diff options
32 files changed, 782 insertions, 128 deletions
diff --git a/Documentation/kprobes.txt b/Documentation/kprobes.txt new file mode 100644 index 000000000000..0541fe1de704 --- /dev/null +++ b/Documentation/kprobes.txt @@ -0,0 +1,588 @@ +Title : Kernel Probes (Kprobes) +Authors : Jim Keniston <jkenisto@us.ibm.com> + : Prasanna S Panchamukhi <prasanna@in.ibm.com> + +CONTENTS + +1. Concepts: Kprobes, Jprobes, Return Probes +2. Architectures Supported +3. Configuring Kprobes +4. API Reference +5. Kprobes Features and Limitations +6. Probe Overhead +7. TODO +8. Kprobes Example +9. Jprobes Example +10. Kretprobes Example + +1. Concepts: Kprobes, Jprobes, Return Probes + +Kprobes enables you to dynamically break into any kernel routine and +collect debugging and performance information non-disruptively. You +can trap at almost any kernel code address, specifying a handler +routine to be invoked when the breakpoint is hit. + +There are currently three types of probes: kprobes, jprobes, and +kretprobes (also called return probes). A kprobe can be inserted +on virtually any instruction in the kernel. A jprobe is inserted at +the entry to a kernel function, and provides convenient access to the +function's arguments. A return probe fires when a specified function +returns. + +In the typical case, Kprobes-based instrumentation is packaged as +a kernel module. The module's init function installs ("registers") +one or more probes, and the exit function unregisters them. A +registration function such as register_kprobe() specifies where +the probe is to be inserted and what handler is to be called when +the probe is hit. + +The next three subsections explain how the different types of +probes work. They explain certain things that you'll need to +know in order to make the best use of Kprobes -- e.g., the +difference between a pre_handler and a post_handler, and how +to use the maxactive and nmissed fields of a kretprobe. But +if you're in a hurry to start using Kprobes, you can skip ahead +to section 2. + +1.1 How Does a Kprobe Work? + +When a kprobe is registered, Kprobes makes a copy of the probed +instruction and replaces the first byte(s) of the probed instruction +with a breakpoint instruction (e.g., int3 on i386 and x86_64). + +When a CPU hits the breakpoint instruction, a trap occurs, the CPU's +registers are saved, and control passes to Kprobes via the +notifier_call_chain mechanism. Kprobes executes the "pre_handler" +associated with the kprobe, passing the handler the addresses of the +kprobe struct and the saved registers. + +Next, Kprobes single-steps its copy of the probed instruction. +(It would be simpler to single-step the actual instruction in place, +but then Kprobes would have to temporarily remove the breakpoint +instruction. This would open a small time window when another CPU +could sail right past the probepoint.) + +After the instruction is single-stepped, Kprobes executes the +"post_handler," if any, that is associated with the kprobe. +Execution then continues with the instruction following the probepoint. + +1.2 How Does a Jprobe Work? + +A jprobe is implemented using a kprobe that is placed on a function's +entry point. It employs a simple mirroring principle to allow +seamless access to the probed function's arguments. The jprobe +handler routine should have the same signature (arg list and return +type) as the function being probed, and must always end by calling +the Kprobes function jprobe_return(). + +Here's how it works. When the probe is hit, Kprobes makes a copy of +the saved registers and a generous portion of the stack (see below). +Kprobes then points the saved instruction pointer at the jprobe's +handler routine, and returns from the trap. As a result, control +passes to the handler, which is presented with the same register and +stack contents as the probed function. When it is done, the handler +calls jprobe_return(), which traps again to restore the original stack +contents and processor state and switch to the probed function. + +By convention, the callee owns its arguments, so gcc may produce code +that unexpectedly modifies that portion of the stack. This is why +Kprobes saves a copy of the stack and restores it after the jprobe +handler has run. Up to MAX_STACK_SIZE bytes are copied -- e.g., +64 bytes on i386. + +Note that the probed function's args may be passed on the stack +or in registers (e.g., for x86_64 or for an i386 fastcall function). +The jprobe will work in either case, so long as the handler's +prototype matches that of the probed function. + +1.3 How Does a Return Probe Work? + +When you call register_kretprobe(), Kprobes establishes a kprobe at +the entry to the function. When the probed function is called and this +probe is hit, Kprobes saves a copy of the return address, and replaces +the return address with the address of a "trampoline." The trampoline +is an arbitrary piece of code -- typically just a nop instruction. +At boot time, Kprobes registers a kprobe at the trampoline. + +When the probed function executes its return instruction, control +passes to the trampoline and that probe is hit. Kprobes' trampoline +handler calls the user-specified handler associated with the kretprobe, +then sets the saved instruction pointer to the saved return address, +and that's where execution resumes upon return from the trap. + +While the probed function is executing, its return address is +stored in an object of type kretprobe_instance. Before calling +register_kretprobe(), the user sets the maxactive field of the +kretprobe struct to specify how many instances of the specified +function can be probed simultaneously. register_kretprobe() +pre-allocates the indicated number of kretprobe_instance objects. + +For example, if the function is non-recursive and is called with a +spinlock held, maxactive = 1 should be enough. If the function is +non-recursive and can never relinquish the CPU (e.g., via a semaphore +or preemption), NR_CPUS should be enough. If maxactive <= 0, it is +set to a default value. If CONFIG_PREEMPT is enabled, the default +is max(10, 2*NR_CPUS). Otherwise, the default is NR_CPUS. + +It's not a disaster if you set maxactive too low; you'll just miss +some probes. In the kretprobe struct, the nmissed