summaryrefslogtreecommitdiff
path: root/Documentation/driver-api
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r--Documentation/driver-api/dma-buf.rst13
-rw-r--r--Documentation/driver-api/fpga/fpga-bridge.rst10
-rw-r--r--Documentation/driver-api/fpga/fpga-mgr.rst12
-rw-r--r--Documentation/driver-api/fpga/fpga-programming.rst8
-rw-r--r--Documentation/driver-api/fpga/fpga-region.rst20
-rw-r--r--Documentation/driver-api/gpio/consumer.rst10
-rw-r--r--Documentation/driver-api/gpio/driver.rst11
-rw-r--r--Documentation/driver-api/index.rst1
-rw-r--r--Documentation/driver-api/lightnvm-pblk.rst21
-rw-r--r--Documentation/driver-api/media/camera-sensor.rst45
-rw-r--r--Documentation/driver-api/media/cec-core.rst9
-rw-r--r--Documentation/driver-api/media/csi2.rst94
-rw-r--r--Documentation/driver-api/media/index.rst2
-rw-r--r--Documentation/driver-api/media/tx-rx.rst133
-rw-r--r--Documentation/driver-api/nfc/nfc-hci.rst2
-rw-r--r--Documentation/driver-api/thermal/nouveau_thermal.rst2
-rw-r--r--Documentation/driver-api/vfio.rst4
17 files changed, 213 insertions, 184 deletions
diff --git a/Documentation/driver-api/dma-buf.rst b/Documentation/driver-api/dma-buf.rst
index 7f21425d9435..f5ac4c90b237 100644
--- a/Documentation/driver-api/dma-buf.rst
+++ b/Documentation/driver-api/dma-buf.rst
@@ -88,6 +88,9 @@ consider though:
- The DMA buffer FD is also pollable, see `Implicit Fence Poll Support`_ below for
details.
+- The DMA buffer FD also supports a few dma-buf-specific ioctls, see
+ `DMA Buffer ioctls`_ below for details.
+
Basic Operation and Device DMA Access
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -106,6 +109,16 @@ Implicit Fence Poll Support
.. kernel-doc:: drivers/dma-buf/dma-buf.c
:doc: implicit fence polling
+DMA-BUF statistics
+~~~~~~~~~~~~~~~~~~
+.. kernel-doc:: drivers/dma-buf/dma-buf-sysfs-stats.c
+ :doc: overview
+
+DMA Buffer ioctls
+~~~~~~~~~~~~~~~~~
+
+.. kernel-doc:: include/uapi/linux/dma-buf.h
+
Kernel Functions and Structures Reference
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
diff --git a/Documentation/driver-api/fpga/fpga-bridge.rst b/Documentation/driver-api/fpga/fpga-bridge.rst
index 198aadafd3e7..8d650b4e2ce6 100644
--- a/Documentation/driver-api/fpga/fpga-bridge.rst
+++ b/Documentation/driver-api/fpga/fpga-bridge.rst
@@ -4,11 +4,11 @@ FPGA Bridge
API to implement a new FPGA bridge
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-* struct fpga_bridge — The FPGA Bridge structure
-* struct fpga_bridge_ops — Low level Bridge driver ops
-* devm_fpga_bridge_create() — Allocate and init a bridge struct
-* fpga_bridge_register() — Register a bridge
-* fpga_bridge_unregister() — Unregister a bridge
+* struct fpga_bridge - The FPGA Bridge structure
+* struct fpga_bridge_ops - Low level Bridge driver ops
+* devm_fpga_bridge_create() - Allocate and init a bridge struct
+* fpga_bridge_register() - Register a bridge
+* fpga_bridge_unregister() - Unregister a bridge
.. kernel-doc:: include/linux/fpga/fpga-bridge.h
:functions: fpga_bridge
diff --git a/Documentation/driver-api/fpga/fpga-mgr.rst b/Documentation/driver-api/fpga/fpga-mgr.rst
index 917ee22db429..4d926b452cb3 100644
--- a/Documentation/driver-api/fpga/fpga-mgr.rst
+++ b/Documentation/driver-api/fpga/fpga-mgr.rst
@@ -101,12 +101,12 @@ in state.
