfs/Kconfig b/fs/xfs/Kconfig
index 9fac5ea8d0e4..7f12b40146b3 100644
--- a/fs/xfs/Kconfig
+++ b/fs/xfs/Kconfig
@@ -97,6 +97,7 @@ config XFS_ONLINE_SCRUB
bool "XFS online metadata check support"
default n
depends on XFS_FS
+ depends on TMPFS && SHMEM
help
If you say Y here you will be able to check metadata on a
mounted XFS filesystem. This feature is intended to reduce
diff --git a/fs/xfs/Makefile b/fs/xfs/Makefile
index 04611a1068b4..52713c796a0d 100644
--- a/fs/xfs/Makefile
+++ b/fs/xfs/Makefile
@@ -152,6 +152,8 @@ xfs-y += $(addprefix scrub/, \
rmap.o \
scrub.o \
symlink.o \
+ xfarray.o \
+ xfile.o \
)
xfs-$(CONFIG_XFS_RT) += scrub/rtbitmap.o
diff --git a/fs/xfs/scrub/trace.c b/fs/xfs/scrub/trace.c
index c0ef53fe6611..cd9b4790aff9 100644
--- a/fs/xfs/scrub/trace.c
+++ b/fs/xfs/scrub/trace.c
@@ -12,8 +12,10 @@
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
-#include "scrub/scrub.h"
#include "xfs_ag.h"
+#include "scrub/scrub.h"
+#include "scrub/xfile.h"
+#include "scrub/xfarray.h"
/* Figure out which block the btree cursor was pointing to. */
static inline xfs_fsblock_t
diff --git a/fs/xfs/scrub/trace.h b/fs/xfs/scrub/trace.h
index e59a065921fe..17a008407c1d 100644
--- a/fs/xfs/scrub/trace.h
+++ b/fs/xfs/scrub/trace.h
@@ -16,6 +16,9 @@
#include <linux/tracepoint.h>
#include "xfs_bit.h"
+struct xfile;
+struct xfarray;
+
/*
* ftrace's __print_symbolic requires that all enum values be wrapped in the
* TRACE_DEFINE_ENUM macro so that the enum value can be encoded in the ftrace
@@ -676,6 +679,124 @@ TRACE_EVENT(xchk_fscounters_frextents_within_range,
__entry->curr_value)
)
+TRACE_EVENT(xfile_create,
+ TP_PROTO(struct xfile *xf),
+ TP_ARGS(xf),
+ TP_STRUCT__entry(
+ __field(unsigned long, ino)
+ __array(char, pathname, 256)
+ ),
+ TP_fast_assign(
+ char pathname[257];
+ char *path;
+
+ __entry->ino = file_inode(xf->file)->i_ino;
+ memset(pathname, 0, sizeof(pathname));
+ path = file_path(xf->file, pathname, sizeof(pathname) - 1);
+ if (IS_ERR(path))
+ path = "(unknown)";
+ strncpy(__entry->pathname, path, sizeof(__entry->pathname));
+ ),
+ TP_printk("xfino 0x%lx path %s",
+ __entry->ino,
+ __entry->pathname)
+);
+
+TRACE_EVENT(xfile_destroy,
+ TP_PROTO(struct xfile *xf),
+ TP_ARGS(xf),
+ TP_STRUCT__entry(
+ __field(unsigned long, ino)
+ __field(unsigned long long, bytes)
+ __field(loff_t, size)
+ ),
+ TP_fast_assign(
+ struct xfile_stat statbuf;
+ int ret;
+
+ ret = xfile_stat(xf, &statbuf);
+ if (!ret) {
+ __entry->bytes = statbuf.bytes;
+ __entry->size = statbuf.size;
+ } else {
+ __entry->bytes = -1;
+ __entry->size = -1;
+ }
+ __entry->ino = file_inode(xf->file)->i_ino;
+ ),
+ TP_printk("xfino 0x%lx mem_bytes 0x%llx isize 0x%llx",
+ __entry->ino,
+ __entry->bytes,
+ __entry->size)
+);
+
+DECLARE_EVENT_CLASS(xfile_class,
+ TP_PROTO(struct xfile *xf, loff_t pos, unsigned long long bytecount),
+ TP_ARGS(xf, pos, bytecount),
+ TP_STRUCT__entry(
+ __field(unsigned long, ino)
+ __field(unsigned long long, bytes_used)
+ __field(loff_t, pos)
+ __field(loff_t, size)
+ __field(unsigned long long, bytecount)
+ ),
+ TP_fast_assign(
+ struct xfile_stat statbuf;
+ int ret;
+
+ ret = xfile_stat(xf, &statbuf);
+ if (!ret) {
+ __entry->bytes_used = statbuf.bytes;
+ __entry->size = statbuf.size;
+ } else {
+ __entry->bytes_used = -1;
+ __entry->size = -1;
+ }
+ __entry->ino = file_inode(xf->file)->i_ino;
+ __entry->pos = pos;
