summaryrefslogtreecommitdiff
path: root/Documentation/admin-guide
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r--Documentation/admin-guide/cgroup-v1/memcg_test.rst2
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst39
-rw-r--r--Documentation/admin-guide/device-mapper/writecache.rst18
-rw-r--r--Documentation/admin-guide/devices.rst7
-rw-r--r--Documentation/admin-guide/efi-stub.rst4
-rw-r--r--Documentation/admin-guide/hw-vuln/index.rst1
-rw-r--r--Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst246
-rw-r--r--Documentation/admin-guide/hw-vuln/spectre.rst8
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt252
-rw-r--r--Documentation/admin-guide/media/vimc.dot4
-rw-r--r--Documentation/admin-guide/media/vimc.rst19
-rw-r--r--Documentation/admin-guide/media/vivid.rst14
-rw-r--r--Documentation/admin-guide/mm/concepts.rst2
-rw-r--r--Documentation/admin-guide/mm/damon/index.rst3
-rw-r--r--Documentation/admin-guide/mm/damon/lru_sort.rst294
-rw-r--r--Documentation/admin-guide/mm/damon/reclaim.rst8
-rw-r--r--Documentation/admin-guide/mm/damon/usage.rst10
-rw-r--r--Documentation/admin-guide/mm/hugetlbpage.rst4
-rw-r--r--Documentation/admin-guide/mm/index.rst1
-rw-r--r--Documentation/admin-guide/mm/memory-hotplug.rst4
-rw-r--r--Documentation/admin-guide/mm/shrinker_debugfs.rst135
-rw-r--r--Documentation/admin-guide/perf/hns3-pmu.rst136
-rw-r--r--Documentation/admin-guide/perf/index.rst1
-rw-r--r--Documentation/admin-guide/pm/cpuidle.rst15
-rw-r--r--Documentation/admin-guide/sysctl/kernel.rst16
-rw-r--r--Documentation/admin-guide/sysctl/net.rst12
-rw-r--r--Documentation/admin-guide/sysctl/vm.rst10
-rw-r--r--Documentation/admin-guide/tainted-kernels.rst1
28 files changed, 1165 insertions, 101 deletions
diff --git a/Documentation/admin-guide/cgroup-v1/memcg_test.rst b/Documentation/admin-guide/cgroup-v1/memcg_test.rst
index 45b94f7b3beb..a402359abb99 100644
--- a/Documentation/admin-guide/cgroup-v1/memcg_test.rst
+++ b/Documentation/admin-guide/cgroup-v1/memcg_test.rst
@@ -97,7 +97,7 @@ Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
=============
Page Cache is charged at
- - add_to_page_cache_locked().
+ - filemap_add_folio().
The logic is very clear. (About migration, see below)
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index 176298f2f4de..be4a77baf784 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -184,6 +184,14 @@ cgroup v2 currently supports the following mount options.
ignored on non-init namespace mounts. Please refer to the
Delegation section for details.
+ favordynmods
+ Reduce the latencies of dynamic cgroup modifications such as
+ task migrations and controller on/offs at the cost of making
+ hot path operations such as forks and exits more expensive.
+ The static usage pattern of creating a cgroup, enabling
+ controllers, and then seeding it with CLONE_INTO_CGROUP is
+ not affected by this option.
+
memory_localevents
Only populate memory.events with data for the current cgroup,
and not any subtrees. This is legacy behaviour, the default
@@ -1229,6 +1237,13 @@ PAGE_SIZE multiple when read back.
the target cgroup. If less bytes are reclaimed than the
specified amount, -EAGAIN is returned.
+ Please note that the proactive reclaim (triggered by this
+ interface) is not meant to indicate memory pressure on the
+ memory cgroup. Therefore socket memory balancing triggered by
+ the memory reclaim normally is not exercised in this case.
+ This means that the networking layer will not adapt based on
+ reclaim induced by memory.reclaim.
+
memory.peak
A read-only single value file which exists on non-root
cgroups.
@@ -1433,6 +1448,24 @@ PAGE_SIZE multiple when read back.
workingset_nodereclaim
Number of times a shadow node has been reclaimed
+ pgscan (npn)
+ Amount of scanned pages (in an inactive LRU list)
+
+ pgsteal (npn)
+ Amount of reclaimed pages
+
+ pgscan_kswapd (npn)
+ Amount of scanned pages by kswapd (in an inactive LRU list)
+
+ pgscan_direct (npn)
+ Amount of scanned pages directly (in an inactive LRU list)
+
+ pgsteal_kswapd (npn)
+ Amount of reclaimed pages by kswapd
+
+ pgsteal_direct (npn)
+ Amount of reclaimed pages directly
+
pgfault (npn)
Total number of page faults incurred
@@ -1442,12 +1475,6 @@ PAGE_SIZE multiple when read back.
pgrefill (npn)
Amount of scanned pages (in an active LRU list)
- pgscan (npn)
- Amount of scanned pages (in an inactive LRU list)
-
- pgsteal (npn)
- Amount of reclaimed pages
-
pgactivate (npn)
Amount of pages moved to the active LRU list
diff --git a/Documentation/admin-guide/device-mapper/writecache.rst b/Documentation/admin-guide/device-mapper/writecache.rst
index 10429779a91a..60c16b7fd5ac 100644
--- a/Documentation/admin-guide/device-mapper/writecache.rst
+++ b/Documentation/admin-guide/device-mapper/writecache.rst
@@ -20,6 +20,7 @@ Constructor parameters:
size)
5. the number of optional parameters (the parameters with an argument
count as two)
+
start_sector n (default: 0)
offset from the start of cache device in 512-byte sectors
high_watermark n (default: 50)
@@ -74,20 +75,21 @@ Constructor parameters:
the origin volume in the last n milliseconds
Status:
+
1. error indicator - 0 if there was no error, otherwise error number
2. the number of blocks
3. the number of free blocks
4. the number of blocks under writeback
-5. the number of read requests
-6. the number of read requests that hit the cache
-7. the number of write requests
-8. the number of write requests that hit uncommitted block
-9. the number of write requests that hit committed block
-10. the number of write requests that bypass the cache
-11. the number of write requests that are allocated in the cache
+5. the number of read blocks
+6. the number of read blocks that hit the cache
+7. the number of write blocks
+8. the number of write blocks that hit uncommitted block
+9. the number of write blocks that hit committed block
+10. the number of write blocks that bypass the cache
+11. the number of write blocks that are allocated in the cache
12. the number of write requests that are blocked on the freelist
13. the number of flush requests
-14. the number of discard requests
+14. the number of discarded blocks
Messages:
flush
diff --git a/Documentation/admin-guide/devices.rst b/Documentation/admin-guide/devices.rst
index 035275fedbdd..e3776d77374b 100644
--- a/Documentation/admin-guide/devices.rst
+++ b/Documentation/admin-guide/devices.rst
@@ -7,10 +7,9 @@ This list is the Linux Device List, the official registry of allocated
device numbers and ``/dev`` directory nodes for the Linux operating
system.
-The LaTeX version of this document is no longer maintained, nor is
-the document that used to reside at lanana.org. This version in the
-mainline Linux kernel is the master document. Updates shall be sent
-as patches to the kernel maintainers (see the
+The version of this document at lanana.org is no longer maintained. This
+version in the mainline Linux kernel is the master document. Updates
+shall be sent as patches to the kernel maintainers (see the
:ref:`Documentation/process/submitting-patches.rst <submittingpatches>` document).
Specifically explore the sections titled "CHAR and MISC DRIVERS", and
"BLOCK LAYER" in the MAINTAINERS file to find the right maintainers
diff --git a/Documentation/admin-guide/efi-stub.rst b/Documentation/admin-guide/efi-stub.rst
index 833edb0d0bc4..b24e7c40d832 100644
--- a/Documentation/admin-guide/efi-stub.rst
+++ b/Documentation/admin-guide/efi-stub.rst
@@ -7,10 +7,10 @@ as a PE/COFF image, thereby convincing EFI firmware loaders to load
it as an EFI executable. The code that modifies the bzImage header,
along with the EFI-specific entry point that the firmware loader
jumps to are collectively known as the "EFI boot stub", and live in
-arch/x86/boot/header.S and arch/x86/boot/compressed/eboot.c,
+arch/x86/boot/header.S and drivers/firmware/efi/libstub/x86-stub.c,
respectively. For ARM the EFI stub is implemented in
arch/arm/boot/compressed/efi-header.S and
-arch/arm/boot/compressed/efi-stub.c. EFI stub code that is shared
+drivers/firmware/efi/libstub/arm32-stub.c. EFI stub code that is shared
between architectures is in drivers/firmware/efi/libstub.
For arm64, there is no compressed kernel support, so the Image itself
diff --git a/Documentation/admin-guide/hw-vuln/index.rst b/Documentation/admin-guide/hw-vuln/index.rst
index 8cbc711cda93..4df436e7c417 100644
--- a/Documentation/admin-guide/hw-vuln/index.rst
+++ b/Documentation/admin-guide/hw-vuln/index.rst
@@ -17,3 +17,4 @@ are configurable at compile, boot or run time.
special-register-buffer-data-sampling.rst
core-scheduling.rst
l1d_flush.rst
+ processor_mmio_stale_data.rst
diff --git a/Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst b/Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
new file mode 100644
index 000000000000..9393c50b5afc
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
@@ -0,0 +1,246 @@
+=========================================
+Processor MMIO Stale Data Vulnerabilities
+=========================================
+
+Processor MMIO Stale Data Vulnerabilities are a class of memory-mapped I/O
+(MMIO) vulnerabilities that can expose data. The sequences of operations for
+exposing data range from simple to very complex. Because most of the
+vulnerabilities require the attacker to have access to MMIO, many environments
+are not affected. System environments using virtualization where MMIO access is
+provided to untrusted guests may need mitigation. These vulnerabilities are
+not transient execution attacks. However, these vulnerabilities may propagate
+stale data into core fill buffers where the data can subsequently be inferred
+by an unmitigated transient execution attack. Mitigation for these
+vulnerabilities includes a combination of microcode update and software
+changes, depending on the platform and usage model. Some of these mitigations
+are similar to those used to mitigate Microarchitectural Data Sampling (MDS) or
+those used to mitigate Special Register Buffer Data Sampling (SRBDS).