field is set to +zero when the return probe is registered, and is incremented every +time the probed function is entered but there is no kretprobe_instance +object available for establishing the return probe. + +2. Architectures Supported + +Kprobes, jprobes, and return probes are implemented on the following +architectures: + +- i386 +- x86_64 (AMD-64, E64MT) +- ppc64 +- ia64 (Support for probes on certain instruction types is still in progress.) +- sparc64 (Return probes not yet implemented.) + +3. Configuring Kprobes + +When configuring the kernel using make menuconfig/xconfig/oldconfig, +ensure that CONFIG_KPROBES is set to "y". Under "Kernel hacking", +look for "Kprobes". You may have to enable "Kernel debugging" +(CONFIG_DEBUG_KERNEL) before you can enable Kprobes. + +You may also want to ensure that CONFIG_KALLSYMS and perhaps even +CONFIG_KALLSYMS_ALL are set to "y", since kallsyms_lookup_name() +is a handy, version-independent way to find a function's address. + +If you need to insert a probe in the middle of a function, you may find +it useful to "Compile the kernel with debug info" (CONFIG_DEBUG_INFO), +so you can use "objdump -d -l vmlinux" to see the source-to-object +code mapping. + +4. API Reference + +The Kprobes API includes a "register" function and an "unregister" +function for each type of probe. Here are terse, mini-man-page +specifications for these functions and the associated probe handlers +that you'll write. See the latter half of this document for examples. + +4.1 register_kprobe + +#include <linux/kprobes.h> +int register_kprobe(struct kprobe *kp); + +Sets a breakpoint at the address kp->addr. When the breakpoint is +hit, Kprobes calls kp->pre_handler. After the probed instruction +is single-stepped, Kprobe calls kp->post_handler. If a fault +occurs during execution of kp->pre_handler or kp->post_handler, +or during single-stepping of the probed instruction, Kprobes calls +kp->fault_handler. Any or all handlers can be NULL. + +register_kprobe() returns 0 on success, or a negative errno otherwise. + +User's pre-handler (kp->pre_handler): +#include <linux/kprobes.h> +#include <linux/ptrace.h> +int pre_handler(struct kprobe *p, struct pt_regs *regs); + +Called with p pointing to the kprobe associated with the breakpoint, +and regs pointing to the struct containing the registers saved when +the breakpoint was hit. Return 0 here unless you're a Kprobes geek. + +User's post-handler (kp->post_handler): +#include <linux/kprobes.h> +#include <linux/ptrace.h> +void post_handler(struct kprobe *p, struct pt_regs *regs, + unsigned long flags); + +p and regs are as described for the pre_handler. flags always seems +to be zero. + +User's fault-handler (kp->fault_handler): +#include <linux/kprobes.h> +#include <linux/ptrace.h> +int fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr); + +p and regs are as described for the pre_handler. trapnr is the +architecture-specific trap number associated with the fault (e.g., +on i386, 13 for a general protection fault or 14 for a page fault). +Returns 1 if it successfully handled the exception. + +4.2 register_jprobe + +#include <linux/kprobes.h> +int register_jprobe(struct jprobe *jp) + +Sets a breakpoint at the address jp->kp.addr, which must be the address +of the first instruction of a function. When the breakpoint is hit, +Kprobes runs the handler whose address is jp->entry. + +The handler should have the same arg list and return type as the probed +function; and just before it returns, it must call jprobe_return(). +(The handler never actually returns, since jprobe_return() returns +control to Kprobes.) If the probed function is declared asmlinkage, +fastcall, or anything else that affects how args are passed, the +handler's declaration must match. + +register_jprobe() returns 0 on success, or a negative errno otherwise. + +4.3 register_kretprobe + +#include <linux/kprobes.h> +int register_kretprobe(struct kretprobe *rp); + +Establishes a return probe for the function whose address is +rp->kp.addr. When that function returns, Kprobes calls rp->handler. +You must set rp->maxactive appropriately before you call +register_kretprobe(); see "How Does a Return Probe Work?" for details. + +register_kretprobe() returns 0 on success, or a negative errno +otherwise. + +User's return-probe handler (rp->handler): +#include <linux/kprobes.h> +#include <linux/ptrace.h> +int kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs); + +regs is as described for kprobe.pre_handler. ri points to the +kretprobe_instance object, of which the following fields may be +of interest: +- ret_addr: the return address +- rp: points to the corresponding kretprobe object +- task: points to the corresponding task struct +The handler's return value is currently ignored. + +4.4 unregister_*probe + +#include <linux/kprobes.h> +void unregister_kprobe(struct kprobe *kp); +void unregister_jprobe(struct jprobe *jp); +void unregister_kretprobe(struct kretprobe *rp); + +Removes the specified probe. The unregister function can be called +at any time after the probe has been registered. + +5. Kprobes Features and Limitations + +As of Linux v2.6.12, Kprobes allows multiple probes at the same +address. Currently, however, there cannot be multiple jprobes on +the same function at the same time. + +In general, you can install a probe anywhere in the kernel. +In particular, you can probe interrupt handlers. Known exceptions +are discussed in this section. + +For obvious reasons, it's a bad idea to install a probe in +the code that implements Kprobes (mostly kernel/kprobes.c and +arch/*/kernel/kprobes.c). A patch in the v2.6.13 timeframe instructs +Kprobes to reject such requests. + +If you install a probe in an inline-able function, Kprobes makes +no attempt to chase down all inline instances of the function and +install probes there. gcc may inline a function without being asked, +so keep this in mind if you're not seeing the probe hits you expect. + +A probe handler can modify the environment of the probed function +-- e.g., by modifying kernel data structures, or by modifying the +contents of the pt_regs struct (which are restored to the registers +upon return from the breakpoint). So Kprobes can be used, for example, +to install a bug fix or to