+ __entry->bytecount = bytecount;
+ ),
+ TP_printk("xfino 0x%lx mem_bytes 0x%llx pos 0x%llx bytecount 0x%llx isize 0x%llx",
+ __entry->ino,
+ __entry->bytes_used,
+ __entry->pos,
+ __entry->bytecount,
+ __entry->size)
+);
+#define DEFINE_XFILE_EVENT(name) \
+DEFINE_EVENT(xfile_class, name, \
+ TP_PROTO(struct xfile *xf, loff_t pos, unsigned long long bytecount), \
+ TP_ARGS(xf, pos, bytecount))
+DEFINE_XFILE_EVENT(xfile_pread);
+DEFINE_XFILE_EVENT(xfile_pwrite);
+DEFINE_XFILE_EVENT(xfile_seek_data);
+
+TRACE_EVENT(xfarray_sort_stats,
+ TP_PROTO(struct xfarray *xfa, unsigned int max_stack_depth,
+ unsigned int max_stack_used, int error),
+ TP_ARGS(xfa, max_stack_depth, max_stack_used, error),
+ TP_STRUCT__entry(
+ __field(uint64_t, nr)
+ __field(size_t, obj_size)
+ __field(unsigned int, max_stack_depth)
+ __field(unsigned int, max_stack_used)
+ __field(int, error)
+ ),
+ TP_fast_assign(
+ __entry->nr = xfa->nr;
+ __entry->obj_size = xfa->obj_size;
+ __entry->max_stack_depth = max_stack_depth;
+ __entry->max_stack_used = max_stack_used;
+ __entry->error = error;
+ ),
+ TP_printk("nr %llu objsz %zu max_depth %u max_used %u error %d",
+ __entry->nr,
+ __entry->obj_size,
+ __entry->max_stack_depth,
+ __entry->max_stack_used,
+ __entry->error)
+);
+
/* repair tracepoints */
#if IS_ENABLED(CONFIG_XFS_ONLINE_REPAIR)
diff --git a/fs/xfs/scrub/xfarray.c b/fs/xfs/scrub/xfarray.c
new file mode 100644
index 000000000000..3fa9f83fcc66
--- /dev/null
+++ b/fs/xfs/scrub/xfarray.c
@@ -0,0 +1,665 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (C) 2021 Oracle. All Rights Reserved.
+ * Author: Darrick J. Wong <djwong@kernel.org>
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "scrub/xfarray.h"
+#include "scrub/scrub.h"
+#include "scrub/trace.h"
+#include "scrub/xfile.h"
+
+/*
+ * XFS Fixed-Size Big Memory Array
+ * ===============================
+ *
+ * The file-backed memory array uses a memfd "file" to store large numbers of
+ * fixed-size records in memory that can be paged out. This puts less stress
+ * on the memory reclaim algorithms because memfd file pages are not pinned and
+ * can be paged out; however, array access is less direct than would be in a
+ * regular memory array. Access to the array is performed via indexed get and
+ * put methods, and an append method is provided for convenience. Array
+ * elements can be set to all zeroes, which means that the entry is NULL and
+ * will be skipped during iteration.
+ */
+
+/*
+ * Pointer to temp space. Because we can't access the memfd data directly, we
+ * allocate a small amount of memory on the end of the xfbma to buffer array
+ * items when we need space to store values temporarily.
+ */
+#define XFBMA_MAX_TEMP (2)
+static inline void *
+xfarray_temp(
+ struct xfarray *array,
+ unsigned int idx)
+{
+ ASSERT(idx < XFBMA_MAX_TEMP);
+
+ return ((char *)(array + 1)) + (idx * array->obj_size);
+}
+
+/* Compute array index given an xfile offset. */
+static uint64_t
+xfarray_index(
+ struct xfarray *array,
+ loff_t off)
+{
+ return div_u64(off, array->obj_size);
+}
+
+/* Compute xfile offset of array element. */
+static inline loff_t xfarray_offset(struct xfarray *array, uint64_t idx)
+{
+ return idx * array->obj_size;
+}
+
+/*
+ * Initialize a big memory array. Array records cannot be larger than a
+ * page, and the array cannot span more bytes than the page cache supports.