+
+Data Propagators
+================
+Propagators are operations that result in stale data being copied or moved from
+one microarchitectural buffer or register to another. Processor MMIO Stale Data
+Vulnerabilities are operations that may result in stale data being directly
+read into an architectural, software-visible state or sampled from a buffer or
+register.
+
+Fill Buffer Stale Data Propagator (FBSDP)
+-----------------------------------------
+Stale data may propagate from fill buffers (FB) into the non-coherent portion
+of the uncore on some non-coherent writes. Fill buffer propagation by itself
+does not make stale data architecturally visible. Stale data must be propagated
+to a location where it is subject to reading or sampling.
+
+Sideband Stale Data Propagator (SSDP)
+-------------------------------------
+The sideband stale data propagator (SSDP) is limited to the client (including
+Intel Xeon server E3) uncore implementation. The sideband response buffer is
+shared by all client cores. For non-coherent reads that go to sideband
+destinations, the uncore logic returns 64 bytes of data to the core, including
+both requested data and unrequested stale data, from a transaction buffer and
+the sideband response buffer. As a result, stale data from the sideband
+response and transaction buffers may now reside in a core fill buffer.
+
+Primary Stale Data Propagator (PSDP)
+------------------------------------
+The primary stale data propagator (PSDP) is limited to the client (including
+Intel Xeon server E3) uncore implementation. Similar to the sideband response
+buffer, the primary response buffer is shared by all client cores. For some
+processors, MMIO primary reads will return 64 bytes of data to the core fill
+buffer including both requested data and unrequested stale data. This is
+similar to the sideband stale data propagator.
+
+Vulnerabilities
+===============
+Device Register Partial Write (DRPW) (CVE-2022-21166)
+-----------------------------------------------------
+Some endpoint MMIO registers incorrectly handle writes that are smaller than
+the register size. Instead of aborting the write or only copying the correct
+subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than
+specified by the write transaction may be written to the register. On
+processors affected by FBSDP, this may expose stale data from the fill buffers
+of the core that created the write transaction.
+
+Shared Buffers Data Sampling (SBDS) (CVE-2022-21125)
+----------------------------------------------------
+After propagators may have moved data around the uncore and copied stale data
+into client core fill buffers, processors affected by MFBDS can leak data from
+the fill buffer. It is limited to the client (including Intel Xeon server E3)
+uncore implementation.
+
+Shared Buffers Data Read (SBDR) (CVE-2022-21123)
+------------------------------------------------
+It is similar to Shared Buffer Data Sampling (SBDS) except that the data is
+directly read into the architectural software-visible state. It is limited to
+the client (including Intel Xeon server E3) uncore implementation.
+
+Affected Processors
+===================
+Not all the CPUs are affected by all the variants. For instance, most
+processors for the server market (excluding Intel Xeon E3 processors) are
+impacted by only Device Register Partial Write (DRPW).
+
+Below is the list of affected Intel processors [#f1]_:
+
+ =================== ============ =========
+ Common name Family_Model Steppings
+ =================== ============ =========
+ HASWELL_X 06_3FH 2,4
+ SKYLAKE_L 06_4EH 3
+ BROADWELL_X 06_4FH All
+ SKYLAKE_X 06_55H 3,4,6,7,11
+ BROADWELL_D 06_56H 3,4,5
+ SKYLAKE 06_5EH 3
+ ICELAKE_X 06_6AH 4,5,6
+ ICELAKE_D 06_6CH 1
+ ICELAKE_L 06_7EH 5
+ ATOM_TREMONT_D 06_86H All
+ LAKEFIELD 06_8AH 1
+ KABYLAKE_L 06_8EH 9 to 12
+ ATOM_TREMONT 06_96H 1
+ ATOM_TREMONT_L 06_9CH 0
+ KABYLAKE 06_9EH 9 to 13
+ COMETLAKE 06_A5H 2,3,5
+ COMETLAKE_L 06_A6H 0,1
+ ROCKETLAKE 06_A7H 1
+ =================== ============ =========
+
+If a CPU is in the affected processor list, but not affected by a variant, it
+is indicated by new bits in MSR IA32_ARCH_CAPABILITIES. As described in a later
+section, mitigation largely remains the same for all the variants, i.e. to
+clear the CPU fill buffers via VERW instruction.
+
+New bits in MSRs
+================
+Newer processors and microcode update on existing affected processors added new
+bits to IA32_ARCH_CAPABILITIES MSR. These bits can be used to enumerate
+specific variants of Processor MMIO Stale Data vulnerabilities and mitigation
+capability.
+
+MSR IA32_ARCH_CAPABILITIES
+--------------------------
+Bit 13 - SBDR_SSDP_NO - When set, processor is not affected by either the
+ Shared Buffers Data Read (SBDR) vulnerability or the sideband stale
+ data propagator (SSDP).
+Bit 14 - FBSDP_NO - When set, processor is not affected by the Fill Buffer
+ Stale Data Propagator (FBSDP).
+Bit 15 - PSDP_NO - When set, processor is not affected by Primary Stale Data
+ Propagator (PSDP).
+Bit 17 - FB_CLEAR - When set, VERW instruction will overwrite CPU fill buffer
+ values as part of MD_CLEAR operations. Processors that do not
+ enumerate MDS_NO (meaning they are affected by MDS) but that do
+ enumerate support for both L1D_FLUSH and MD_CLEAR implicitly enumerate
+ FB_CLEAR as part of their MD_CLEAR support.
+Bit 18 - FB_CLEAR_CTRL - Processor supports read and write to MSR
+ IA32_MCU_OPT_CTRL[FB_CLEAR_DIS]. On such processors, the FB_CLEAR_DIS
+ bit can be set to cause the VERW instruction to not perform the
+ FB_CLEAR action. Not all processors that support FB_CLEAR will support
+ FB_CLEAR_CTRL.
+
+MSR IA32_MCU_OPT_CTRL
+---------------------
+Bit 3 - FB_CLEAR_DIS - When set, VERW instruction does not perform the FB_CLEAR
+action. This may be useful to reduce the performance impact of FB_CLEAR in
+cases where system software deems it warranted (for example, when performance
+is more critical, or the untrusted software has no MMIO access). Note that
+FB_CLEAR_DIS has no impact on enumeration (for example, it does not change
+FB_CLEAR or MD_CLEAR enumeration) and it may not be supported on all processors
+that enumerate FB_CLEAR.
+
+Mitigation
+==========
+Like MDS, all variants of Processor MMIO Stale Data vulnerabilities have the
+same mitigation strategy to force the CPU to clear the affected buffers before
+an attacker can extract the secrets.
+
+This is achieved by using the otherwise unused and obsolete VERW instruction in
+combination with a microcode update. The microcode clears the affected CPU
+buffers when the VERW instruction is executed.
+
+Kernel reuses the MDS function to invoke the buffer clearing:
+
+ mds_clear_cpu_buffers()
+
+On MDS affected CPUs, the kernel already invokes CPU buffer clear on
+kernel/userspace, hypervisor/guest and C-state (idle) transitions. No
+additional mitigation is needed on such CPUs.
+
+For CPUs not affected by MDS or TAA, mitigation is needed only for the attacker
+with MMIO capability. Therefore, VERW is not required for kernel/userspace. For
+virtualization case, VERW is only needed at VMENTER for a guest with MMIO
+capability.
+
+Mitigation points
+-----------------
+Return to user space
+^^^^^^^^^^^^^^^^^^^^
+Same mitigation as MDS when affected by MDS/TAA, otherwise no mitigation
+needed.
+
+C-State transition
+^^^^^^^^^^^^^^^^^^
+Control register writes by CPU during C-state transition can propagate data
+from fill buffer to uncore buffers. Execute VERW before C-state transition to
+clear CPU fill buffers.
+
+Guest entry point
+^^^^^^^^^^^^^^^^^
+Same mitigation as MDS when processor is also affected by MDS/TAA, otherwise
+execute VERW at VMENTER only for MMIO capable guests. On CPUs not affected by
+MDS/TAA, guest without MMIO access cannot extract secrets using Processor MMIO
+Stale Data vulnerabilities, so there is no need to execute VERW for such guests.
+
+Mitigation control on the kernel command line
+---------------------------------------------
+The kernel command line allows to control the Processor MMIO Stale Data
+mitigations at boot time with the option "mmio_stale_data=". The valid
+arguments for this option are:
+
+ ========== =================================================================
+ full If the CPU is vulnerable, enable mitigation; CPU buffer clearing
+ on exit to userspace and when entering a VM. Idle transitions are
+ protected as well. It does not automatically disable SMT.
+ full,nosmt Same as full, with SMT disabled on vulnerable CPUs. This is the
+ complete mitigation.
+ off Disables mitigation completely.
+ ========== =================================================================
+
+If the CPU is affected and mmio_stale_data=off is not supplied on the kernel
+command line, then the kernel selects the appropriate mitigation.
+
+Mitigation status information
+-----------------------------
+The Linux kernel provides a sysfs interface to enumerate the current
+vulnerability status of the system: whether the system is vulnerable, and
+which mitigations are active. The relevant sysfs file is:
+
+ /sys/devices/system/cpu/vulnerabilities/mmio_stale_data
+
+The possible values in this file are:
+
+ .. list-table::
+
+ * - 'Not affected'
+ - The processor is not vulnerable
+ * - 'Vulnerable'
+ - The processor is vulnerable, but no mitigation enabled
+ * - 'Vulnerable: Clear CPU buffers attempted, no microcode'
+ - The processor is vulnerable, but microcode is not updated. The
+ mitigation is enabled on a best effort basis.