inject faults for testing. Kprobes, of +course, has no way to distinguish the deliberately injected faults +from the accidental ones. Don't drink and probe. + +Kprobes makes no attempt to prevent probe handlers from stepping on +each other -- e.g., probing printk() and then calling printk() from a +probe handler. As of Linux v2.6.12, if a probe handler hits a probe, +that second probe's handlers won't be run in that instance. + +In Linux v2.6.12 and previous versions, Kprobes' data structures are +protected by a single lock that is held during probe registration and +unregistration and while handlers are run. Thus, no two handlers +can run simultaneously. To improve scalability on SMP systems, +this restriction will probably be removed soon, in which case +multiple handlers (or multiple instances of the same handler) may +run concurrently on different CPUs. Code your handlers accordingly. + +Kprobes does not use semaphores or allocate memory except during +registration and unregistration. + +Probe handlers are run with preemption disabled. Depending on the +architecture, handlers may also run with interrupts disabled. In any +case, your handler should not yield the CPU (e.g., by attempting to +acquire a semaphore). + +Since a return probe is implemented by replacing the return +address with the trampoline's address, stack backtraces and calls +to __builtin_return_address() will typically yield the trampoline's +address instead of the real return address for kretprobed functions. +(As far as we can tell, __builtin_return_address() is used only +for instrumentation and error reporting.) + +If the number of times a function is called does not match the +number of times it returns, registering a return probe on that +function may produce undesirable results. We have the do_exit() +and do_execve() cases covered. do_fork() is not an issue. We're +unaware of other specific cases where this could be a problem. + +6. Probe Overhead + +On a typical CPU in use in 2005, a kprobe hit takes 0.5 to 1.0 +microseconds to process. Specifically, a benchmark that hits the same +probepoint repeatedly, firing a simple handler each time, reports 1-2 +million hits per second, depending on the architecture. A jprobe or +return-probe hit typically takes 50-75% longer than a kprobe hit. +When you have a return probe set on a function, adding a kprobe at +the entry to that function adds essentially no overhead. + +Here are sample overhead figures (in usec) for different architectures. +k = kprobe; j = jprobe; r = return probe; kr = kprobe + return probe +on same function; jr = jprobe + return probe on same function + +i386: Intel Pentium M, 1495 MHz, 2957.31 bogomips +k = 0.57 usec; j = 1.00; r = 0.92; kr = 0.99; jr = 1.40 + +x86_64: AMD Opteron 246, 1994 MHz, 3971.48 bogomips +k = 0.49 usec; j = 0.76; r = 0.80; kr = 0.82; jr = 1.07 + +ppc64: POWER5 (gr), 1656 MHz (SMT disabled, 1 virtual CPU per physical CPU) +k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99 + +7. TODO + +a. SystemTap (http://sourceware.org/systemtap): Work in progress +to provide a simplified programming interface for probe-based +instrumentation. +b. Improved SMP scalability: Currently, work is in progress to handle +multiple kprobes in parallel. +c. Kernel return probes for sparc64. +d. Support for other architectures. +e. User-space probes. + +8. Kprobes Example + +Here's a sample kernel module showing the use of kprobes to dump a +stack trace and selected i386 registers when do_fork() is called. +----- cut here ----- +/*kprobe_example.c*/ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/kprobes.h> +#include <linux/kallsyms.h> +#include <linux/sched.h> + +/*For each probe you need to allocate a kprobe structure*/ +static struct kprobe kp; + +/*kprobe pre_handler: called just before the probed instruction is executed*/ +int handler_pre(struct kprobe *p, struct pt_regs *regs) +{ + printk("pre_handler: p->addr=0x%p, eip=%lx, eflags=0x%lx\n", + p->addr, regs->eip, regs->eflags); + dump_stack(); + return 0; +} + +/*kprobe post_handler: called after the probed instruction is executed*/ +void handler_post(struct kprobe *p, struct pt_regs *regs, unsigned long flags) +{ + printk("post_handler: p->addr=0x%p, eflags=0x%lx\n", + p->addr, regs->eflags); +} + +/* fault_handler: this is called if an exception is generated for any + * instruction within the pre- or post-handler, or when Kprobes + * single-steps the probed instruction. + */ +int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr) +{ + printk("fault_handler: p->addr=0x%p, trap #%dn", + p->addr, trapnr); + /* Return 0 because we don't handle the fault. */ + return 0; +} + +int init_module(void) +{ + int ret; + kp.pre_handler = handler_pre; + kp.post_handler = handler_post; + kp.fault_handler = handler_fault; + kp.addr = (kprobe_opcode_t*) kallsyms_lookup_name("do_fork"); + /* register the kprobe now */ + if (!kp.addr) { + printk("Couldn't find %s to plant kprobe\n", "do_fork"); + return -1; + } + if ((ret = register_kprobe(&kp) < 0)) { + printk("register_kprobe failed, returned %d\n", ret); + return -1; + } + printk("kprobe registered\n"); + return 0; +} + +void cleanup_module(void) +{ + unregister_kprobe(&kp); + printk("kprobe unregistered\n"); +} + +MODULE_LICENSE("GPL"); +----- cut here ----- + +You can build the kernel module, kprobe-example.ko, using the following +Makefile: +----- cut here ----- +obj-m := kprobe-example.o +KDIR := /lib/modules/$(shell uname -r)/build +PWD := $(shell pwd) +default: + $(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules +clean: + rm -f *.mod.c *.ko *.o +----- cut here ----- + +$ make +$ su - +... +# insmod kprobe-example.ko + +You will see the trace data in /var/log/messages and on the console +whenever do_fork() is invoked to create a new process. + +9. Jprobes Example + +Here's a sample kernel module showing the use of jprobes to dump +the arguments of do_fork(). +----- cut here ----- +/*jprobe-example.c */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/fs.h> +#include <linux/uio.h> +#include <linux/kprobes.h> +#include <linux/kallsyms.h> + +/* + * Jumper probe for do_fork. + * Mirror principle enables access to arguments of the probed routine + * from the probe handler. + */ + +/* Proxy routine having the