+ */
+struct xfarray *
+xfarray_create(
+ const char *description,
+ size_t obj_size)
+{
+ struct xfarray *array;
+ struct xfile *xfile;
+ int error;
+
+ ASSERT(obj_size < PAGE_SIZE);
+
+ xfile = xfile_create(description, 0);
+ if (IS_ERR(xfile))
+ return ERR_CAST(xfile);
+
+ error = -ENOMEM;
+ array = kmem_alloc(sizeof(struct xfarray) + (XFBMA_MAX_TEMP * obj_size),
+ KM_NOFS | KM_MAYFAIL);
+ if (!array)
+ goto out_xfile;
+
+ array->xfile = xfile;
+ array->obj_size = obj_size;
+ array->nr = 0;
+ array->max_nr = xfarray_index(array, MAX_LFS_FILESIZE);
+ return array;
+out_xfile:
+ xfile_destroy(xfile);
+ return ERR_PTR(error);
+}
+
+/* Destroy the array. */
+void
+xfarray_destroy(
+ struct xfarray *array)
+{
+ xfile_destroy(array->xfile);
+ kmem_free(array);
+}
+
+/* Load an element from the array. */
+int
+xfarray_load(
+ struct xfarray *array,
+ uint64_t idx,
+ void *ptr)
+{
+ if (idx >= array->nr)
+ return -ENODATA;
+
+ return xfile_obj_load(array->xfile, ptr, array->obj_size,
+ xfarray_offset(array, idx));
+}
+
+/* Store an element in the array. */
+int
+xfarray_store(
+ struct xfarray *array,
+ uint64_t idx,
+ void *ptr)
+{
+ int ret;
+
+ if (idx >= array->max_nr)
+ return -EFBIG;
+
+ ret = xfile_obj_store(array->xfile, ptr, array->obj_size,
+ xfarray_offset(array, idx));
+ if (ret)
+ return ret;
+
+ array->nr = max(array->nr, idx + 1);
+ return 0;
+}
+
+/* Is this array element NULL? */
+bool
+xfarray_is_null(
+ struct xfarray *array,
+ void *ptr)
+{
+ return !memchr_inv(ptr, 0, array->obj_size);
+}
+
+/* Store an element anywhere in the array that isn't NULL. */
+int
+xfarray_store_anywhere(
+ struct xfarray *array,
+ void *ptr)
+{
+ void *temp = xfarray_temp(array, 0);
+ uint64_t i;
+ int error;
+
+ /* Find a null slot to put it in. */
+ for (i = 0; i < array->nr; i++) {
+ error = xfarray_load(array, i, temp);
+ if (error || !xfarray_is_null(array, temp))
+ continue;
+ return xfarray_store(array, i, ptr);
+ }
+
+ /* No null slots, just dump it on the end. */
+ return xfarray_append(array, ptr);
+}
+
+/* NULL an element in the array. */
+int
+xfarray_nullify(
+ struct xfarray *array,
+ uint64_t idx)
+{
+ void *temp = xfarray_temp(array, 0);
+
+ memset(temp, 0, array->obj_size);
+ return xfarray_store(array, idx, temp);
+}
+
+/* Return length of array. */
+uint64_t
+xfarray_length(
+ struct xfarray *array)
+{
+ return array->nr;
+}
+
+/*
+ * Select the median value from a[lo], a[mid], and a[hi]. Put the median in
+ * a[lo], the lowest in a[lo], and the highest in a[hi]. Using the median of
+ * the three reduces the chances that we pick the worst case pivot value, since
+ * it's likely that our array values are nearly sorted.
+ */
+STATIC int
+xfarray_qsort_pivot(
+ struct xfarray *array,
+ xfarray_cmp_fn cmp_fn,
+ uint64_t lo,
+ uint64_t mid,
+ uint64_t hi)
+{
+ void *a = xfarray_temp(array, 0);
+ void *b = xfarray_temp(array, 1);
+ int error;
+
+ /* if a[mid] < a[lo], swap a[mid] and a[lo]. */
+ error = xfarray_load(array, mid, a);
+ if (error)
+ return error;
+ error = xfarray_load(array, lo, b);
+ if (error)
+ return error;
+ if (cmp_fn(a, b) < 0) {
+ error = xfarray_store(array, lo, a);
+ if (error)
+ return error;
+ error = xfarray_store(array, mid, b);
+ if (error)
+ return error;
+ }
+
+ /* if a[hi] < a[mid], swap a[mid] and a[hi]. */
+ error = xfarray_load(array, hi, a);
+ if (error)
+ return error;
+ error = xfarray_load(array, mid, b);
+ if (error)
+ return error;
+ if (cmp_fn(a, b) < 0) {
+ error = xfarray_store(array, mid, a);
+ if (error)
+ return error;
+ error = xfarray_store(array, hi, b);
+ if (error)
+ return error;
+ } else {
+ goto move_front;
+ }
+
+ /* if a[mid] < a[lo], swap a[mid] and a[lo]. */
+ error = xfarray_load(array, mid, a);
+ if (error)
+ return error;
+ error = xfarray_load(array, lo, b);
+ if (error)
+ return error;
+ if (cmp_fn(a, b) < 0) {
+ error = xfarray_store(array, lo, a);
+ if (error)
+ return error;
+ error = xfarray_store(array, mid, b);
+ if (error)
+ return error;
+ }
+move_front:
+ /* move our selected pivot to a[lo] */
+ error = xfarray_load(array, lo, b);
+ if (error)
+ return error;
+ error = xfarray_load(array, mid, a);
+ if (error)
+ return error;
+ error = xfarray_store(array, mid, b);
+ if (error)
+ return error;
+ return xfarray_store(array, lo, a);
+}
+
+/*
+ * Perform an insertion sort on a subset of the array.
+ * Though insertion sort is an O(n^2) algorithm, for small set sizes it's
+ * faster than quicksort's stack machine, so we let it take over for that.
+ */
+STATIC int
+xfarray_isort(
+ struct xfarray *array,
+ xfarray_cmp_fn cmp_fn,
+ uint64_t start,
+ uint64_t end)
+{
+ void *a = xfarray_temp(array, 0);
+ void *b = xfarray_temp(array, 1);
+ uint64_t tmp;
+ uint64_t i;
+ uint64_t run;
+ int error;
+
+ /*
+ * Move the smallest element in a[start..end] to a[start]. This
+ * simplifies the loop control logic below.
+ */
+ tmp = start;
+ error = xfarray_load(array, tmp, b);
+ if (error)
+ return error;
+ for (run = start + 1; run <= end; run++) {
+ /* if a[run] < a[tmp], tmp = run */
+ error = xfarray_load(array, run, a);
+ if (error)
+ return error;
+ if (cmp_fn(a, b) < 0) {
+ tmp = run;
+ memcpy(b, a, array->obj_size);
+ }
+ }
+
+ /*
+ * The smallest element is a[tmp]; swap with a[start] if tmp != start.