+ * - 'Mitigation: Clear CPU buffers'
+ - The processor is vulnerable and the CPU buffer clearing mitigation is
+ enabled.
+
+If the processor is vulnerable then the following information is appended to
+the above information:
+
+ ======================== ===========================================
+ 'SMT vulnerable' SMT is enabled
+ 'SMT disabled' SMT is disabled
+ 'SMT Host state unknown' Kernel runs in a VM, Host SMT state unknown
+ ======================== ===========================================
+
+References
+----------
+.. [#f1] Affected Processors
+ https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
diff --git a/Documentation/admin-guide/hw-vuln/spectre.rst b/Documentation/admin-guide/hw-vuln/spectre.rst
index 9e9556826450..2ce2a38cdd55 100644
--- a/Documentation/admin-guide/hw-vuln/spectre.rst
+++ b/Documentation/admin-guide/hw-vuln/spectre.rst
@@ -422,6 +422,14 @@ The possible values in this file are:
'RSB filling' Protection of RSB on context switch enabled
============= ===========================================
+ - EIBRS Post-barrier Return Stack Buffer (PBRSB) protection status:
+
+ =========================== =======================================================
+ 'PBRSB-eIBRS: SW sequence' CPU is affected and protection of RSB on VMEXIT enabled
+ 'PBRSB-eIBRS: Vulnerable' CPU is vulnerable
+ 'PBRSB-eIBRS: Not affected' CPU is not affected by PBRSB
+ =========================== =======================================================
+
Full mitigation might require a microcode update from the CPU
vendor. When the necessary microcode is not available, the kernel will
report vulnerability.
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 8090130b544b..db5de5f0b9d3 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -400,6 +400,12 @@
arm64.nomte [ARM64] Unconditionally disable Memory Tagging Extension
support
+ arm64.nosve [ARM64] Unconditionally disable Scalable Vector
+ Extension support
+
+ arm64.nosme [ARM64] Unconditionally disable Scalable Matrix
+ Extension support
+
ataflop= [HW,M68k]
atarimouse= [HW,MOUSE] Atari Mouse
@@ -550,7 +556,7 @@
nosocket -- Disable socket memory accounting.
nokmem -- Disable kernel memory accounting.
- checkreqprot [SELINUX] Set initial checkreqprot flag value.
+ checkreqprot= [SELINUX] Set initial checkreqprot flag value.
Format: { "0" | "1" }
See security/selinux/Kconfig help text.
0 -- check protection applied by kernel (includes
@@ -1152,8 +1158,12 @@
nopku [X86] Disable Memory Protection Keys CPU feature found
in some Intel CPUs.
- <module>.async_probe [KNL]
- Enable asynchronous probe on this module.
+ <module>.async_probe[=<bool>] [KNL]
+ If no <bool> value is specified or if the value
+ specified is not a valid <bool>, enable asynchronous
+ probe on this module. Otherwise, enable/disable
+ asynchronous probe on this module as indicated by the
+ <bool> value. See also: module.async_probe
early_ioremap_debug [KNL]
Enable debug messages in early_ioremap support. This
@@ -1439,7 +1449,7 @@
(in particular on some ATI chipsets).
The kernel tries to set a reasonable default.
- enforcing [SELINUX] Set initial enforcing status.
+ enforcing= [SELINUX] Set initial enforcing status.
Format: {"0" | "1"}
See security/selinux/Kconfig help text.
0 -- permissive (log only, no denials).
@@ -1667,6 +1677,19 @@
hlt [BUGS=ARM,SH]
+ hostname= [KNL] Set the hostname (aka UTS nodename).
+ Format: <string>
+ This allows setting the system's hostname during early
+ startup. This sets the name returned by gethostname.
+ Using this parameter to set the hostname makes it
+ possible to ensure the hostname is correctly set before
+ any userspace processes run, avoiding the possibility
+ that a process may call gethostname before the hostname
+ has been explicitly set, resulting in the calling
+ process getting an incorrect result. The string must
+ not exceed the maximum allowed hostname length (usually
+ 64 characters) and will be truncated otherwise.
+
hpet= [X86-32,HPET] option to control HPET usage
Format: { enable (default) | disable | force |
verbose }
@@ -1712,19 +1735,22 @@
hugetlb_free_vmemmap=
[KNL] Reguires CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
enabled.
+ Control if HugeTLB Vmemmap Optimization (HVO) is enabled.
Allows heavy hugetlb users to free up some more
memory (7 * PAGE_SIZE for each 2MB hugetlb page).
- Format: { [oO][Nn]/Y/y/1 | [oO][Ff]/N/n/0 (default) }
+ Format: { on | off (default) }
- [oO][Nn]/Y/y/1: enable the feature
- [oO][Ff]/N/n/0: disable the feature
+ on: enable HVO
+ off: disable HVO
Built with CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON=y,
the default is on.
- This is not compatible with memory_hotplug.memmap_on_memory.
- If both parameters are enabled, hugetlb_free_vmemmap takes
- precedence over memory_hotplug.memmap_on_memory.
+ Note that the vmemmap pages may be allocated from the added
+ memory block itself when memory_hotplug.memmap_on_memory is
+ enabled, those vmemmap pages cannot be optimized even if this
+ feature is enabled. Other vmemmap pages not allocated from
+ the added memory block itself do not be affected.
hung_task_panic=
[KNL] Should the hung task detector generate panics.
@@ -2266,23 +2292,39 @@
ivrs_ioapic [HW,X86-64]
Provide an override to the IOAPIC-ID<->DEVICE-ID
- mapping provided in the IVRS ACPI table. For
- example, to map IOAPIC-ID decimal 10 to
- PCI device 00:14.0 write the parameter as:
+ mapping provided in the IVRS ACPI table.
+ By default, PCI segment is 0, and can be omitted.
+ For example:
+ * To map IOAPIC-ID decimal 10 to PCI device 00:14.0
+ write the parameter as:
ivrs_ioapic[10]=00:14.0
+ * To map IOAPIC-ID decimal 10 to PCI segment 0x1 and
+ PCI device 00:14.0 write the parameter as:
+ ivrs_ioapic[10]=0001:00:14.0
ivrs_hpet [HW,X86-64]
Provide an override to the HPET-ID<->DEVICE-ID
- mapping provided in the IVRS ACPI table. For
- example, to map HPET-ID decimal 0 to
- PCI device 00:14.0 write the parameter as:
+ mapping provided in the IVRS ACPI table.
+ By default, PCI segment is 0, and can be omitted.
+ For example:
+ * To map HPET-ID decimal 0 to PCI device 00:14.0
+ write the parameter as:
ivrs_hpet[0]=00:14.0
+ * To map HPET-ID decimal 10 to PCI segment 0x1 and
+ PCI device 00:14.0 write the parameter as:
+ ivrs_ioapic[10]=0001:00:14.0
ivrs_acpihid [HW,X86-64]
Provide an override to the ACPI-HID:UID<->DEVICE-ID
- mapping provided in the IVRS ACPI table. For
- example, to map UART-HID:UID AMD0020:0 to
- PCI device 00:14.5 write the parameter as:
+ mapping provided in the IVRS ACPI table.
+
+ For example, to map UART-HID:UID AMD0020:0 to
+ PCI segment 0x1 and PCI device ID 00:14.5,
+ write the parameter as:
+ ivrs_acpihid[0001:00:14.5]=AMD0020:0
+
+ By default, PCI segment is 0, and can be omitted.
+ For example, PCI device 00:14.5 write the parameter as:
ivrs_acpihid[00:14.5]=AMD0020:0
js= [HW,JOY] Analog joystick
@@ -2418,8 +2460,7 @@
the KVM_CLEAR_DIRTY ioctl, and only for the pages being
cleared.
- Eager page splitting currently only supports splitting
- huge pages mapped by the TDP MMU.
+ Eager page splitting is only supported when kvm.tdp_mmu=Y.
Default is Y (on).
@@ -2469,7 +2510,6 @@
protected: nVHE-based mode with support for guests whose
state is kept private from the host.
- Not valid if the kernel is running in EL2.
Defaults to VHE/nVHE based on hardware support. Setting
mode to "protected" will disable kexec and hibernation
@@ -3069,10 +3109,12 @@
[KNL,X86,ARM] Boolean flag to enable this feature.
Format: {on | off (default)}
When enabled, runtime hotplugged memory will
- allocate its internal metadata (struct pages)
- from the hotadded memory which will allow to
- hotadd a lot of memory without requiring
- additional memory to do so.
+ allocate its internal metadata (struct pages,
+ those vmemmap pages cannot be optimized even
+ if hugetlb_free_vmemmap is enabled) from the
+ hotadded memory which will allow to hotadd a
+ lot of memory without requiring additional
+ memory to do so.
This feature is disabled by default because it
has some implication on large (e.g. GB)
allocations in some configurations (e.g. small
@@ -3082,10 +3124,6 @@
Note that even when enabled, there are a few cases where
the feature is not effective.
- This is not compatible with hugetlb_free_vmemmap. If
- both parameters are enabled, hugetlb_free_vmemmap takes
- precedence over memory_hotplug.memmap_on_memory.
-
memtest= [KNL,X86,ARM,M68K,PPC,RISCV] Enable memtest
Format: <integer>
default : 0 <disable>
@@ -3104,7 +3142,7 @@
mem_encrypt=on: Activate SME
mem_encrypt=off: Do not activate SME
- Refer to Documentation/virt/kvm/amd-memory-encryption.rst
+ Refer to Documentation/virt/kvm/x86/amd-memory-encryption.rst
for details on when memory encryption can be activated.
mem_sleep_default= [SUSPEND] Default system suspend mode:
@@ -3162,7 +3200,7 @@
improves system performance, but it may also
expose users to several CPU vulnerabilities.