API for implementing a new FPGA Manager driver
----------------------------------------------
-* ``fpga_mgr_states`` — Values for :c:expr:`fpga_manager->state`.
-* struct fpga_manager — the FPGA manager struct
-* struct fpga_manager_ops — Low level FPGA manager driver ops
-* devm_fpga_mgr_create() — Allocate and init a manager struct
-* fpga_mgr_register() — Register an FPGA manager
-* fpga_mgr_unregister() — Unregister an FPGA manager
+* ``fpga_mgr_states`` - Values for :c:expr:`fpga_manager->state`.
+* struct fpga_manager - the FPGA manager struct
+* struct fpga_manager_ops - Low level FPGA manager driver ops
+* devm_fpga_mgr_create() - Allocate and init a manager struct
+* fpga_mgr_register() - Register an FPGA manager
+* fpga_mgr_unregister() - Unregister an FPGA manager
.. kernel-doc:: include/linux/fpga/fpga-mgr.h
:functions: fpga_mgr_states
diff --git a/Documentation/driver-api/fpga/fpga-programming.rst b/Documentation/driver-api/fpga/fpga-programming.rst
index 002392dab04f..fb4da4240e96 100644
--- a/Documentation/driver-api/fpga/fpga-programming.rst
+++ b/Documentation/driver-api/fpga/fpga-programming.rst
@@ -84,10 +84,10 @@ will generate that list. Here's some sample code of what to do next::
API for programming an FPGA
---------------------------
-* fpga_region_program_fpga() — Program an FPGA
-* fpga_image_info() — Specifies what FPGA image to program
-* fpga_image_info_alloc() — Allocate an FPGA image info struct
-* fpga_image_info_free() — Free an FPGA image info struct
+* fpga_region_program_fpga() - Program an FPGA
+* fpga_image_info() - Specifies what FPGA image to program
+* fpga_image_info_alloc() - Allocate an FPGA image info struct
+* fpga_image_info_free() - Free an FPGA image info struct
.. kernel-doc:: drivers/fpga/fpga-region.c
:functions: fpga_region_program_fpga
diff --git a/Documentation/driver-api/fpga/fpga-region.rst b/Documentation/driver-api/fpga/fpga-region.rst
index 363a8171ab0a..2636a27c11b2 100644
--- a/Documentation/driver-api/fpga/fpga-region.rst
+++ b/Documentation/driver-api/fpga/fpga-region.rst
@@ -45,19 +45,19 @@ An example of usage can be seen in the probe function of [#f2]_.
API to add a new FPGA region
----------------------------
-* struct fpga_region — The FPGA region struct
-* devm_fpga_region_create() — Allocate and init a region struct
-* fpga_region_register() — Register an FPGA region
-* fpga_region_unregister() — Unregister an FPGA region
+* struct fpga_region - The FPGA region struct
+* devm_fpga_region_create() - Allocate and init a region struct
+* fpga_region_register() - Register an FPGA region
+* fpga_region_unregister() - Unregister an FPGA region
The FPGA region's probe function will need to get a reference to the FPGA
Manager it will be using to do the programming. This usually would happen
during the region's probe function.
-* fpga_mgr_get() — Get a reference to an FPGA manager, raise ref count
-* of_fpga_mgr_get() — Get a reference to an FPGA manager, raise ref count,
+* fpga_mgr_get() - Get a reference to an FPGA manager, raise ref count
+* of_fpga_mgr_get() - Get a reference to an FPGA manager, raise ref count,
given a device node.
-* fpga_mgr_put() — Put an FPGA manager
+* fpga_mgr_put() - Put an FPGA manager
The FPGA region will need to specify which bridges to control while programming
the FPGA. The region driver can build a list of bridges during probe time
@@ -66,11 +66,11 @@ the list of bridges to program just before programming
(:c:expr:`fpga_region->get_bridges`). The FPGA bridge framework supplies the
following APIs to handle building or tearing down that list.