+ * Recall that a[tmp] is already in *b.
+ */
+ if (tmp != start) {
+ error = xfarray_load(array, start, a);
+ if (error)
+ return error;
+ error = xfarray_store(array, tmp, a);
+ if (error)
+ return error;
+ error = xfarray_store(array, start, b);
+ if (error)
+ return error;
+ }
+
+ /*
+ * Perform an insertion sort on a[start+1..end]. We already made sure
+ * that the smallest value in the original range is now in a[start],
+ * so the inner loop should never underflow.
+ *
+ * For each a[start+2..end], make sure it's in the correct position
+ * with respect to the elements that came before it.
+ */
+ for (run = start + 2; run <= end; run++) {
+ error = xfarray_load(array, run, a);
+ if (error)
+ return error;
+
+ /*
+ * Find the correct place for a[run] by walking leftwards
+ * towards the start of the range until a[tmp] is no longer
+ * greater than a[run].
+ */
+ tmp = run - 1;
+ error = xfarray_load(array, tmp, b);
+ if (error)
+ return error;
+ while (cmp_fn(a, b) < 0) {
+ tmp--;
+ error = xfarray_load(array, tmp, b);
+ if (error)
+ return error;
+ }
+ tmp++;
+
+ /*
+ * If tmp != run, then a[tmp..run-1] are all less than a[run],
+ * so right barrel roll a[tmp..run] to get this range in
+ * sorted order.
+ */
+ if (tmp == run)
+ continue;
+
+ for (i = run; i >= tmp; i--) {
+ error = xfarray_load(array, i - 1, b);
+ if (error)
+ return error;
+ error = xfarray_store(array, i, b);
+ if (error)
+ return error;
+ }
+ error = xfarray_store(array, tmp, a);
+ if (error)
+ return error;
+ }
+
+ return 0;
+}
+
+/*
+ * Sort the array elements via quicksort. This implementation incorporates
+ * four optimizations discussed in Sedgewick:
+ *
+ * 1. Use an explicit stack of array indicies to store the next array
+ * partition to sort. This helps us to avoid recursion in the call stack,
+ * which is particularly expensive in the kernel.
+ *
+ * 2. Choose the pivot element using a median-of-three decision tree. This
+ * reduces the probability of selecting a bad pivot value which causes
+ * worst case behavior (i.e. partition sizes of 1). Chance are fairly good
+ * that the list is nearly sorted, so this is important.
+ *
+ * 3. The smaller of the two sub-partitions is pushed onto the stack to start
+ * the next level of recursion, and the larger sub-partition replaces the
+ * current stack frame. This guarantees that we won't need more than
+ * log2(nr) stack space.
+ *
+ * 4. Use insertion sort for small sets since since insertion sort is faster
+ * for small, mostly sorted array segments. In the author's experience,
+ * substituting insertion sort for arrays smaller than 4 elements yields
+ * a ~10% reduction in runtime.
+ */
+
+/*
+ * Due to the use of signed indices, we can only support up to 2^63 records.
+ * Files can only grow to 2^63 bytes, so this is not much of a limitation.
+ */
+#define QSORT_MAX_RECS (1ULL << 63)
+
+/*
+ * For array subsets smaller than 4 elements, it's slightly faster to use
+ * insertion sort than quicksort's stack machine.
+ */
+#define ISORT_THRESHOLD (4)
+int
+xfarray_sort(
+ struct xfarray *array,
+ xfarray_cmp_fn cmp_fn)
+{
+ int64_t *stack;
+ int64_t *beg;
+ int64_t *end;
+ void *pivot = xfarray_temp(array, 0);
+ void *temp = xfarray_temp(array, 1);
+ int64_t lo, mid, hi;
+ const int max_stack_depth = ilog2(array->nr) + 1;
+ int stack_depth = 0;
+ int max_stack_used = 0;
+ int error = 0;
+
+ if (array->nr == 0)
+ return 0;
+ if (array->nr >= QSORT_MAX_RECS)
+ return -E2BIG;
+ if (array->nr <= ISORT_THRESHOLD)
+ return xfarray_isort(array, cmp_fn, 0, array->nr - 1);
+
+ /* Allocate our pointer stacks for sorting. */
+ stack = kmem_alloc(sizeof(int64_t) * 2 * max_stack_depth,
+ KM_NOFS | KM_MAYFAIL);
+ if (!stack)
+ return -ENOMEM;
+ beg = stack;
+ end = &stack[max_stack_depth];
+
+ beg[0] = 0;
+ end[0] = array->nr;
+ while (stack_depth >= 0) {
+ lo = beg[stack_depth];
+ hi = end[stack_depth] - 1;
+
+ /* Nothing left in this partition to sort; pop stack. */
+ if (lo >= hi) {
+ stack_depth--;
+ continue;
+ }
+
+ /* Small enough for insertion sort? */
+ if (hi - lo <= ISORT_THRESHOLD) {
+ error = xfarray_isort(array, cmp_fn, lo, hi);
+ if (error)
+ goto out_free;
+ stack_depth--;
+ continue;
+ }
+
+ /* Pick a pivot, move it to a[lo] and stash it. */
+ mid = lo + ((hi - lo) / 2);
+ error = xfarray_qsort_pivot(array, cmp_fn, lo, mid, hi);
+ if (error)
+ goto out_free;
+
+ error = xfarray_load(array, lo, pivot);
+ if (error)
+ goto out_free;
+
+ /*
+ * Rearrange a[lo..hi] such that everything smaller than the
+ * pivot is on the left side of the range and everything larger
+ * than the pivot is on the right side of the range.