Equivalent to: nopti [X86,PPC]
- kpti=0 [ARM64]
+ if nokaslr then kpti=0 [ARM64]
nospectre_v1 [X86,PPC]
nobp=0 [S390]
nospectre_v2 [X86,PPC,S390,ARM64]
@@ -3176,6 +3214,8 @@
srbds=off [X86,INTEL]
no_entry_flush [PPC]
no_uaccess_flush [PPC]
+ mmio_stale_data=off [X86]
+ retbleed=off [X86]
Exceptions:
This does not have any effect on
@@ -3197,6 +3237,8 @@
Equivalent to: l1tf=flush,nosmt [X86]
mds=full,nosmt [X86]
tsx_async_abort=full,nosmt [X86]
+ mmio_stale_data=full,nosmt [X86]
+ retbleed=auto,nosmt [X86]
mminit_loglevel=
[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
@@ -3206,6 +3248,49 @@
log everything. Information is printed at KERN_DEBUG
so loglevel=8 may also need to be specified.
+ mmio_stale_data=
+ [X86,INTEL] Control mitigation for the Processor
+ MMIO Stale Data vulnerabilities.
+
+ Processor MMIO Stale Data is a class of
+ vulnerabilities that may expose data after an MMIO
+ operation. Exposed data could originate or end in
+ the same CPU buffers as affected by MDS and TAA.
+ Therefore, similar to MDS and TAA, the mitigation
+ is to clear the affected CPU buffers.
+
+ This parameter controls the mitigation. The
+ options are:
+
+ full - Enable mitigation on vulnerable CPUs
+
+ full,nosmt - Enable mitigation and disable SMT on
+ vulnerable CPUs.
+
+ off - Unconditionally disable mitigation
+
+ On MDS or TAA affected machines,
+ mmio_stale_data=off can be prevented by an active
+ MDS or TAA mitigation as these vulnerabilities are
+ mitigated with the same mechanism so in order to
+ disable this mitigation, you need to specify
+ mds=off and tsx_async_abort=off too.
+
+ Not specifying this option is equivalent to
+ mmio_stale_data=full.
+
+ For details see:
+ Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
+
+ module.async_probe=<bool>
+ [KNL] When set to true, modules will use async probing
+ by default. To enable/disable async probing for a
+ specific module, use the module specific control that
+ is documented under <module>.async_probe. When both
+ module.async_probe and <module>.async_probe are
+ specified, <module>.async_probe takes precedence for
+ the specific module.
+
module.sig_enforce
[KNL] When CONFIG_MODULE_SIG is set, this means that
modules without (valid) signatures will fail to load.
@@ -3495,9 +3580,6 @@
noautogroup Disable scheduler automatic task group creation.
- nobats [PPC] Do not use BATs for mapping kernel lowmem
- on "Classic" PPC cores.
-
nocache [ARM]
nodsp [SH] Disable hardware DSP at boot time.
@@ -3624,6 +3706,9 @@
just as if they had also been called out in the
rcu_nocbs= boot parameter.
+ Note that this argument takes precedence over
+ the CONFIG_RCU_NOCB_CPU_DEFAULT_ALL option.
+
noiotrap [SH] Disables trapped I/O port accesses.
noirqdebug [X86-32] Disables the code which attempts to detect and
@@ -3664,9 +3749,6 @@
nolapic_timer [X86-32,APIC] Do not use the local APIC timer.
- noltlbs [PPC] Do not use large page/tlb entries for kernel
- lowmem mapping on PPC40x and PPC8xx
-
nomca [IA-64] Disable machine check abort handling
nomce [X86-32] Disable Machine Check Exception
@@ -3698,11 +3780,6 @@
noreplace-smp [X86-32,SMP] Don't replace SMP instructions
with UP alternatives
- nordrand [X86] Disable kernel use of the RDRAND and
- RDSEED instructions even if they are supported
- by the processor. RDRAND and RDSEED are still
- available to user space applications.
-
noresume [SWSUSP] Disables resume and restores original swap
space.
@@ -4522,6 +4599,9 @@
no-callback mode from boot but the mode may be
toggled at runtime via cpusets.
+ Note that this argument takes precedence over
+ the CONFIG_RCU_NOCB_CPU_DEFAULT_ALL option.
+
rcu_nocb_poll [KNL]
Rather than requiring that offloaded CPUs
(specified by rcu_nocbs= above) explicitly
@@ -4631,6 +4711,34 @@
When RCU_NOCB_CPU is set, also adjust the
priority of NOCB callback kthreads.
+ rcutree.rcu_divisor= [KNL]
+ Set the shift-right count to use to compute
+ the callback-invocation batch limit bl from
+ the number of callbacks queued on this CPU.
+ The result will be bounded below by the value of
+ the rcutree.blimit kernel parameter. Every bl
+ callbacks, the softirq handler will exit in
+ order to allow the CPU to do other work.
+
+ Please note that this callback-invocation batch
+ limit applies only to non-offloaded callback
+ invocation. Offloaded callbacks are instead
+ invoked in the context of an rcuoc kthread, which
+ scheduler will preempt as it does any other task.
+
+ rcutree.nocb_nobypass_lim_per_jiffy= [KNL]
+ On callback-offloaded (rcu_nocbs) CPUs,
+ RCU reduces the lock contention that would
+ otherwise be caused by callback floods through
+ use of the ->nocb_bypass list. However, in the
+ common non-flooded case, RCU queues directly to
+ the main ->cblist in order to avoid the extra
+ overhead of the ->nocb_bypass list and its lock.
+ But if there are too many callbacks queued during
+ a single jiffy, RCU pre-queues the callbacks into
+ the ->nocb_bypass queue. The definition of "too
+ many" is supplied by this kernel boot parameter.
+
rcutree.rcu_nocb_gp_stride= [KNL]
Set the number of NOCB callback kthreads in
each group, which defaults to the square root
@@ -5162,6 +5270,30 @@
retain_initrd [RAM] Keep initrd memory after extraction
+ retbleed= [X86] Control mitigation of RETBleed (Arbitrary
+ Speculative Code Execution with Return Instructions)
+ vulnerability.
+
+ off - no mitigation
+ auto - automatically select a migitation
+ auto,nosmt - automatically select a mitigation,
+ disabling SMT if necessary for
+ the full mitigation (only on Zen1
+ and older without STIBP).
+ ibpb - mitigate short speculation windows on
+ basic block boundaries too. Safe, highest
+ perf impact.
+ unret - force enable untrained return thunks,
+ only effective on AMD f15h-f17h
+ based systems.
+ unret,nosmt - like unret, will disable SMT when STIBP
+ is not available.
+
+ Selecting 'auto' will choose a mitigation method at run
+ time according to the CPU.
+
+ Not specifying this option is equivalent to retbleed=auto.
+
rfkill.default_state=
0 "airplane mode". All wifi, bluetooth, wimax, gps, fm,
etc. communication is blocked by default.
@@ -5407,7 +5539,7 @@
cache (risks via metadata attacks are mostly
unchanged). Debug options disable merging on their
own.
- For more information see Documentation/vm/slub.rst.
+ For more information see Documentation/mm/slub.rst.
slab_max_order= [MM, SLAB]
Determines the maximum allowed order for slabs.
@@ -5421,13 +5553,13 @@
slub_debug can create guard zones around objects and
may poison objects when not in use. Also tracks the
last alloc / free. For more information see
- Documentation/vm/slub.rst.
+ Documentation/mm/slub.rst.
slub_max_order= [MM, SLUB]
Determines the maximum allowed order for slabs.
A high setting may cause OOMs due to memory
fragmentation. For more information see
- Documentation/vm/slub.rst.
+ Documentation/mm/slub.rst.
slub_min_objects= [MM, SLUB]
The minimum number of objects per slab. SLUB will
@@ -5436,12 +5568,12 @@
the number of objects indicated. The higher the number
of objects the smaller the overhead of tracking slabs
and the less frequently locks need to be acquired.
- For more information see Documentation/vm/slub.rst.
+ For more information see Documentation/mm/slub.rst.
slub_min_order= [MM, SLUB]
Determines the minimum page order for slabs. Must be
lower than slub_max_order.
- For more information see Documentation/vm/slub.rst.
+ For more information see Documentation/mm/slub.rst.
slub_merge [MM, SLUB]
Same with slab_merge.
@@ -5533,6 +5665,7 @@
eibrs - enhanced IBRS
eibrs,retpoline - enhanced IBRS + Retpolines
eibrs,lfence - enhanced IBRS + LFENCE
+ ibrs - use IBRS to protect kernel
Not specifying this option is equivalent to
spectre_v2=auto.
@@ -5736,6 +5869,24 @@
expediting. Set to zero to disable automatic
expediting.
+ srcutree.srcu_max_nodelay [KNL]
+ Specifies the number of no-delay instances
+ per jiffy for which the SRCU grace period
+ worker thread will be rescheduled with zero
+ delay. Beyond this limit, worker thread will
+ be rescheduled with a sleep delay of one jiffy.
+
+ srcutree.srcu_max_nodelay_phase [KNL]
+ Specifies the per-grace-period phase, number of
+ non-sleeping polls of readers. Beyond this limit,
+ grace period worker thread will be rescheduled
+ with a sleep delay of one jiffy, between each
+ rescan of the readers, for a grace period phase.
+
+ srcutree.srcu_retry_check_delay [KNL]
+ Specifies number of microseconds of non-sleeping
+ delay between each non-sleeping poll of readers.