same arguments as actual do_fork() routine */ +long jdo_fork(unsigned long clone_flags, unsigned long stack_start, + struct pt_regs *regs, unsigned long stack_size, + int __user * parent_tidptr, int __user * child_tidptr) +{ + printk("jprobe: clone_flags=0x%lx, stack_size=0x%lx, regs=0x%p\n", + clone_flags, stack_size, regs); + /* Always end with a call to jprobe_return(). */ + jprobe_return(); + /*NOTREACHED*/ + return 0; +} + +static struct jprobe my_jprobe = { + .entry = (kprobe_opcode_t *) jdo_fork +}; + +int init_module(void) +{ + int ret; + my_jprobe.kp.addr = (kprobe_opcode_t *) kallsyms_lookup_name("do_fork"); + if (!my_jprobe.kp.addr) { + printk("Couldn't find %s to plant jprobe\n", "do_fork"); + return -1; + } + + if ((ret = register_jprobe(&my_jprobe)) <0) { + printk("register_jprobe failed, returned %d\n", ret); + return -1; + } + printk("Planted jprobe at %p, handler addr %p\n", + my_jprobe.kp.addr, my_jprobe.entry); + return 0; +} + +void cleanup_module(void) +{ + unregister_jprobe(&my_jprobe); + printk("jprobe unregistered\n"); +} + +MODULE_LICENSE("GPL"); +----- cut here ----- + +Build and insert the kernel module as shown in the above kprobe +example. You will see the trace data in /var/log/messages and on +the console whenever do_fork() is invoked to create a new process. +(Some messages may be suppressed if syslogd is configured to +eliminate duplicate messages.) + +10. Kretprobes Example + +Here's a sample kernel module showing the use of return probes to +report failed calls to sys_open(). +----- cut here ----- +/*kretprobe-example.c*/ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/kprobes.h> +#include <linux/kallsyms.h> + +static const char *probed_func = "sys_open"; + +/* Return-probe handler: If the probed function fails, log the return value. */ +static int ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs) +{ + // Substitute the appropriate register name for your architecture -- + // e.g., regs->rax for x86_64, regs->gpr[3] for ppc64. + int retval = (int) regs->eax; + if (retval < 0) { + printk("%s returns %d\n", probed_func, retval); + } + return 0; +} + +static struct kretprobe my_kretprobe = { + .handler = ret_handler, + /* Probe up to 20 instances concurrently. */ + .maxactive = 20 +}; + +int init_module(void) +{ + int ret; + my_kretprobe.kp.addr = + (kprobe_opcode_t *) kallsyms_lookup_name(probed_func); + if (!my_kretprobe.kp.addr) { + printk("Couldn't find %s to plant return probe\n", probed_func); + return -1; + } + if ((ret = register_kretprobe(&my_kretprobe)) < 0) { + printk("register_kretprobe failed, returned %d\n", ret); + return -1; + } + printk("Planted return probe at %p\n", my_kretprobe.kp.addr); + return 0; +} + +void cleanup_module(void) +{ + unregister_kretprobe(&my_kretprobe); + printk("kretprobe unregistered\n"); + /* nmissed > 0 suggests that maxactive was set too low. */ + printk("Missed probing %d instances of %s\n", + my_kretprobe.nmissed, probed_func); +} + +MODULE_LICENSE("GPL"); +----- cut here ----- + +Build and insert the kernel module as shown in the above kprobe +example. You will see the trace data in /var/log/messages and on the +console whenever sys_open() returns a negative value. (Some messages +may be suppressed if syslogd is configured to eliminate duplicate +messages.) + +For additional information on Kprobes, refer to the following URLs: +http://www-106.ibm.com/developerworks/library/l-kprobes.html?ca=dgr-lnxw42Kprobe +http://www.redhat.com/magazine/005mar05/features/kprobes/ diff --git a/Documentation/video4linux/bttv/Insmod-options b/Documentation/video4linux/bttv/Insmod-options index 7bb5a50b0779..fc94ff235ffa 100644 --- a/Documentation/video4linux/bttv/Insmod-options +++ b/Documentation/video4linux/bttv/Insmod-options @@ -44,6 +44,9 @@ bttv.o push used by bttv. bttv will disable overlay by default on this hardware to avoid crashes. With this insmod option you can override this. + no_overlay=1 Disable overlay. It should be used by broken + hardware that doesn't support PCI2PCI direct + transfers. automute=0/1 Automatically mutes the sound if there is no TV signal, on by default. You might try to disable this if you have bad input signal diff --git a/arch/arm26/mm/fault.c b/arch/arm26/mm/fault.c index dacca8bb7744..bd6f2db608b7 100644 --- a/arch/arm26/mm/fault.c +++ b/arch/arm26/mm/fault.c @@ -176,12 +176,12 @@ survive: * Handle the "normal" cases first - successful and sigbus */ switch (fault) { - case 2: + case VM_FAULT_MAJOR: tsk->maj_flt++; return fault; - case 1: + case VM_FAULT_MINOR: tsk->min_flt++; - case 0: + case VM_FAULT_SIGBUS: return fault; } @@ -226,14 +226,11 @@ int do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) /* * Handle the "normal" case first */ - if (fault > 0) + switch (fault) { + case VM_FAULT_MINOR: + case VM_FAULT_MAJOR: return 0; - - /* - * We had some memory, but were unable to - * successfully fix up this page fault. - */ - if (fault == 0){ + case VM_FAULT_SIGBUS: goto do_sigbus; } diff --git a/arch/cris/mm/fault.c b/arch/cris/mm/fault.c index fe1cc36b5aca..934c51078cce 100644 --- a/arch/cris/mm/fault.c +++ b/arch/cris/mm/fault.c @@ -284,13 +284,13 @@ do_page_fault(unsigned long address, struct pt_regs *regs, */ switch (handle_mm_fault(mm, vma, address, writeaccess & 1)) { - case 1: + case VM_FAULT_MINOR: tsk->min_flt++; break; - case 2: + case VM_FAULT_MAJOR: tsk->maj_flt++; break; - case 0: + case VM_FAULT_SIGBUS: goto do_sigbus; default: goto out_of_memory; diff --git a/arch/frv/mm/fault.c b/arch/frv/mm/fault.c index 41d02ac48233..8b3eb50c5105 100644 --- a/arch/frv/mm/fault.c +++ b/arch/frv/mm/fault.c @@ -163,13 +163,13 @@ asmlinkage void do_page_fault(int datammu, unsigned long esr0, unsigned long ear * the fault. */ switch (handle_mm_fault(mm, vma, ear0, write)) { - case 1: + case VM_FAULT_MINOR: current->min_flt++; break; - case 2: + case VM_FAULT_MAJOR: current->maj_flt++; break; - case 0: + case VM_FAULT_SIGBUS: goto do_sigbus; default: goto out_of_memory; diff --git a/arch/m68k/mm/fault.c b/arch/m68k/mm/fault.c index ac48b6d2aff6..aec15270d334 100644 --- a/arch/m68k/mm/fault.c +++ b/arch/m68k/mm/fault.c @@ -160,13 +160,13 @@ good_area: printk("handle_mm_fault returns %d\n",fault); #endif switch (fault) { - case 1: + case VM_FAULT_MINOR: current->min_flt++; break; - case 2: + case VM_FAULT_MAJOR: current->maj_flt++; break; - case 0: + case VM_FAULT_SIGBUS: goto bus_err; default: goto out_of_memory; diff --git a/arch/parisc/mm/fault.c b/arch/parisc/mm/fault.c index eaa701479f5f..0ad945d4c0a4 100644 --- a/arch/parisc/mm/fault.c +++ b/arch/parisc/mm/fault.c @@ -178,17 +178,17 @@ good_area: */ switch (handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) != 0)) { - case 1: + case VM_FAULT_MINOR: ++current->min_flt; break; - case 2: + case VM_FAULT_MAJOR: ++current->maj_flt; break; - case 0: + case VM_FAULT_SIGBUS: /* - * We ran out of memory, or some other thing happened - * to us that made us unable to handle the page fault - * gracefully. + * We hit a hared mapping outside of the file, or some + * other thing happened to us that made us unable to + * handle the page fault gracefully. */ goto bad_area; default: diff --git a/arch/ppc64/kernel/head.S b/arch/ppc64/kernel/head.S index 74fc3bc68604..784f56d4684c 100644 --- a/arch/ppc64/kernel/head.S +++ b/arch/ppc64/kernel/head.S @@ -2071,7 +2071,7 @@ _GLOBAL(hmt_start_secondary) blr #endif -#if defined(CONFIG_SMP) && !defined(CONFIG_PPC_ISERIES) +#if defined(CONFIG_KEXEC) || (defined(CONFIG_SMP) && !defined(CONFIG_PPC_ISERIES)) _GLOBAL(smp_release_cpus) /* All secondary cpus are spinning on a common * spinloop, release them all now so they can start diff --git a/arch/ppc64/kernel/machine_kexec.c b/arch/ppc64/kernel/machine_kexec.c index fdb2fc649d72..4775f12a013c 100644 --- a/arch/ppc64/kernel/machine_kexec.c +++ b/arch/ppc64/kernel/machine_kexec.c @@ -185,7 +185,7 @@ void kexec_copy_flush(struct kimage *image) void kexec_smp_down(void *arg) { if (ppc_md.cpu_irq_down) - ppc_md.cpu_irq_down(); + ppc_md.cpu_irq_down(1); local_irq_disable(); kexec_smp_wait(); @@ -232,7 +232,7 @@ static void kexec_prepare_cpus(void) /* after we tell the others to go down */ if (ppc_md.cpu_irq_down) - ppc_md.cpu_irq_down(); + ppc_md.cpu_irq_down(0); put_cpu(); @@ -243,15 +243,19 @@ static void kexec_prepare_cpus(void) static void kexec_prepare_cpus(void) { + extern void smp_release_cpus(void); /* * move the secondarys to us so that we can copy * the new kernel 0-0x100 safely * * do this if kexec in setup.c ? + * + * We need to release the cpus if we are ever going from an + * UP to an SMP kernel. */ - smp_relase_cpus(); + smp_release_cpus(); if (ppc_md.cpu_irq_down) - ppc_md.cpu_irq_down(); + ppc_md.cpu_irq_down(0); local_irq_disable(); } diff --git a/arch/ppc64/kernel/mpic.c b/arch/ppc64/kernel/mpic.c index e8fbab1df37f..cc262a05ddb4 100644 --- a/arch/ppc64/kernel/mpic.c +++ b/arch/ppc64/kernel/mpic.c @@ -794,10 +794,10 @@ void mpic_setup_this_cpu(void) /* * XXX: someone who knows mpic should check this. - * do we need to eoi the ipi here (see xics comments)? + * do we need to eoi the ipi including for kexec cpu here (see xics comments)? * or can we reset the mpic in the new kernel? */ -void mpic_teardown_this_cpu(void) +void mpic_teardown_this_cpu(int secondary) { struct mpic *mpic = mpic_primary; unsigned long flags; diff --git a/arch/ppc64/kernel/mpic.h b/arch/ppc64/kernel/mpic.h index 99fbbc9a084c..ca78a7f10528 100644 --- a/arch/ppc64/kernel/mpic.h +++ b/arch/ppc64/kernel/mpic.h @@ -256,7 +256,7 @@ extern unsigned int mpic_irq_get_priority(unsigned int irq); extern void mpic_setup_this_cpu(void); /* Clean up for kexec (or cpu offline or ...) */ -extern void mpic_teardown_this_cpu(void); +extern void mpic_teardown_this_cpu(int secondary); /* Request IPIs on primary mpic */ extern void mpic_request_ipis(void); diff --git a/arch/ppc64/kernel/xics.c b/arch/ppc64/kernel/xics.c index 677c4450984a..d9dc6f28d050 100644 --- a/arch/ppc64/kernel/xics.c +++ b/arch/ppc64/kernel/xics.c @@ -647,29 +647,30 @@ static void xics_set_affinity(unsigned int virq, cpumask_t cpumask) } } -void xics_teardown_cpu(void) +void xics_teardown_cpu(int secondary) { int cpu = smp_processor_id(); - int status; ops->cppr_info(cpu, 0x00); iosync(); /* - * we need to EOI the IPI if we got here from kexec down IPI - * - * xics doesn't care if we duplicate an EOI as long as we - * don't EOI and raise priority. - * - * probably need to check all the other interrupts too - * should we be flagging idle loop instead? - * or creating some task to be scheduled? + * Some machines need to have at least one cpu in the GIQ, + * so leave the master cpu in the group. */ - ops->xirr_info_set(cpu, XICS_IPI); - - status = rtas_set_indicator(GLOBAL_INTERRUPT_QUEUE, - (1UL << interrupt_server_size) - 1 - default_distrib_server, 0); - WARN_ON(status != 0); + if (secondary) { + /* + * we need to EOI the IPI if we got here from kexec down IPI + * + * probably need to check all the other interrupts too + * should we be flagging idle loop instead? + * or creating some task to be scheduled? + */ + ops->xirr_info_set(cpu, XICS_IPI); + rtas_set_indicator(GLOBAL_INTERRUPT_QUEUE, + (1UL << interrupt_server_size) - 1 - + default_distrib_server, 0); + } } #ifdef CONFIG_HOTPLUG_CPU diff --git a/arch/sh64/mm/fault.c b/arch/sh64/mm/fault.c index a24932881dbb..f08d0eaf6497 100644 --- a/arch/sh64/mm/fault.c +++ b/arch/sh64/mm/fault.c @@ -223,13 +223,13 @@ good_area: */ survive: switch (handle_mm_fault(mm, vma, address, writeaccess)) { - case 1: + case VM_FAULT_MINOR: tsk->min_flt++; break; - case 2: + case VM_FAULT_MAJOR: tsk->maj_flt++; break; - case 0: + case VM_FAULT_SIGBUS: goto do_sigbus; default: goto out_of_memory; diff --git a/arch/x86_64/mm/fault.c b/arch/x86_64/mm/fault.c index 13792721037e..493819e543a5 100644 --- a/arch/x86_64/mm/fault.c +++ b/arch/x86_64/mm/fault.c @@ -439,13 +439,13 @@ good_area: * the fault. */ switch (handle_mm_fault(mm, vma, address, write)) { - case 1: + case VM_FAULT_MINOR: tsk->min_flt++; break; - case 2: + case VM_FAULT_MAJOR: tsk->maj_flt++; break; - case 0: + case VM_FAULT_SIGBUS: goto do_sigbus; default: goto out_of_memory; diff --git a/drivers/acpi/dispatcher/dswload.c b/drivers/acpi/dispatcher/dswload.c index 1ac197ccfc80..d11620018421 100644 --- a/drivers/acpi/dispatcher/dswload.c +++ b/drivers/acpi/dispatcher/dswload.c @@ -491,12 +491,6 @@ acpi_ds_load2_begin_op ( if ((!(walk_state->op_info->flags & AML_NSOPCODE) && (walk_state->opcode != AML_INT_NAMEPATH_OP)) || (!