+ */
+ while (lo < hi) {
+ /*
+ * Decrement hi until it finds an a[hi] less than the
+ * pivot value.
+ */
+ error = xfarray_load(array, hi, temp);
+ if (error)
+ goto out_free;
+ while (cmp_fn(temp, pivot) >= 0 && lo < hi) {
+ hi--;
+ error = xfarray_load(array, hi, temp);
+ if (error)
+ goto out_free;
+ }
+
+ /* Copy that item (a[hi]) to a[lo]. */
+ if (lo < hi) {
+ error = xfarray_store(array, lo++, temp);
+ if (error)
+ goto out_free;
+ }
+
+ /*
+ * Increment lo until it finds an a[lo] greater than
+ * the pivot value.
+ */
+ error = xfarray_load(array, lo, temp);
+ if (error)
+ goto out_free;
+ while (cmp_fn(temp, pivot) <= 0 && lo < hi) {
+ lo++;
+ error = xfarray_load(array, lo, temp);
+ if (error)
+ goto out_free;
+ }
+
+ /* Copy that item (a[lo]) to a[hi]. */
+ if (lo < hi) {
+ error = xfarray_store(array, hi--, temp);
+ if (error)
+ goto out_free;
+ }
+ }
+
+ /*
+ * Put our pivot value in the correct place at a[lo]. All
+ * values between a[beg[i]] and a[lo - 1] should be less than
+ * the pivot; and all values between a[lo + 1] and a[end[i]-1]
+ * should be greater than the pivot.
+ */
+ error = xfarray_store(array, lo, pivot);
+ if (error)
+ goto out_free;
+
+ /*
+ * Set up the pointers for the next iteration. We push onto
+ * the stack all of the unsorted values between a[lo + 1] and
+ * a[end[i]], and we tweak the current stack frame to point to
+ * the unsorted values between a[beg[i]] and a[lo] so that
+ * those values will be sorted when we pop the stack.
+ */
+ beg[stack_depth + 1] = lo + 1;
+ end[stack_depth + 1] = end[stack_depth];
+ end[stack_depth++] = lo;
+
+ /* Check our stack usage. */
+ max_stack_used = max(max_stack_used, stack_depth);
+ if (stack_depth >= max_stack_depth) {
+ ASSERT(0);
+ error = -EFSCORRUPTED;
+ goto out_free;
+ }
+
+ /*
+ * Always start with the smaller of the two partitions to keep
+ * the amount of recursion in check.
+ */
+ if (end[stack_depth] - beg[stack_depth] >
+ end[stack_depth - 1] - beg[stack_depth - 1]) {
+ swap(beg[stack_depth], beg[stack_depth - 1]);
+ swap(end[stack_depth], end[stack_depth - 1]);
+ }
+ }
+
+out_free:
+ kfree(stack);
+ trace_xfarray_sort_stats(array, max_stack_depth, max_stack_used,
+ error);
+ return error;
+}
+
+/*
+ * Decide which array item we're going to read as part of an _iter_get.
+ * @cur is the array index, and @pos is the file offset of that array index in
+ * the backing xfile. Returns ENODATA if we reach the end of the records.
+ *
+ * Reading from a hole in a sparse xfile causes page instantiation, so for
+ * iterating a (possibly sparse) array we need to figure out if the cursor is
+ * pointing at a totally uninitialized hole and move the cursor up if
+ * necessary.
+ */
+static inline int
+xfarray_find_data(
+ struct xfarray *array,
+ uint64_t *cur,
+ loff_t *pos)
+{
+ unsigned int pgoff = offset_in_page(*pos);
+ loff_t end_pos = *pos + array->obj_size - 1;
+ loff_t new_pos;
+
+ /*
+ * If the current array record is not adjacent to a page boundary, we
+ * are in the middle of the page. We do not need to move the cursor.
+ */
+ if (pgoff != 0 && pgoff + array->obj_size - 1 < PAGE_SIZE)
+ return 0;
+
+ /*
+ * Call SEEK_DATA on the last byte in the record we're about to read.
+ * If the record ends at (or crosses) the end of a page then we know
+ * that the first byte of the record is backed by pages and don't need
+ * to query it. If instead the record begins at the start of the page
+ * then we know that querying the last byte is just as good as querying
+ * the first byte, since records cannot be larger than a page.
+ *
+ * If the call returns the same file offset, we know this record is
+ * backed by real pages. We do not need to move the cursor.
+ */
+ new_pos = xfile_seek_data(array->xfile, end_pos);
+ if (new_pos == -ENXIO)
+ return -ENODATA;
+ if (new_pos < 0)
+ return new_pos;
+ if (new_pos == end_pos)
+ return 0;
+
+ /*
+ * Otherwise, SEEK_DATA told us how far up to move the file pointer to
+ * find more data. Move the array index to the first record past the
+ * byte offset we were given.