+
srcutree.small_contention_lim [KNL]
Specifies the number of update-side contention
events per jiffy will be tolerated before
@@ -5869,8 +6020,11 @@
it if 0 is given (See Documentation/admin-guide/cgroup-v1/memory.rst)
swiotlb= [ARM,IA-64,PPC,MIPS,X86]
- Format: { <int> | force | noforce }
+ Format: { <int> [,<int>] | force | noforce }
<int> -- Number of I/O TLB slabs
+ <int> -- Second integer after comma. Number of swiotlb
+ areas with their own lock. Will be rounded up
+ to a power of 2.
force -- force using of bounce buffers even if they
wouldn't be automatically used by the kernel
noforce -- Never use bounce buffers (for debugging)
diff --git a/Documentation/admin-guide/media/vimc.dot b/Documentation/admin-guide/media/vimc.dot
index 8e829c164626..92a5bb631235 100644
--- a/Documentation/admin-guide/media/vimc.dot
+++ b/Documentation/admin-guide/media/vimc.dot
@@ -5,9 +5,13 @@ digraph board {
n00000001 [label="{{} | Sensor A\n/dev/v4l-subdev0 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
n00000001:port0 -> n00000005:port0 [style=bold]
n00000001:port0 -> n0000000b [style=bold]
+ n00000001 -> n00000002
+ n00000002 [label="{{} | Lens A\n/dev/v4l-subdev5 | {<port0>}}", shape=Mrecord, style=filled, fillcolor=green]
n00000003 [label="{{} | Sensor B\n/dev/v4l-subdev1 | {<port0> 0}}", shape=Mrecord, style=filled, fillcolor=green]
n00000003:port0 -> n00000008:port0 [style=bold]
n00000003:port0 -> n0000000f [style=bold]
+ n00000003 -> n00000004
+ n00000004 [label="{{} | Lens B\n/dev/v4l-subdev6 | {<port0>}}", shape=Mrecord, style=filled, fillcolor=green]
n00000005 [label="{{<port0> 0} | Debayer A\n/dev/v4l-subdev2 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
n00000005:port1 -> n00000015:port0
n00000008 [label="{{<port0> 0} | Debayer B\n/dev/v4l-subdev3 | {<port1> 1}}", shape=Mrecord, style=filled, fillcolor=green]
diff --git a/Documentation/admin-guide/media/vimc.rst b/Documentation/admin-guide/media/vimc.rst
index 0b07f05dde25..3b4d2b36b4f3 100644
--- a/Documentation/admin-guide/media/vimc.rst
+++ b/Documentation/admin-guide/media/vimc.rst
@@ -53,6 +53,25 @@ vimc-sensor:
* 1 Pad source
+vimc-lens:
+ Ancillary lens for a sensor. Supports auto focus control. Linked to
+ a vimc-sensor using an ancillary link. The lens supports FOCUS_ABSOLUTE
+ control.
+
+.. code-block:: bash
+
+ media-ctl -p
+ ...
+ - entity 28: Lens A (0 pad, 0 link)
+ type V4L2 subdev subtype Lens flags 0
+ device node name /dev/v4l-subdev6
+ - entity 29: Lens B (0 pad, 0 link)
+ type V4L2 subdev subtype Lens flags 0
+ device node name /dev/v4l-subdev7
+ v4l2-ctl -d /dev/v4l-subdev7 -C focus_absolute
+ focus_absolute: 0
+
+
vimc-debayer:
Transforms images in bayer format into a non-bayer format.
Exposes:
diff --git a/Documentation/admin-guide/media/vivid.rst b/Documentation/admin-guide/media/vivid.rst
index 6d7175f96f74..4f680dc9661c 100644
--- a/Documentation/admin-guide/media/vivid.rst
+++ b/Documentation/admin-guide/media/vivid.rst
@@ -714,6 +714,20 @@ The Test Pattern Controls are all specific to video capture.
does the same for the EAV (End of Active Video) code.
+- Insert Video Guard Band
+
+ adds 4 columns of pixels with the HDMI Video Guard Band code at the
+ left hand side of the image. This only works with 3 or 4 byte RGB pixel
+ formats. The RGB pixel value 0xab/0x55/0xab turns out to be equivalent
+ to the HDMI Video Guard Band code that precedes each active video line
+ (see section 5.2.2.1 in the HDMI 1.3 Specification). To test if a video
+ receiver has correct HDMI Video Guard Band processing, enable this
+ control and then move the image to the left hand side of the screen.
+ That will result in video lines that start with multiple pixels that
+ have the same value as the Video Guard Band that precedes them.
+ Receivers that will just keep skipping Video Guard Band values will
+ now fail and either loose sync or these video lines will shift.
+
Capture Feature Selection Controls
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
diff --git a/Documentation/admin-guide/mm/concepts.rst b/Documentation/admin-guide/mm/concepts.rst
index b966fcff993b..c79f1e336222 100644
--- a/Documentation/admin-guide/mm/concepts.rst
+++ b/Documentation/admin-guide/mm/concepts.rst
@@ -125,7 +125,7 @@ processor. Each bank is referred to as a `node` and for each node Linux
constructs an independent memory management subsystem. A node has its
own set of zones, lists of free and used pages and various statistics
counters. You can find more details about NUMA in
-:ref:`Documentation/vm/numa.rst <numa>` and in
+:ref:`Documentation/mm/numa.rst <numa>` and in
:ref:`Documentation/admin-guide/mm/numa_memory_policy.rst <numa_memory_policy>`.
Page cache
diff --git a/Documentation/admin-guide/mm/damon/index.rst b/Documentation/admin-guide/mm/damon/index.rst
index 61aff88347f3..05500042f777 100644
--- a/Documentation/admin-guide/mm/damon/index.rst
+++ b/Documentation/admin-guide/mm/damon/index.rst
@@ -4,7 +4,7 @@
Monitoring Data Accesses
========================
-:doc:`DAMON </vm/damon/index>` allows light-weight data access monitoring.
+:doc:`DAMON </mm/damon/index>` allows light-weight data access monitoring.
Using DAMON, users can analyze the memory access patterns of their systems and
optimize those.
@@ -14,3 +14,4 @@ optimize those.
start
usage
reclaim
+ lru_sort
diff --git a/Documentation/admin-guide/mm/damon/lru_sort.rst b/Documentation/admin-guide/mm/damon/lru_sort.rst
new file mode 100644
index 000000000000..c09cace80651
--- /dev/null
+++ b/Documentation/admin-guide/mm/damon/lru_sort.rst
@@ -0,0 +1,294 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============================
+DAMON-based LRU-lists Sorting
+=============================
+
+DAMON-based LRU-lists Sorting (DAMON_LRU_SORT) is a static kernel module that
+aimed to be used for proactive and lightweight data access pattern based
+(de)prioritization of pages on their LRU-lists for making LRU-lists a more
+trusworthy data access pattern source.
+
+Where Proactive LRU-lists Sorting is Required?
+==============================================
+
+As page-granularity access checking overhead could be significant on huge
+systems, LRU lists are normally not proactively sorted but partially and
+reactively sorted for special events including specific user requests, system
+calls and memory pressure. As a result, LRU lists are sometimes not so
+perfectly prepared to be used as a trustworthy access pattern source for some
+situations including reclamation target pages selection under sudden memory
+pressure.
+
+Because DAMON can identify access patterns of best-effort accuracy while
+inducing only user-specified range of overhead, proactively running
+DAMON_LRU_SORT could be helpful for making LRU lists more trustworthy access
+pattern source with low and controlled overhead.
+
+How It Works?
+=============
+
+DAMON_LRU_SORT finds hot pages (pages of memory regions that showing access
+rates that higher than a user-specified threshold) and cold pages (pages of
+memory regions that showing no access for a time that longer than a
+user-specified threshold) using DAMON, and prioritizes hot pages while
+deprioritizing cold pages on their LRU-lists. To avoid it consuming too much
+CPU for the prioritizations, a CPU time usage limit can be configured. Under
+the limit, it prioritizes and deprioritizes more hot and cold pages first,
+respectively. System administrators can also configure under what situation
+this scheme should automatically activated and deactivated with three memory
+pressure watermarks.
+
+Its default parameters for hotness/coldness thresholds and CPU quota limit are
+conservatively chosen. That is, the module under its default parameters could
+be widely used without harm for common situations while providing a level of
+benefits for systems having clear hot/cold access patterns under memory
+pressure while consuming only a limited small portion of CPU time.
+
+Interface: Module Parameters
+============================
+
+To use this feature, you should first ensure your system is running on a kernel
+that is built with ``CONFIG_DAMON_LRU_SORT=y``.
+
+To let sysadmins enable or disable it and tune for the given system,
+DAMON_LRU_SORT utilizes module parameters. That is, you can put
+``damon_lru_sort.<parameter>=<value>`` on the kernel boot command line or write
+proper values to ``/sys/modules/damon_lru_sort/parameters/<parameter>`` files.
+
+Below are the description of each parameter.
+
+enabled
+-------
+
+Enable or disable DAMON_LRU_SORT.
+
+You can enable DAMON_LRU_SORT by setting the value of this parameter as ``Y``.
+Setting it as ``N`` disables DAMON_LRU_SORT. Note that DAMON_LRU_SORT could do
+no real monitoring and LRU-lists sorting due to the watermarks-based activation
+condition. Refer to below descriptions for the watermarks parameter for this.
+
+commit_inputs
+-------------
+
+Make DAMON_LRU_SORT reads the input parameters again, except ``enabled``.
+
+Input parameters that updated while DAMON_LRU_SORT is running are not applied
+by default. Once this parameter is set as ``Y``, DAMON_LRU_SORT reads values
+of parametrs except ``enabled`` again. Once the re-reading is done, this
+parameter is set as ``N``. If invalid parameters are found while the
+re-reading, DAMON_LRU_SORT will be disabled.
+
+hot_thres_access_freq
+---------------------
+
+Access frequency threshold for hot memory regions identification in permil.
+
+If a memory region is accessed in frequency of this or higher, DAMON_LRU_SORT
+identifies the region as hot, and mark it as accessed on the LRU list, so that
+it could not be reclaimed under memory pressure. 50% by default.
+
+cold_min_age
+------------
+
+Time threshold for cold memory regions identification in microseconds.
+
+If a memory region is not accessed for this or longer time, DAMON_LRU_SORT
+identifies the region as cold, and mark it as unaccessed on the LRU list, so
+that it could be reclaimed first under memory pressure. 120 seconds by
+default.