(walk_state->op_info->flags & AML_NAMED))) { - if ((walk_state->op_info->class == AML_CLASS_EXECUTE) || - (walk_state->op_info->class == AML_CLASS_CONTROL)) { - ACPI_REPORT_WARNING (( - "Encountered executable code at module level, [%s]\n", - acpi_ps_get_opcode_name (walk_state->opcode))); - } return_ACPI_STATUS (AE_OK); } diff --git a/drivers/acpi/osl.c b/drivers/acpi/osl.c index bdd9f37f8101..7289da3c4db6 100644 --- a/drivers/acpi/osl.c +++ b/drivers/acpi/osl.c @@ -145,10 +145,14 @@ acpi_os_vprintf(const char *fmt, va_list args) #endif } +extern int acpi_in_resume; void * acpi_os_allocate(acpi_size size) { - return kmalloc(size, GFP_KERNEL); + if (acpi_in_resume) + return kmalloc(size, GFP_ATOMIC); + else + return kmalloc(size, GFP_KERNEL); } void diff --git a/drivers/acpi/pci_link.c b/drivers/acpi/pci_link.c index 65cea07abbc3..834c2ceff1aa 100644 --- a/drivers/acpi/pci_link.c +++ b/drivers/acpi/pci_link.c @@ -798,6 +798,11 @@ acpi_pci_link_resume( return_VALUE(0); } +/* + * FIXME: this is a workaround to avoid nasty warning. It will be removed + * after every device calls pci_disable_device in .resume. + */ +int acpi_in_resume; static int irqrouter_resume( struct sys_device *dev) @@ -807,6 +812,7 @@ irqrouter_resume( ACPI_FUNCTION_TRACE("irqrouter_resume"); + acpi_in_resume = 1; list_for_each(node, &acpi_link.entries) { link = list_entry(node, struct acpi_pci_link, node); if (!link) { @@ -816,6 +822,7 @@ irqrouter_resume( } acpi_pci_link_resume(link); } + acpi_in_resume = 0; return_VALUE(0); } diff --git a/drivers/ide/ide-probe.c b/drivers/ide/ide-probe.c index 7df85af75371..94daf40ae323 100644 --- a/drivers/ide/ide-probe.c +++ b/drivers/ide/ide-probe.c @@ -960,6 +960,15 @@ static void save_match(ide_hwif_t *hwif, ide_hwif_t *new, ide_hwif_t **match) } #endif /* MAX_HWIFS > 1 */ +static inline int hwif_to_node(ide_hwif_t *hwif) +{ + if (hwif->pci_dev) + return pcibus_to_node(hwif->pci_dev->bus); + else + /* Add ways to determine the node of other busses here */ + return -1; +} + /* * init request queue */ @@ -978,8 +987,7 @@ static int ide_init_queue(ide_drive_t *drive) * do not. */ - q = blk_init_queue_node(do_ide_request, &ide_lock, - pcibus_to_node(drive->hwif->pci_dev->bus)); + q = blk_init_queue_node(do_ide_request, &ide_lock, hwif_to_node(hwif)); if (!q) return 1; @@ -1048,6 +1056,8 @@ static int init_irq (ide_hwif_t *hwif) BUG_ON(in_interrupt()); BUG_ON(irqs_disabled()); + BUG_ON(hwif == NULL); + down(&ide_cfg_sem); hwif->hwgroup = NULL; #if MAX_HWIFS > 1 @@ -1097,7 +1107,7 @@ static int init_irq (ide_hwif_t *hwif) spin_unlock_irq(&ide_lock); } else { hwgroup = kmalloc_node(sizeof(ide_hwgroup_t), GFP_KERNEL, - pcibus_to_node(hwif->drives[0].hwif->pci_dev->bus)); + hwif_to_node(hwif->drives[0].hwif)); if (!hwgroup) goto out_up; diff --git a/drivers/infiniband/include/ib_cm.h b/drivers/infiniband/include/ib_cm.h index e5d74a730a70..da650115e79a 100644 --- a/drivers/infiniband/include/ib_cm.h +++ b/drivers/infiniband/include/ib_cm.h @@ -169,7 +169,8 @@ enum ib_cm_rej_reason { IB_CM_REJ_INVALID_ALT_TRAFFIC_CLASS = __constant_htons(21), IB_CM_REJ_INVALID_ALT_HOP_LIMIT = __constant_htons(22), IB_CM_REJ_INVALID_ALT_PACKET_RATE = __constant_htons(23), - IB_CM_REJ_PORT_REDIRECT = __constant_htons(24), + IB_CM_REJ_PORT_CM_REDIRECT = __constant_htons(24), + IB_CM_REJ_PORT_REDIRECT = __constant_htons(25), IB_CM_REJ_INVALID_MTU = __constant_htons(26), IB_CM_REJ_INSUFFICIENT_RESP_RESOURCES = __constant_htons(27), IB_CM_REJ_CONSUMER_DEFINED = __constant_htons(28), diff --git a/drivers/infiniband/ulp/ipoib/ipoib_main.c b/drivers/infiniband/ulp/ipoib/ipoib_main.c index 6f60abbaebd5..fa00816a3cf7 100644 --- a/drivers/infiniband/ulp/ipoib/ipoib_main.c +++ b/drivers/infiniband/ulp/ipoib/ipoib_main.c @@ -600,9 +600,10 @@ static int ipoib_start_xmit(struct sk_buff *skb, struct net_device *dev) ipoib_mcast_send(dev, (union ib_gid *) (phdr->hwaddr + 4), skb); } else { - /* unicast GID -- should be ARP reply */ + /* unicast GID -- should be ARP or RARP reply */ - if (be16_to_cpup((u16 *) skb->data) != ETH_P_ARP) { + if ((be16_to_cpup((__be16 *) skb->data) != ETH_P_ARP) && + (be16_to_cpup((__be16 *) skb->data) != ETH_P_RARP)) { ipoib_warn(priv, "Unicast, no %s: type %04x, QPN %06x " IPOIB_GID_FMT "\n", skb->dst ? "neigh" : "dst", diff --git a/drivers/md/bitmap.c b/drivers/md/bitmap.c index 70bca955e0de..41df4cda66e2 100644 --- a/drivers/md/bitmap.c +++ b/drivers/md/bitmap.c @@ -818,8 +818,7 @@ int bitmap_unplug(struct bitmap *bitmap) return 0; } -static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, - unsigned long sectors, int in_sync); +static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset); /* * bitmap_init_from_disk -- called at bitmap_create time to initialize * the in-memory bitmap from the on-disk bitmap -- also, sets up the * memory mapping of the bitmap file @@ -828,7 +827,7 @@ static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, * previously kicked from the array, we mark all the bits as * 1's in order to cause a full resync. */ -static int bitmap_init_from_disk(struct bitmap *bitmap, int in_sync) +static int bitmap_init_from_disk(struct bitmap *bitmap) { unsigned long i, chunks, index, oldindex, bit; struct page *page = NULL, *oldpage = NULL; @@ -929,8 +928,7 @@ static int bitmap_init_from_disk(struct bitmap *bitmap, int in_sync) } if (test_bit(bit, page_address(page))) { /* if the disk bit is set, set the memory bit */ - bitmap_set_memory_bits(bitmap, - i << CHUNK_BLOCK_SHIFT(bitmap), 1, in_sync); + bitmap_set_memory_bits(bitmap, i << CHUNK_BLOCK_SHIFT(bitmap)); bit_cnt++; } } @@ -1426,35 +1424,53 @@ void bitmap_close_sync(struct bitmap *bitmap) } } -static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, - unsigned long sectors, int in_sync) +static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset) { /* For each chunk covered by any of these sectors, set the - * counter to 1 and set resync_needed unless in_sync. They should all + * counter to 1 and set resync_needed. They should all * be 0 at this point */ - while (sectors) { - int secs; - bitmap_counter_t *bmc; - spin_lock_irq(&bitmap->lock); - bmc = bitmap_get_counter(bitmap, offset, &secs, 1); - if (!bmc) { - spin_unlock_irq(&bitmap->lock); - return; - } - if (! *bmc) { - struct page *page; - *bmc = 1 | (in_sync? 