+ */
+ new_pos = roundup_64(new_pos, array->obj_size);
+ *cur = xfarray_index(array, new_pos);
+ *pos = xfarray_offset(array, *cur);
+ return 0;
+}
+
+/*
+ * Starting at *idx, fetch the next non-null array entry and advance the index
+ * to set up the next _iter_get call. Returns ENODATA if we reach the end of
+ * the array.
+ */
+int
+xfarray_load_next(
+ struct xfarray *array,
+ uint64_t *idx,
+ void *rec)
+{
+ uint64_t cur = *idx;
+ loff_t off = xfarray_offset(array, cur);
+ int error;
+
+ do {
+ if (cur >= array->nr)
+ return -ENODATA;
+
+ /*
+ * Ask the backing store for the location of next possible
+ * written record, then retrieve that record.
+ */
+ error = xfarray_find_data(array, &cur, &off);
+ if (error)
+ return error;
+ error = xfarray_load(array, cur, rec);
+ if (error)
+ return error;
+
+ cur++;
+ off += array->obj_size;
+ } while (xfarray_is_null(array, rec));
+
+ *idx = cur;
+ return 0;
+}
diff --git a/fs/xfs/scrub/xfarray.h b/fs/xfs/scrub/xfarray.h
new file mode 100644
index 000000000000..928aa6414845
--- /dev/null
+++ b/fs/xfs/scrub/xfarray.h
@@ -0,0 +1,49 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Copyright (C) 2021 Oracle. All Rights Reserved.
+ * Author: Darrick J. Wong <djwong@kernel.org>
+ */
+#ifndef __XFS_SCRUB_XFARRAY_H__
+#define __XFS_SCRUB_XFARRAY_H__
+
+struct xfarray {
+ /* Underlying file that backs the array. */
+ struct xfile *xfile;
+
+ /* Number of array elements. */
+ uint64_t nr;
+
+ /* Maximum possible array size. */
+ uint64_t max_nr;
+
+ /* Size of an array element. */
+ size_t obj_size;
+};
+
+struct xfarray *xfarray_create(const char *descr, size_t obj_size);
+void xfarray_destroy(struct xfarray *array);
+int xfarray_load(struct xfarray *array, uint64_t idx, void *ptr);
+int xfarray_store(struct xfarray *array, uint64_t idx, void *ptr);
+int xfarray_store_anywhere(struct xfarray *array, void *ptr);
+bool xfarray_is_null(struct xfarray *array, void *ptr);
+int xfarray_nullify(struct xfarray *array, uint64_t idx);
+
+/* Append an element to the array. */
+static inline int xfarray_append(struct xfarray *array, void *ptr)
+{
+ return xfarray_store(array, array->nr, ptr);
+}
+
+uint64_t xfarray_length(struct xfarray *array);
+int xfarray_load_next(struct xfarray *array, uint64_t *idx, void *rec);
+
+typedef int (*xfarray_cmp_fn)(const void *a, const void *b);
+
+int xfarray_sort(struct xfarray *array, xfarray_cmp_fn cmp_fn);
+
+#define foreach_xfarray_item(array, i, rec) \
+ for ((i) = 0; (i) < xfarray_length((array)); (i)++) \
+ if (xfarray_load((array), (i), &(rec)) == 0 && \
+ !xfarray_is_null((array), &(rec)))
+
+#endif /* __XFS_SCRUB_XFARRAY_H__ */
diff --git a/fs/xfs/scrub/xfile.c b/fs/xfs/scrub/xfile.c
new file mode 100644
index 000000000000..1a0ecf165a9c
--- /dev/null
+++ b/fs/xfs/scrub/xfile.c
@@ -0,0 +1,314 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * Copyright (C) 2021 Oracle. All Rights Reserved.
+ * Author: Darrick J. Wong <djwong@kernel.org>
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "scrub/xfarray.h"
+#include "scrub/scrub.h"
+#include "scrub/trace.h"
+#include "scrub/xfile.h"
+#include <linux/shmem_fs.h>
+
+/*
+ * Swappable Temporary Memory
+ * ==========================
+ *
+ * Online checking sometimes needs to be able to stage a large amount of data
+ * in memory. This information might not fit in the available memory and it
+ * doesn't all need to be accessible at all times. In other words, we want an
+ * indexed data buffer to store data that can be paged out.
+ *
+ * When CONFIG_TMPFS=y, shmemfs is enough of a filesystem to meet those
+ * requirements. Therefore, the xfile mechanism uses an unlinked shmem file to
+ * store our staging data. This file is not installed in the file descriptor
+ * table so that user programs cannot access the data, which means that the
+ * xfile must be freed with xfile_destroy.
+ *
+ * xfiles assume that the caller will handle all required concurrency
+ * management; standard vfs locks (freezer and inode) are not taken. Reads
+ * and writes are satisfied directly from the page cache.
+ *
+ * NOTE: The current shmemfs implementation has a quirk that in-kernel reads
+ * of a hole cause a page to be mapped into the file. If you are going to
+ * create a sparse xfile, please be careful about reading from uninitialized
+ * parts of the file. These pages are !Uptodate and will eventually be
+ * reclaimed if not written, but in the short term this boosts memory
+ * consumption.