+
+quota_ms
+--------
+
+Limit of time for trying the LRU lists sorting in milliseconds.
+
+DAMON_LRU_SORT tries to use only up to this time within a time window
+(quota_reset_interval_ms) for trying LRU lists sorting. This can be used
+for limiting CPU consumption of DAMON_LRU_SORT. If the value is zero, the
+limit is disabled.
+
+10 ms by default.
+
+quota_reset_interval_ms
+-----------------------
+
+The time quota charge reset interval in milliseconds.
+
+The charge reset interval for the quota of time (quota_ms). That is,
+DAMON_LRU_SORT does not try LRU-lists sorting for more than quota_ms
+milliseconds or quota_sz bytes within quota_reset_interval_ms milliseconds.
+
+1 second by default.
+
+wmarks_interval
+---------------
+
+The watermarks check time interval in microseconds.
+
+Minimal time to wait before checking the watermarks, when DAMON_LRU_SORT is
+enabled but inactive due to its watermarks rule. 5 seconds by default.
+
+wmarks_high
+-----------
+
+Free memory rate (per thousand) for the high watermark.
+
+If free memory of the system in bytes per thousand bytes is higher than this,
+DAMON_LRU_SORT becomes inactive, so it does nothing but periodically checks the
+watermarks. 200 (20%) by default.
+
+wmarks_mid
+----------
+
+Free memory rate (per thousand) for the middle watermark.
+
+If free memory of the system in bytes per thousand bytes is between this and
+the low watermark, DAMON_LRU_SORT becomes active, so starts the monitoring and
+the LRU-lists sorting. 150 (15%) by default.
+
+wmarks_low
+----------
+
+Free memory rate (per thousand) for the low watermark.
+
+If free memory of the system in bytes per thousand bytes is lower than this,
+DAMON_LRU_SORT becomes inactive, so it does nothing but periodically checks the
+watermarks. 50 (5%) by default.
+
+sample_interval
+---------------
+
+Sampling interval for the monitoring in microseconds.
+
+The sampling interval of DAMON for the cold memory monitoring. Please refer to
+the DAMON documentation (:doc:`usage`) for more detail. 5ms by default.
+
+aggr_interval
+-------------
+
+Aggregation interval for the monitoring in microseconds.
+
+The aggregation interval of DAMON for the cold memory monitoring. Please
+refer to the DAMON documentation (:doc:`usage`) for more detail. 100ms by
+default.
+
+min_nr_regions
+--------------
+
+Minimum number of monitoring regions.
+
+The minimal number of monitoring regions of DAMON for the cold memory
+monitoring. This can be used to set lower-bound of the monitoring quality.
+But, setting this too high could result in increased monitoring overhead.
+Please refer to the DAMON documentation (:doc:`usage`) for more detail. 10 by
+default.
+
+max_nr_regions
+--------------
+
+Maximum number of monitoring regions.
+
+The maximum number of monitoring regions of DAMON for the cold memory
+monitoring. This can be used to set upper-bound of the monitoring overhead.
+However, setting this too low could result in bad monitoring quality. Please
+refer to the DAMON documentation (:doc:`usage`) for more detail. 1000 by
+defaults.
+
+monitor_region_start
+--------------------
+
+Start of target memory region in physical address.
+
+The start physical address of memory region that DAMON_LRU_SORT will do work
+against. By default, biggest System RAM is used as the region.
+
+monitor_region_end
+------------------
+
+End of target memory region in physical address.
+
+The end physical address of memory region that DAMON_LRU_SORT will do work
+against. By default, biggest System RAM is used as the region.
+
+kdamond_pid
+-----------
+
+PID of the DAMON thread.
+
+If DAMON_LRU_SORT is enabled, this becomes the PID of the worker thread. Else,
+-1.
+
+nr_lru_sort_tried_hot_regions
+-----------------------------
+
+Number of hot memory regions that tried to be LRU-sorted.
+
+bytes_lru_sort_tried_hot_regions
+--------------------------------
+
+Total bytes of hot memory regions that tried to be LRU-sorted.
+
+nr_lru_sorted_hot_regions
+-------------------------
+
+Number of hot memory regions that successfully be LRU-sorted.
+
+bytes_lru_sorted_hot_regions
+----------------------------
+
+Total bytes of hot memory regions that successfully be LRU-sorted.
+
+nr_hot_quota_exceeds
+--------------------
+
+Number of times that the time quota limit for hot regions have exceeded.
+
+nr_lru_sort_tried_cold_regions
+------------------------------
+
+Number of cold memory regions that tried to be LRU-sorted.
+
+bytes_lru_sort_tried_cold_regions
+---------------------------------
+
+Total bytes of cold memory regions that tried to be LRU-sorted.
+
+nr_lru_sorted_cold_regions
+--------------------------
+
+Number of cold memory regions that successfully be LRU-sorted.
+
+bytes_lru_sorted_cold_regions
+-----------------------------
+
+Total bytes of cold memory regions that successfully be LRU-sorted.
+
+nr_cold_quota_exceeds
+---------------------
+
+Number of times that the time quota limit for cold regions have exceeded.
+
+Example
+=======
+
+Below runtime example commands make DAMON_LRU_SORT to find memory regions
+having >=50% access frequency and LRU-prioritize while LRU-deprioritizing
+memory regions that not accessed for 120 seconds. The prioritization and
+deprioritization is limited to be done using only up to 1% CPU time to avoid
+DAMON_LRU_SORT consuming too much CPU time for the (de)prioritization. It also
+asks DAMON_LRU_SORT to do nothing if the system's free memory rate is more than
+50%, but start the real works if it becomes lower than 40%. If DAMON_RECLAIM
+doesn't make progress and therefore the free memory rate becomes lower than
+20%, it asks DAMON_LRU_SORT to do nothing again, so that we can fall back to
+the LRU-list based page granularity reclamation. ::
+
+ # cd /sys/modules/damon_lru_sort/parameters
+ # echo 500 > hot_thres_access_freq
+ # echo 120000000 > cold_min_age
+ # echo 10 > quota_ms
+ # echo 1000 > quota_reset_interval_ms
+ # echo 500 > wmarks_high
+ # echo 400 > wmarks_mid
+ # echo 200 > wmarks_low
+ # echo Y > enabled
diff --git a/Documentation/admin-guide/mm/damon/reclaim.rst b/Documentation/admin-guide/mm/damon/reclaim.rst
index 46306f1f34b1..4f1479a11e63 100644
--- a/Documentation/admin-guide/mm/damon/reclaim.rst
+++ b/Documentation/admin-guide/mm/damon/reclaim.rst
@@ -48,12 +48,6 @@ DAMON_RECLAIM utilizes module parameters. That is, you can put
``damon_reclaim.<parameter>=<value>`` on the kernel boot command line or write
proper values to ``/sys/modules/damon_reclaim/parameters/<parameter>`` files.
-Note that the parameter values except ``enabled`` are applied only when
-DAMON_RECLAIM starts. Therefore, if you want to apply new parameter values in
-runtime and DAMON_RECLAIM is already enabled, you should disable and re-enable
-it via ``enabled`` parameter file. Writing of the new values to proper
-parameter values should be done before the re-enablement.
-
Below are the description of each parameter.
enabled
@@ -268,4 +262,4 @@ granularity reclamation. ::
.. [1] https://research.google/pubs/pub48551/
.. [2] https://lwn.net/Articles/787611/
-.. [3] https://www.kernel.org/doc/html/latest/vm/free_page_reporting.html
+.. [3] https://www.kernel.org/doc/html/latest/mm/free_page_reporting.html
diff --git a/Documentation/admin-guide/mm/damon/usage.rst b/Documentation/admin-guide/mm/damon/usage.rst
index 1bb7b72414b2..d52f572a9029 100644
--- a/Documentation/admin-guide/mm/damon/usage.rst
+++ b/Documentation/admin-guide/mm/damon/usage.rst
@@ -30,11 +30,11 @@ DAMON provides below interfaces for different users.
<sysfs_interface>`. This will be removed after next LTS kernel is released,
so users should move to the :ref:`sysfs interface <sysfs_interface>`.
- *Kernel Space Programming Interface.*
- :doc:`This </vm/damon/api>` is for kernel space programmers. Using this,
+ :doc:`This </mm/damon/api>` is for kernel space programmers. Using this,
users can utilize every feature of DAMON most flexibly and efficiently by
writing kernel space DAMON application programs for you. You can even extend
DAMON for various address spaces. For detail, please refer to the interface
- :doc:`document </vm/damon/api>`.
+ :doc:`document </mm/damon/api>`.
.. _sysfs_interface:
@@ -185,7 +185,7 @@ controls the monitoring overhead, exist. You can set and get the values by
writing to and rading from the files.
For more details about the intervals and monitoring regions range, please refer
-to the Design document (:doc:`/vm/damon/design`).
+to the Design document (:doc:`/mm/damon/design`).
contexts/<N>/targets/
---------------------
@@ -264,6 +264,8 @@ that can be written to and read from the file and their meaning are as below.
- ``pageout``: Call ``madvise()`` for the region with ``MADV_PAGEOUT``
- ``hugepage``: Call ``madvise()`` for the region with ``MADV_HUGEPAGE``
- ``nohugepage``: Call ``madvise()`` for the region with ``MADV_NOHUGEPAGE``
+ - ``lru_prio``: Prioritize the region on its LRU lists.
+ - ``lru_deprio``: Deprioritize the region on its LRU lists.