0 : NEEDED_MASK); - bitmap_count_page(bitmap, offset, 1); - page = filemap_get_page(bitmap, offset >> CHUNK_BLOCK_SHIFT(bitmap)); - set_page_attr(bitmap, page, BITMAP_PAGE_CLEAN); - } + + int secs; + bitmap_counter_t *bmc; + spin_lock_irq(&bitmap->lock); + bmc = bitmap_get_counter(bitmap, offset, &secs, 1); + if (!bmc) { spin_unlock_irq(&bitmap->lock); - if (sectors > secs) - sectors -= secs; - else - sectors = 0; + return; + } + if (! *bmc) { + struct page *page; + *bmc = 1 | NEEDED_MASK; + bitmap_count_page(bitmap, offset, 1); + page = filemap_get_page(bitmap, offset >> CHUNK_BLOCK_SHIFT(bitmap)); + set_page_attr(bitmap, page, BITMAP_PAGE_CLEAN); } + spin_unlock_irq(&bitmap->lock); + +} + +/* + * flush out any pending updates + */ +void bitmap_flush(mddev_t *mddev) +{ + struct bitmap *bitmap = mddev->bitmap; + int sleep; + + if (!bitmap) /* there was no bitmap */ + return; + + /* run the daemon_work three time to ensure everything is flushed + * that can be + */ + sleep = bitmap->daemon_sleep; + bitmap->daemon_sleep = 0; + bitmap_daemon_work(bitmap); + bitmap_daemon_work(bitmap); + bitmap_daemon_work(bitmap); + bitmap->daemon_sleep = sleep; + bitmap_update_sb(bitmap); } /* @@ -1565,7 +1581,8 @@ int bitmap_create(mddev_t *mddev) /* now that we have some pages available, initialize the in-memory * bitmap from the on-disk bitmap */ - err = bitmap_init_from_disk(bitmap, mddev->recovery_cp == MaxSector); + err = bitmap_init_from_disk(bitmap); + if (err) return err; diff --git a/drivers/md/dm-raid1.c b/drivers/md/dm-raid1.c index 12031c9d3f1e..b08df8b9b2ca 100644 --- a/drivers/md/dm-raid1.c +++ b/drivers/md/dm-raid1.c @@ -1230,7 +1230,7 @@ static int __init dm_mirror_init(void) if (r) return r; - _kmirrord_wq = create_workqueue("kmirrord"); + _kmirrord_wq = create_singlethread_workqueue("kmirrord"); if (!_kmirrord_wq) { DMERR("couldn't start kmirrord"); dm_dirty_log_exit(); diff --git a/drivers/md/md.c b/drivers/md/md.c index 6580e0fa4a47..480f658db6f2 100644 --- a/drivers/md/md.c +++ b/drivers/md/md.c @@ -1798,6 +1798,8 @@ static int do_md_stop(mddev_t * mddev, int ro) goto out; mddev->ro = 1; } else { + bitmap_flush(mddev); + wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); if (mddev->ro) set_disk_ro(disk, 0); blk_queue_make_request(mddev->queue, md_fail_request); @@ -3484,7 +3486,6 @@ static void md_do_sync(mddev_t *mddev) goto skip; } ITERATE_MDDEV(mddev2,tmp) { - printk("."); if (mddev2 == mddev) continue; if (mddev2->curr_resync && @@ -4007,3 +4008,4 @@ EXPORT_SYMBOL(md_wakeup_thread); EXPORT_SYMBOL(md_print_devices); EXPORT_SYMBOL(md_check_recovery); MODULE_LICENSE("GPL"); +MODULE_ALIAS("md"); diff --git a/drivers/md/raid1.c b/drivers/md/raid1.c index d3a64a04a6d8..51d9645ed09c 100644 --- a/drivers/md/raid1.c +++ b/drivers/md/raid1.c @@ -893,7 +893,6 @@ static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) if (!uptodate) { md_error(r1_bio->mddev, conf->mirrors[r1_bio->read_disk].rdev); - set_bit(R1BIO_Degraded, &r1_bio->state); } else set_bit(R1BIO_Uptodate, &r1_bio->state); rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev); @@ -918,10 +917,9 @@ static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) mirror = i; break; } - if (!uptodate) { + if (!uptodate) md_error(mddev, conf->mirrors[mirror].rdev); - set_bit(R1BIO_Degraded, &r1_bio->state); - } + update_head_pos(mirror, r1_bio); if (atomic_dec_and_test(&r1_bio->remaining)) { @@ -1109,6 +1107,7 @@ static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, i int i; int write_targets = 0; int sync_blocks; + int still_degraded = 0; if (!conf->r1buf_pool) { @@ -1137,7 +1136,10 @@ static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, i return 0; } - if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, mddev->degraded) && + /* before building a request, check if we can skip these blocks.. + * This call the bitmap_start_sync doesn't actually record anything + */ + if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && !conf->fullsync) { /* We can skip this block, and probably several more */ *skipped = 1; @@ -1203,24 +1205,23 @@ static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, i if (i == disk) { bio->bi_rw = READ; bio->bi_end_io = end_sync_read; - } else if (conf->mirrors[i].rdev && - !conf->mirrors[i].rdev->faulty && - (!conf->mirrors[i].rdev->in_sync || - sector_nr + RESYNC_SECTORS > mddev->recovery_cp)) { + } else if (conf->mirrors[i].rdev == NULL || + conf->mirrors[i].rdev->faulty) { + still_degraded = 1; + continue; + } else if (!conf->mirrors[i].rdev->in_sync || + sector_nr + RESYNC_SECTORS > mddev->recovery_cp) { bio->bi_rw = WRITE; bio->bi_end_io = end_sync_write; write_targets ++; } else + /* no need to read or write here */ continue; bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset; bio->bi_bdev = conf->mirrors[i].rdev->bdev; bio->bi_private = r1_bio; } - if (write_targets + 1 < conf->raid_disks) - /* array degraded, can't clear bitmap */ - set_bit(R1BIO_Degraded, &r1_bio->state); - if (write_targets == 0) { /* There is nowhere to write, so all non-sync * drives must be failed - so we are finished @@ -1243,7 +1244,7 @@ static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, i break; if (sync_blocks == 0) { if (!bitmap_start_sync(mddev->bitmap, sector_nr, - &sync_blocks, mddev->degraded) && + &sync_blocks, still_degraded) && !conf->fullsync) break; if (sync_blocks < (PAGE_SIZE>>9)) diff --git a/drivers/media/video/bttv-cards.c b/drivers/media/video/bttv-cards.c index 6c52fd0bb7df..a97b9b958ed6 100644 --- a/drivers/media/video/bttv-cards.c +++ b/drivers/media/video/bttv-cards.c @@ -95,7 +95,7 @@ static int __devinit pvr_boot(struct bttv *btv); static unsigned int triton1=0; static unsigned int vsfx=0; static unsigned int latency = UNSET; -static unsigned int no_overlay=-1; +int no_overlay=-1; static unsigned int card[BTTV_MAX] = { [ 0 ... (BTTV_MAX-1) ] = UNSET }; static unsigned int pll[BTTV_MAX] = { [ 0 ... (BTTV_MAX-1) ] = UNSET }; @@ -4296,9 +4296,11 @@ void __devinit bttv_check_chipset(void) printk(KERN_INFO "bttv: Host bridge needs VSFX enabled.\n"); if (pcipci_fail) { printk(KERN_WARNING "bttv: BT848 and your chipset may not work together.\n"); - if (UNSET == no_overlay) { - printk(KERN_WARNING "bttv: going to disable overlay.