+ */
+
+/*
+ * xfiles must not be exposed to userspace and require upper layers to
+ * coordinate access to the one handle returned by the constructor, so
+ * establish a separate lock class for xfiles to avoid confusing lockdep.
+ */
+static struct lock_class_key xfile_i_mutex_key;
+
+/*
+ * Create an xfile of the given size. The description will be used in the
+ * trace output.
+ */
+struct xfile *
+xfile_create(
+ const char *description,
+ loff_t size)
+{
+ struct xfile *xf;
+
+ xf = kmem_alloc(sizeof(struct xfile), KM_MAYFAIL);
+ if (!xf)
+ return ERR_PTR(-ENOMEM);
+
+ xf->file = shmem_file_setup(description, size, 0);
+ if (!xf->file) {
+ kmem_free(xf);
+ return ERR_PTR(-ENOMEM);
+ }
+ if (IS_ERR(xf->file)) {
+ int ret = PTR_ERR(xf->file);
+
+ kmem_free(xf);
+ return ERR_PTR(ret);
+ }
+
+ /*
+ * We want a large sparse file that we can pread, pwrite, and seek.
+ * xfile users are responsible for keeping the xfile hidden away from
+ * all other callers, so we skip timestamp updates and security checks.
+ */
+ xf->file->f_mode |= FMODE_PREAD | FMODE_PWRITE | FMODE_NOCMTIME |
+ FMODE_LSEEK;
+ xf->file->f_flags |= O_RDWR | O_LARGEFILE | O_NOATIME;
+ xf->file->f_inode->i_flags |= S_PRIVATE | S_NOCMTIME | S_NOATIME;
+
+ lockdep_set_class(&file_inode(xf->file)->i_rwsem, &xfile_i_mutex_key);
+
+ trace_xfile_create(xf);
+ return xf;
+}
+
+/* Close the file and release all resources. */
+void
+xfile_destroy(
+ struct xfile *xf)
+{
+ struct inode *inode = file_inode(xf->file);
+
+ trace_xfile_destroy(xf);
+
+ lockdep_set_class(&inode->i_rwsem, &inode->i_sb->s_type->i_mutex_key);
+ fput(xf->file);
+ kmem_free(xf);
+}
+
+/*
+ * Read a memory object directly from the xfile's page cache. Unlike regular
+ * pread, we return -E2BIG and -EFBIG for reads that are too large or at too
+ * high an offset, instead of truncating the read. Otherwise, we return
+ * bytes read or an error code, like regular pread.
+ */
+ssize_t
+xfile_pread(
+ struct xfile *xf,
+ void *buf,
+ size_t count,
+ loff_t pos)
+{
+ struct inode *inode = file_inode(xf->file);
+ struct address_space *mapping = inode->i_mapping;
+ struct page *page = NULL;
+ ssize_t read = 0;
+ unsigned int pflags;
+ int error = 0;
+
+ if (count > MAX_RW_COUNT)
+ return -E2BIG;
+ if (inode->i_sb->s_maxbytes - pos < count)
+ return -EFBIG;
+
+ trace_xfile_pread(xf, pos, count);
+
+ pflags = memalloc_nofs_save();
+ while (count > 0) {
+ void *p, *kaddr;
+ unsigned int len;
+
+ len = min_t(ssize_t, count, PAGE_SIZE - offset_in_page(pos));
+
+ /*
+ * In-kernel reads of a shmem file cause it to allocate a page
+ * if the mapping shows a hole. Therefore, if we hit ENOMEM
+ * we can continue by zeroing the caller's buffer.
+ */
+ page = shmem_read_mapping_page_gfp(mapping, pos >> PAGE_SHIFT,
+ __GFP_NOWARN);
+ if (IS_ERR(page)) {
+ error = PTR_ERR(page);
+ if (error != -ENOMEM)
+ break;
+ page = NULL;
+ }
+
+ if (!page) {
+ memset(buf, 0, len);
+ goto advance;
+ }
+
+ if (PageHWPoison(page)) {
+ put_page(page);
+ error = -EIO;
+ break;
+ }
+
+ if (PageUptodate(page)) {
+ /*
+ * xfile pages must never be mapped into userspace, so
+ * we skip the dcache flush.
+ */
+ kaddr = kmap_local_page(page);
+ p = kaddr + offset_in_page(pos);
+ memcpy(buf, p, len);
+ kunmap_local(kaddr);
+ } else {
+ memset(buf, 0, len);
+ }
+ put_page(page);
+
+advance:
+ count -= len;
+ pos += len;
+ buf += len;
+ read += len;
+ }
+ memalloc_nofs_restore(pflags);
+
+ if (read > 0)
+ return read;
+ return error;
+}
+
+/*
+ * Write a memory object directly to the xfile's page cache. Unlike regular
+ * pwrite, we return -E2BIG and -EFBIG for writes that are too large or at too
+ * high an offset, instead of truncating the write. Otherwise, we return
+ * bytes written or an error code, like regular pwrite.