- ``stat``: Do nothing but count the statistics
schemes/<N>/access_pattern/
@@ -402,7 +404,7 @@ Attributes
Users can get and set the ``sampling interval``, ``aggregation interval``,
``update interval``, and min/max number of monitoring target regions by
reading from and writing to the ``attrs`` file. To know about the monitoring
-attributes in detail, please refer to the :doc:`/vm/damon/design`. For
+attributes in detail, please refer to the :doc:`/mm/damon/design`. For
example, below commands set those values to 5 ms, 100 ms, 1,000 ms, 10 and
1000, and then check it again::
diff --git a/Documentation/admin-guide/mm/hugetlbpage.rst b/Documentation/admin-guide/mm/hugetlbpage.rst
index a90330d0a837..8e2727dc18d4 100644
--- a/Documentation/admin-guide/mm/hugetlbpage.rst
+++ b/Documentation/admin-guide/mm/hugetlbpage.rst
@@ -164,8 +164,8 @@ default_hugepagesz
will all result in 256 2M huge pages being allocated. Valid default
huge page size is architecture dependent.
hugetlb_free_vmemmap
- When CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP is set, this enables optimizing
- unused vmemmap pages associated with each HugeTLB page.
+ When CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP is set, this enables HugeTLB
+ Vmemmap Optimization (HVO).
When multiple huge page sizes are supported, ``/proc/sys/vm/nr_hugepages``
indicates the current number of pre-allocated huge pages of the default size.
diff --git a/Documentation/admin-guide/mm/index.rst b/Documentation/admin-guide/mm/index.rst
index c21b5823f126..1bd11118dfb1 100644
--- a/Documentation/admin-guide/mm/index.rst
+++ b/Documentation/admin-guide/mm/index.rst
@@ -36,6 +36,7 @@ the Linux memory management.
numa_memory_policy
numaperf
pagemap
+ shrinker_debugfs
soft-dirty
swap_numa
transhuge
diff --git a/Documentation/admin-guide/mm/memory-hotplug.rst b/Documentation/admin-guide/mm/memory-hotplug.rst
index 0f56ecd8ac05..a3c9e8ad8fa0 100644
--- a/Documentation/admin-guide/mm/memory-hotplug.rst
+++ b/Documentation/admin-guide/mm/memory-hotplug.rst
@@ -653,8 +653,8 @@ block might fail:
- Concurrent activity that operates on the same physical memory area, such as
allocating gigantic pages, can result in temporary offlining failures.
-- Out of memory when dissolving huge pages, especially when freeing unused
- vmemmap pages associated with each hugetlb page is enabled.
+- Out of memory when dissolving huge pages, especially when HugeTLB Vmemmap
+ Optimization (HVO) is enabled.
Offlining code may be able to migrate huge page contents, but may not be able
to dissolve the source huge page because it fails allocating (unmovable) pages
diff --git a/Documentation/admin-guide/mm/shrinker_debugfs.rst b/Documentation/admin-guide/mm/shrinker_debugfs.rst
new file mode 100644
index 000000000000..3887f0b294fe
--- /dev/null
+++ b/Documentation/admin-guide/mm/shrinker_debugfs.rst
@@ -0,0 +1,135 @@
+.. _shrinker_debugfs:
+
+==========================
+Shrinker Debugfs Interface
+==========================
+
+Shrinker debugfs interface provides a visibility into the kernel memory
+shrinkers subsystem and allows to get information about individual shrinkers
+and interact with them.
+
+For each shrinker registered in the system a directory in **<debugfs>/shrinker/**
+is created. The directory's name is composed from the shrinker's name and an
+unique id: e.g. *kfree_rcu-0* or *sb-xfs:vda1-36*.
+
+Each shrinker directory contains **count** and **scan** files, which allow to
+trigger *count_objects()* and *scan_objects()* callbacks for each memcg and
+numa node (if applicable).
+
+Usage:
+------
+
+1. *List registered shrinkers*
+
+ ::
+
+ $ cd /sys/kernel/debug/shrinker/
+ $ ls
+ dquota-cache-16 sb-devpts-28 sb-proc-47 sb-tmpfs-42
+ mm-shadow-18 sb-devtmpfs-5 sb-proc-48 sb-tmpfs-43
+ mm-zspool:zram0-34 sb-hugetlbfs-17 sb-pstore-31 sb-tmpfs-44
+ rcu-kfree-0 sb-hugetlbfs-33 sb-rootfs-2 sb-tmpfs-49
+ sb-aio-20 sb-iomem-12 sb-securityfs-6 sb-tracefs-13
+ sb-anon_inodefs-15 sb-mqueue-21 sb-selinuxfs-22 sb-xfs:vda1-36
+ sb-bdev-3 sb-nsfs-4 sb-sockfs-8 sb-zsmalloc-19
+ sb-bpf-32 sb-pipefs-14 sb-sysfs-26 thp-deferred_split-10
+ sb-btrfs:vda2-24 sb-proc-25 sb-tmpfs-1 thp-zero-9
+ sb-cgroup2-30 sb-proc-39 sb-tmpfs-27 xfs-buf:vda1-37
+ sb-configfs-23 sb-proc-41 sb-tmpfs-29 xfs-inodegc:vda1-38
+ sb-dax-11 sb-proc-45 sb-tmpfs-35
+ sb-debugfs-7 sb-proc-46 sb-tmpfs-40
+
+2. *Get information about a specific shrinker*
+
+ ::
+
+ $ cd sb-btrfs\:vda2-24/
+ $ ls
+ count scan
+
+3. *Count objects*
+
+ Each line in the output has the following format::
+
+ <cgroup inode id> <nr of objects on node 0> <nr of objects on node 1> ...
+ <cgroup inode id> <nr of objects on node 0> <nr of objects on node 1> ...
+ ...
+
+ If there are no objects on all numa nodes, a line is omitted. If there
+ are no objects at all, the output might be empty.
+
+ If the shrinker is not memcg-aware or CONFIG_MEMCG is off, 0 is printed
+ as cgroup inode id. If the shrinker is not numa-aware, 0's are printed
+ for all nodes except the first one.
+ ::
+
+ $ cat count
+ 1 224 2
+ 21 98 0
+ 55 818 10
+ 2367 2 0
+ 2401 30 0
+ 225 13 0
+ 599 35 0
+ 939 124 0
+ 1041 3 0
+ 1075 1 0
+ 1109 1 0
+ 1279 60 0
+ 1313 7 0
+ 1347 39 0
+ 1381 3 0
+ 1449 14 0
+ 1483 63 0
+ 1517 53 0
+ 1551 6 0
+ 1585 1 0
+ 1619 6 0
+ 1653 40 0
+ 1687 11 0
+ 1721 8 0
+ 1755 4 0
+ 1789 52 0
+ 1823 888 0
+ 1857 1 0
+ 1925 2 0
+ 1959 32 0
+ 2027 22 0
+ 2061 9 0
+ 2469 799 0
+ 2537 861 0
+ 2639 1 0
+ 2707 70 0
+ 2775 4 0
+ 2877 84 0
+ 293 1 0
+ 735 8 0
+
+4. *Scan objects*
+
+ The expected input format::
+
+ <cgroup inode id> <numa id> <number of objects to scan>
+
+ For a non-memcg-aware shrinker or on a system with no memory
+ cgrups **0** should be passed as cgroup id.
+ ::
+
+ $ cd /sys/kernel/debug/shrinker/
+ $ cd sb-btrfs\:vda2-24/
+
+ $ cat count | head -n 5
+ 1 212 0
+ 21 97 0
+ 55 802 5
+ 2367 2 0
+ 225 13 0
+
+ $ echo "55 0 200" > scan
+
+ $ cat count | head -n 5
+ 1 212 0
+ 21 96 0
+ 55 752 5
+ 2367 2 0
+ 225 13 0
diff --git a/Documentation/admin-guide/perf/hns3-pmu.rst b/Documentation/admin-guide/perf/hns3-pmu.rst
new file mode 100644
index 000000000000..578407e487d6
--- /dev/null
+++ b/Documentation/admin-guide/perf/hns3-pmu.rst
@@ -0,0 +1,136 @@
+======================================
+HNS3 Performance Monitoring Unit (PMU)
+======================================
+
+HNS3(HiSilicon network system 3) Performance Monitoring Unit (PMU) is an
+End Point device to collect performance statistics of HiSilicon SoC NIC.
+On Hip09, each SICL(Super I/O cluster) has one PMU device.
+
+HNS3 PMU supports collection of performance statistics such as bandwidth,
+latency, packet rate and interrupt rate.
+
+Each HNS3 PMU supports 8 hardware events.
+
+HNS3 PMU driver
+===============
+
+The HNS3 PMU driver registers a perf PMU with the name of its sicl id.::
+
+ /sys/devices/hns3_pmu_sicl_<sicl_id>
+
+PMU driver provides description of available events, filter modes, format,
+identifier and cpumask in sysfs.
+
+The "events" directory describes the event code of all supported events
+shown in perf list.
+
+The "filtermode" directory describes the supported filter modes of each
+event.
+
+The "format" directory describes all formats of the config (events) and
+config1 (filter options) fields of the perf_event_attr structure.
+
+The "identifier" file shows version of PMU hardware device.
+
+The "bdf_min" and "bdf_max" files show the supported bdf range of each
+pmu device.
+
+The "hw_clk_freq" file shows the hardware clock frequency of each pmu
+device.
+
+Example usage of checking event code and subevent code::
+
+ $# cat /sys/devices/hns3_pmu_sicl_0/events/dly_tx_normal_to_mac_time
+ config=0x00204
+ $# cat /sys/devices/hns3_pmu_sicl_0/events/dly_tx_normal_to_mac_packet_num
+ config=0x10204
+
+Each performance statistic has a pair of events to get two values to
+calculate real performance data in userspace.
+
+The bits 0~15 of config (here 0x0204) are the true hardware event code. If
+two events have same value of bits 0~15 of config, that means they are
+event pair. And the bit 16 of config indicates getting counter 0 or
+counter 1 of hardware event.