\n"); + if (!no_overlay) { + printk(KERN_WARNING "bttv: overlay will be disabled.\n"); no_overlay = 1; + } else { + printk(KERN_WARNING "bttv: overlay forced. Use this option at your own risk.\n"); } } if (UNSET != latency) diff --git a/drivers/media/video/bttv-driver.c b/drivers/media/video/bttv-driver.c index 67f331eeeb19..eee9322ce21b 100644 --- a/drivers/media/video/bttv-driver.c +++ b/drivers/media/video/bttv-driver.c @@ -1,5 +1,5 @@ /* - $Id: bttv-driver.c,v 1.45 2005/07/20 19:43:24 mkrufky Exp $ + $Id: bttv-driver.c,v 1.52 2005/08/04 00:55:16 mchehab Exp $ bttv - Bt848 frame grabber driver @@ -80,6 +80,7 @@ static unsigned int irq_iswitch = 0; static unsigned int uv_ratio = 50; static unsigned int full_luma_range = 0; static unsigned int coring = 0; +extern int no_overlay; /* API features (turn on/off stuff for testing) */ static unsigned int v4l2 = 1; @@ -2151,6 +2152,10 @@ static int bttv_s_fmt(struct bttv_fh *fh, struct bttv *btv, return 0; } case V4L2_BUF_TYPE_VIDEO_OVERLAY: + if (no_overlay > 0) { + printk ("V4L2_BUF_TYPE_VIDEO_OVERLAY: no_overlay\n"); + return -EINVAL; + } return setup_window(fh, btv, &f->fmt.win, 1); case V4L2_BUF_TYPE_VBI_CAPTURE: retval = bttv_switch_type(fh,f->type); @@ -2224,9 +2229,11 @@ static int bttv_do_ioctl(struct inode *inode, struct file *file, /* others */ cap->type = VID_TYPE_CAPTURE| VID_TYPE_TUNER| - VID_TYPE_OVERLAY| VID_TYPE_CLIPPING| VID_TYPE_SCALES; + if (no_overlay <= 0) + cap->type |= VID_TYPE_OVERLAY; + cap->maxwidth = bttv_tvnorms[btv->tvnorm].swidth; cap->maxheight = bttv_tvnorms[btv->tvnorm].sheight; cap->minwidth = 48; @@ -2302,6 +2309,11 @@ static int bttv_do_ioctl(struct inode *inode, struct file *file, struct video_window *win = arg; struct v4l2_window w2; + if (no_overlay > 0) { + printk ("VIDIOCSWIN: no_overlay\n"); + return -EINVAL; + } + w2.field = V4L2_FIELD_ANY; w2.w.left = win->x; w2.w.top = win->y; @@ -2577,10 +2589,12 @@ static int bttv_do_ioctl(struct inode *inode, struct file *file, cap->version = BTTV_VERSION_CODE; cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | - V4L2_CAP_VIDEO_OVERLAY | V4L2_CAP_VBI_CAPTURE | V4L2_CAP_READWRITE | V4L2_CAP_STREAMING; + if (no_overlay <= 0) + cap->capabilities |= V4L2_CAP_VIDEO_OVERLAY; + if (bttv_tvcards[btv->c.type].tuner != UNSET && bttv_tvcards[btv->c.type].tuner != TUNER_ABSENT) cap->capabilities |= V4L2_CAP_TUNER; @@ -3076,7 +3090,7 @@ static struct file_operations bttv_fops = static struct video_device bttv_video_template = { .name = "UNSET", - .type = VID_TYPE_CAPTURE|VID_TYPE_TUNER|VID_TYPE_OVERLAY| + .type = VID_TYPE_CAPTURE|VID_TYPE_TUNER| VID_TYPE_CLIPPING|VID_TYPE_SCALES, .hardware = VID_HARDWARE_BT848, .fops = &bttv_fops, @@ -3756,6 +3770,12 @@ static void bttv_unregister_video(struct bttv *btv) /* register video4linux devices */ static int __devinit bttv_register_video(struct bttv *btv) { + if (no_overlay <= 0) { + bttv_video_template.type |= VID_TYPE_OVERLAY; + } else { + printk("bttv: Overlay support disabled.\n"); + } + /* video */ btv->video_dev = vdev_init(btv, &bttv_video_template, "video"); if (NULL == btv->video_dev) diff --git a/include/asm-ppc64/machdep.h b/include/asm-ppc64/machdep.h index f0c1d2d92672..f0ef06375947 100644 --- a/include/asm-ppc64/machdep.h +++ b/include/asm-ppc64/machdep.h @@ -84,7 +84,7 @@ struct machdep_calls { void (*init_IRQ)(void); int (*get_irq)(struct pt_regs *); - void (*cpu_irq_down)(void); + void (*cpu_irq_down)(int secondary); /* PCI stuff */ void (*pcibios_fixup)(void); diff --git a/include/asm-ppc64/xics.h b/include/asm-ppc64/xics.h index 0c45e14e26ca..1092af55d707 100644 --- a/include/asm-ppc64/xics.h +++ b/include/asm-ppc64/xics.h @@ -17,7 +17,7 @@ void xics_init_IRQ(void); int xics_get_irq(struct pt_regs *); void xics_setup_cpu(void); -void xics_teardown_cpu(void); +void xics_teardown_cpu(int secondary); void xics_cause_IPI(int cpu); void xics_request_IPIs(void); void xics_migrate_irqs_away(void); diff --git a/include/linux/raid/bitmap.h b/include/linux/raid/bitmap.h index 6213e976eade..4bf1659f8aa8 100644 --- a/include/linux/raid/bitmap.h +++ b/include/linux/raid/bitmap.h @@ -248,6 +248,7 @@ struct bitmap { /* these are used only by md/bitmap */ int bitmap_create(mddev_t *mddev); +void bitmap_flush(mddev_t *mddev); void bitmap_destroy(mddev_t *mddev); int bitmap_active(struct bitmap *bitmap); diff --git a/kernel/sys.c b/kernel/sys.c index 000e81ad2c1d..0bcaed6560ac 100644 --- a/kernel/sys.c +++ b/kernel/sys.c @@ -404,7 +404,6 @@ void kernel_halt(void) { notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL); system_state = SYSTEM_HALT; - device_suspend(PMSG_SUSPEND); device_shutdown(); printk(KERN_EMERG "System halted.\n"); machine_halt(); @@ -415,7 +414,6 @@ void kernel_power_off(void) { notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL); system_state = SYSTEM_POWER_OFF; - device_suspend(PMSG_SUSPEND); device_shutdown(); printk(KERN_EMERG "Power down.\n"); machine_power_off(); diff --git a/security/keys/keyctl.c b/security/keys/keyctl.c index fea262860ea0..a6516a64b297 100644 --- a/security/keys/keyctl.c +++ b/security/keys/keyctl.c @@ -49,9 +49,6 @@ asmlinkage long sys_add_key(const char __user *_type, goto error; type[31] = '\0'; - if (!type[0]) - goto error; - ret = -EPERM; if (type[0] == '.') goto error; @@ -144,6 +141,10 @@ asmlinkage long sys_request_key(const char __user *_type, goto error; type[31] = '\0'; + ret = -EPERM; + if (type[0] == '.') + goto error; + /* pull the description into kernel space */ ret = -EFAULT; dlen = strnlen_user(_description, PAGE_SIZE - 1); @@ -362,7 +363,7 @@ long keyctl_revoke_key(key_serial_t id) key_put(key); error: - return 0; + return ret; } /* end keyctl_revoke_key() */ @@ -685,6 +686,8 @@ long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen) goto can_read_key2; ret = PTR_ERR(skey); + if (ret == -EAGAIN) + ret = -EACCES; goto error2; } diff --git a/security/keys/request_key.c b/security/keys/request_key.c index dfcd983af1fd..90c1506d007c 100644 --- a/security/keys/request_key.c +++ b/security/keys/request_key.c @@ -405,7 +405,7 @@ struct key *request_key_and_link(struct key_type *type, key_user_put(user); /* link the new key into the appropriate keyring */ - if (!PTR_ERR(key)) + if (!IS_ERR(key)) request_key_link(key, dest_keyring); } |