+ */
+ssize_t
+xfile_pwrite(
+ struct xfile *xf,
+ void *buf,
+ size_t count,
+ loff_t pos)
+{
+ struct inode *inode = file_inode(xf->file);
+ struct address_space *mapping = inode->i_mapping;
+ struct page *page = NULL;
+ ssize_t written = 0;
+ unsigned int pflags;
+ int error = 0;
+
+ if (count > MAX_RW_COUNT)
+ return -E2BIG;
+ if (inode->i_sb->s_maxbytes - pos < count)
+ return -EFBIG;
+
+ trace_xfile_pwrite(xf, pos, count);
+
+ pflags = memalloc_nofs_save();
+ while (count > 0) {
+ void *fsdata;
+ void *p, *kaddr;
+ unsigned int len;
+ int ret;
+
+ len = min_t(ssize_t, count, PAGE_SIZE - offset_in_page(pos));
+
+ /*
+ * We call pagecache_write_begin directly here to avoid all
+ * the freezer protection lock-taking that happens in the
+ * normal path. shmem doesn't support fs freeze, but lockdep
+ * doesn't know that and will trip over that.
+ */
+ error = pagecache_write_begin(NULL, mapping, pos, len,
+ AOP_FLAG_NOFS, &page, &fsdata);
+ if (error)
+ break;
+
+ if (PageHWPoison(page)) {
+ error = pagecache_write_end(NULL, mapping, pos, len, 0,
+ page, fsdata);
+ if (error >= 0)
+ error = -EIO;
+ break;
+ }
+
+ /*
+ * xfile pages must never be mapped into userspace, so we skip
+ * the dcache flush. If the page is not uptodate, zero it
+ * before writing data.
+ */
+ kaddr = kmap_local_page(page);
+ if (!PageUptodate(page)) {
+ memset(kaddr, 0, PAGE_SIZE);
+ SetPageUptodate(page);
+ }
+ p = kaddr + offset_in_page(pos);
+ memcpy(p, buf, len);
+ kunmap_local(kaddr);
+
+ ret = pagecache_write_end(NULL, mapping, pos, len, len, page,
+ fsdata);
+ if (ret < 0) {
+ error = ret;
+ break;
+ }
+
+ written += ret;
+ if (ret != len)
+ break;
+
+ count -= ret;
+ pos += ret;
+ buf += ret;
+ }
+ memalloc_nofs_restore(pflags);
+
+ if (written > 0)
+ return written;
+ return error;
+}
+
+/* Find the next written area in the xfile data for a given offset. */
+loff_t
+xfile_seek_data(
+ struct xfile *xf,
+ loff_t pos)
+{
+ loff_t ret;
+
+ ret = vfs_llseek(xf->file, pos, SEEK_DATA);
+ trace_xfile_seek_data(xf, pos, ret);
+ return ret;
+}
+
+/* Query stat information for an xfile. */
+int
+xfile_stat(
+ struct xfile *xf,
+ struct xfile_stat *statbuf)
+{
+ struct kstat ks;
+ int error;
+
+ error = vfs_getattr_nosec(&xf->file->f_path, &ks,
+ STATX_SIZE | STATX_BLOCKS, AT_STATX_DONT_SYNC);
+ if (error)
+ return error;
+
+ statbuf->size = ks.size;
+ statbuf->bytes = ks.blocks << SECTOR_SHIFT;
+ return 0;
+}
diff --git a/fs/xfs/scrub/xfile.h b/fs/xfs/scrub/xfile.h
new file mode 100644
index 000000000000..09c826be29cb
--- /dev/null
+++ b/fs/xfs/scrub/xfile.h
@@ -0,0 +1,56 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Copyright (C) 2021 Oracle. All Rights Reserved.
+ * Author: Darrick J. Wong <djwong@kernel.org>
+ */
+#ifndef __XFS_SCRUB_XFILE_H__
+#define __XFS_SCRUB_XFILE_H__
+
+struct xfile {
+ struct file *file;
+};
+
+struct xfile *xfile_create(const char *description, loff_t size);
+void xfile_destroy(struct xfile *xf);
+
+ssize_t xfile_pread(struct xfile *xf, void *buf, size_t count, loff_t pos);
+ssize_t xfile_pwrite(struct xfile *xf, void *buf, size_t count, loff_t pos);
+
+/*
+ * Load an object. Since we're treating this file as "memory", any error or
+ * short IO is treated as a failure to allocate memory.
+ */
+static inline int
+xfile_obj_load(struct xfile *xf, void *buf, size_t count, loff_t pos)
+{
+ ssize_t ret = xfile_pread(xf, buf, count, pos);
+
+ if (ret < 0 || ret != count)
+ return -ENOMEM;
+ return 0;
+}
+
+/*
+ * Store an object. Since we're treating this file as "memory", any error or
+ * short IO is treated as a failure to allocate memory.
+ */
+static inline int
+xfile_obj_store(struct xfile *xf, void *buf, size_t count, loff_t pos)
+{
+ ssize_t ret = xfile_pwrite(xf, buf, count, pos);
+
+ if (ret < 0 || ret != count)
+ return -ENOMEM;
+ return 0;
+}
+
+loff_t xfile_seek_data(struct xfile *xf, loff_t pos);
+
+struct xfile_stat {
+ loff_t size;
+ unsigned long long bytes;
+};
+
+int xfile_stat(struct xfile *xf, struct xfile_stat *statbuf);
+
+#endif /* __XFS_SCRUB_XFILE_H__ */