+
+After getting two values of event pair in usersapce, the formula of
+computation to calculate real performance data is:::
+
+ counter 0 / counter 1
+
+Example usage of checking supported filter mode::
+
+ $# cat /sys/devices/hns3_pmu_sicl_0/filtermode/bw_ssu_rpu_byte_num
+ filter mode supported: global/port/port-tc/func/func-queue/
+
+Example usage of perf::
+
+ $# perf list
+ hns3_pmu_sicl_0/bw_ssu_rpu_byte_num/ [kernel PMU event]
+ hns3_pmu_sicl_0/bw_ssu_rpu_time/ [kernel PMU event]
+ ------------------------------------------
+
+ $# perf stat -g -e hns3_pmu_sicl_0/bw_ssu_rpu_byte_num,global=1/ -e hns3_pmu_sicl_0/bw_ssu_rpu_time,global=1/ -I 1000
+ or
+ $# perf stat -g -e hns3_pmu_sicl_0/config=0x00002,global=1/ -e hns3_pmu_sicl_0/config=0x10002,global=1/ -I 1000
+
+
+Filter modes
+--------------
+
+1. global mode
+PMU collect performance statistics for all HNS3 PCIe functions of IO DIE.
+Set the "global" filter option to 1 will enable this mode.
+Example usage of perf::
+
+ $# perf stat -a -e hns3_pmu_sicl_0/config=0x1020F,global=1/ -I 1000
+
+2. port mode
+PMU collect performance statistic of one whole physical port. The port id
+is same as mac id. The "tc" filter option must be set to 0xF in this mode,
+here tc stands for traffic class.
+
+Example usage of perf::
+
+ $# perf stat -a -e hns3_pmu_sicl_0/config=0x1020F,port=0,tc=0xF/ -I 1000
+
+3. port-tc mode
+PMU collect performance statistic of one tc of physical port. The port id
+is same as mac id. The "tc" filter option must be set to 0 ~ 7 in this
+mode.
+Example usage of perf::
+
+ $# perf stat -a -e hns3_pmu_sicl_0/config=0x1020F,port=0,tc=0/ -I 1000
+
+4. func mode
+PMU collect performance statistic of one PF/VF. The function id is BDF of
+PF/VF, its conversion formula::
+
+ func = (bus << 8) + (device << 3) + (function)
+
+for example:
+ BDF func
+ 35:00.0 0x3500
+ 35:00.1 0x3501
+ 35:01.0 0x3508
+
+In this mode, the "queue" filter option must be set to 0xFFFF.
+Example usage of perf::
+
+ $# perf stat -a -e hns3_pmu_sicl_0/config=0x1020F,bdf=0x3500,queue=0xFFFF/ -I 1000
+
+5. func-queue mode
+PMU collect performance statistic of one queue of PF/VF. The function id
+is BDF of PF/VF, the "queue" filter option must be set to the exact queue
+id of function.
+Example usage of perf::
+
+ $# perf stat -a -e hns3_pmu_sicl_0/config=0x1020F,bdf=0x3500,queue=0/ -I 1000
+
+6. func-intr mode
+PMU collect performance statistic of one interrupt of PF/VF. The function
+id is BDF of PF/VF, the "intr" filter option must be set to the exact
+interrupt id of function.
+Example usage of perf::
+
+ $# perf stat -a -e hns3_pmu_sicl_0/config=0x00301,bdf=0x3500,intr=0/ -I 1000
diff --git a/Documentation/admin-guide/perf/index.rst b/Documentation/admin-guide/perf/index.rst
index 69b23f087c05..9c9ece88ce53 100644
--- a/Documentation/admin-guide/perf/index.rst
+++ b/Documentation/admin-guide/perf/index.rst
@@ -9,6 +9,7 @@ Performance monitor support
hisi-pmu
hisi-pcie-pmu
+ hns3-pmu
imx-ddr
qcom_l2_pmu
qcom_l3_pmu
diff --git a/Documentation/admin-guide/pm/cpuidle.rst b/Documentation/admin-guide/pm/cpuidle.rst
index aec2cd2aaea7..19754beb5a4e 100644
--- a/Documentation/admin-guide/pm/cpuidle.rst
+++ b/Documentation/admin-guide/pm/cpuidle.rst
@@ -612,8 +612,8 @@ the ``menu`` governor to be used on the systems that use the ``ladder`` governor
by default this way, for example.
The other kernel command line parameters controlling CPU idle time management
-described below are only relevant for the *x86* architecture and some of
-them affect Intel processors only.
+described below are only relevant for the *x86* architecture and references
+to ``intel_idle`` affect Intel processors only.
The *x86* architecture support code recognizes three kernel command line
options related to CPU idle time management: ``idle=poll``, ``idle=halt``,
@@ -635,10 +635,13 @@ idle, so it very well may hurt single-thread computations performance as well as
energy-efficiency. Thus using it for performance reasons may not be a good idea
at all.]
-The ``idle=nomwait`` option disables the ``intel_idle`` driver and causes
-``acpi_idle`` to be used (as long as all of the information needed by it is
-there in the system's ACPI tables), but it is not allowed to use the
-``MWAIT`` instruction of the CPUs to ask the hardware to enter idle states.
+The ``idle=nomwait`` option prevents the use of ``MWAIT`` instruction of
+the CPU to enter idle states. When this option is used, the ``acpi_idle``
+driver will use the ``HLT`` instruction instead of ``MWAIT``. On systems
+running Intel processors, this option disables the ``intel_idle`` driver
+and forces the use of the ``acpi_idle`` driver instead. Note that in either
+case, ``acpi_idle`` driver will function only if all the information needed
+by it is in the system's ACPI tables.
In addition to the architecture-level kernel command line options affecting CPU
idle time management, there are parameters affecting individual ``CPUIdle``
diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
index ddccd1077462..ee6572b1edad 100644
--- a/Documentation/admin-guide/sysctl/kernel.rst
+++ b/Documentation/admin-guide/sysctl/kernel.rst
@@ -38,8 +38,8 @@ acct
If BSD-style process accounting is enabled these values control
its behaviour. If free space on filesystem where the log lives
-goes below ``lowwater``% accounting suspends. If free space gets
-above ``highwater``% accounting resumes. ``frequency`` determines
+goes below ``lowwater``\ % accounting suspends. If free space gets
+above ``highwater``\ % accounting resumes. ``frequency`` determines
how often do we check the amount of free space (value is in
seconds). Default:
@@ -592,6 +592,18 @@ to the guest kernel command line (see
Documentation/admin-guide/kernel-parameters.rst).
+nmi_wd_lpm_factor (PPC only)
+============================
+
+Factor to apply to the NMI watchdog timeout (only when ``nmi_watchdog`` is
+set to 1). This factor represents the percentage added to
+``watchdog_thresh`` when calculating the NMI watchdog timeout during an
+LPM. The soft lockup timeout is not impacted.
+
+A value of 0 means no change. The default value is 200 meaning the NMI
+watchdog is set to 30s (based on ``watchdog_thresh`` equal to 10).
+
+
numa_balancing
==============
diff --git a/Documentation/admin-guide/sysctl/net.rst b/Documentation/admin-guide/sysctl/net.rst
index fcd650bdbc7e..805f2281e000 100644
--- a/Documentation/admin-guide/sysctl/net.rst
+++ b/Documentation/admin-guide/sysctl/net.rst
@@ -391,6 +391,18 @@ GRO has decided not to coalesce, it is placed on a per-NAPI list. This
list is then passed to the stack when the number of segments reaches the
gro_normal_batch limit.
+high_order_alloc_disable
+------------------------
+
+By default the allocator for page frags tries to use high order pages (order-3
+on x86). While the default behavior gives good results in most cases, some users
+might have hit a contention in page allocations/freeing. This was especially
+true on older kernels (< 5.14) when high-order pages were not stored on per-cpu
+lists. This allows to opt-in for order-0 allocation instead but is now mostly of
+historical importance.
+
+Default: 0
+
2. /proc/sys/net/unix - Parameters for Unix domain sockets
----------------------------------------------------------
diff --git a/Documentation/admin-guide/sysctl/vm.rst b/Documentation/admin-guide/sysctl/vm.rst
index 5c9aa171a0d3..9b833e439f09 100644
--- a/Documentation/admin-guide/sysctl/vm.rst
+++ b/Documentation/admin-guide/sysctl/vm.rst
@@ -565,13 +565,11 @@ See Documentation/admin-guide/mm/hugetlbpage.rst
hugetlb_optimize_vmemmap
========================
-This knob is not available when memory_hotplug.memmap_on_memory (kernel parameter)
-is configured or the size of 'struct page' (a structure defined in
-include/linux/mm_types.h) is not power of two (an unusual system config could
+This knob is not available when the size of 'struct page' (a structure defined
+in include/linux/mm_types.h) is not power of two (an unusual system config could
result in this).
-Enable (set to 1) or disable (set to 0) the feature of optimizing vmemmap pages
-associated with each HugeTLB page.
+Enable (set to 1) or disable (set to 0) HugeTLB Vmemmap Optimization (HVO).
Once enabled, the vmemmap pages of subsequent allocation of HugeTLB pages from
buddy allocator will be optimized (7 pages per 2MB HugeTLB page and 4095 pages
@@ -760,7 +758,7 @@ and don't use much of it.
The default value is 0.
-See Documentation/vm/overcommit-accounting.rst and
+See Documentation/mm/overcommit-accounting.rst and
mm/util.c::__vm_enough_memory() for more information.
diff --git a/Documentation/admin-guide/tainted-kernels.rst b/Documentation/admin-guide/tainted-kernels.rst
index ceeed7b0798d..7d80e8c307d1 100644
--- a/Documentation/admin-guide/tainted-kernels.rst
+++ b/Documentation/admin-guide/tainted-kernels.rst
@@ -100,6 +100,7 @@ Bit Log Number Reason that got the kernel tainted
15 _/K 32768 kernel has been live patched
16 _/X 65536 auxiliary taint, defined for and used by distros
17 _/T 131072 kernel was built with the struct randomization plugin
+ 18 _/N 262144 an in-kernel test has been run
=== === ====== ========================================================
Note: The character ``_`` is representing a blank in this table to make reading