-* fpga_bridge_get_to_list() — Get a ref of an FPGA bridge, add it to a
+* fpga_bridge_get_to_list() - Get a ref of an FPGA bridge, add it to a
list
-* of_fpga_bridge_get_to_list() — Get a ref of an FPGA bridge, add it to a
+* of_fpga_bridge_get_to_list() - Get a ref of an FPGA bridge, add it to a
list, given a device node
-* fpga_bridges_put() — Given a list of bridges, put them
+* fpga_bridges_put() - Given a list of bridges, put them
.. kernel-doc:: include/linux/fpga/fpga-region.h
:functions: fpga_region
diff --git a/Documentation/driver-api/gpio/consumer.rst b/Documentation/driver-api/gpio/consumer.rst
index 3366a991b4aa..47869ca8ccf0 100644
--- a/Documentation/driver-api/gpio/consumer.rst
+++ b/Documentation/driver-api/gpio/consumer.rst
@@ -72,6 +72,10 @@ for the GPIO. Values can be:
* GPIOD_OUT_HIGH_OPEN_DRAIN same as GPIOD_OUT_HIGH but also enforce the line
to be electrically used with open drain.
+Note that the initial value is *logical* and the physical line level depends on
+whether the line is configured active high or active low (see
+:ref:`active_low_semantics`).
+
The two last flags are used for use cases where open drain is mandatory, such
as I2C: if the line is not already configured as open drain in the mappings
(see board.txt), then open drain will be enforced anyway and a warning will be
@@ -252,6 +256,8 @@ that can't be accessed from hardIRQ handlers, these calls act the same as the
spinlock-safe calls.
+.. _active_low_semantics:
+
The active low and open drain semantics
---------------------------------------
As a consumer should not have to care about the physical line level, all of the
@@ -309,9 +315,11 @@ work on the raw line value::
void gpiod_set_raw_value_cansleep(struct gpio_desc *desc, int value)
int gpiod_direction_output_raw(struct gpio_desc *desc, int value)
-The active low state of a GPIO can also be queried using the following call::
+The active low state of a GPIO can also be queried and toggled using the
+following calls::
int gpiod_is_active_low(const struct gpio_desc *desc)
+ void gpiod_toggle_active_low(struct gpio_desc *desc)
Note that these functions should only be used with great moderation; a driver
should not have to care about the physical line level or open drain semantics.
diff --git a/Documentation/driver-api/gpio/driver.rst b/Documentation/driver-api/gpio/driver.rst
index d6b0d779859b..bbc53920d4dd 100644
--- a/Documentation/driver-api/gpio/driver.rst
+++ b/Documentation/driver-api/gpio/driver.rst
@@ -547,13 +547,10 @@ To use the helpers please keep the following in mind:
the irqchip can initialize. E.g. .dev and .can_sleep shall be set up
properly.
-- Nominally set all handlers to handle_bad_irq() in the setup call and pass
- handle_bad_irq() as flow handler parameter in gpiochip_irqchip_add() if it is
- expected for GPIO driver that irqchip .set_type() callback will be called
- before using/enabling each GPIO IRQ. Then set the handler to
- handle_level_irq() and/or handle_edge_irq() in the irqchip .set_type()
- callback depending on what your controller supports and what is requested
- by the consumer.
+- Nominally set gpio_irq_chip.handler to handle_bad_irq. Then, if your irqchip
+ is cascaded, set the handler to handle_level_irq() and/or handle_edge_irq()
+ in the irqchip .set_type() callback depending on what your controller
+ supports and what is requested by the consumer.
Locking IRQ usage
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index f5a3207aa7fa..c57c609ad2eb 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -85,7 +85,6 @@ available subsections can be seen below.
io-mapping
io_ordering
generic-counter
- lightnvm-pblk
memory-devices/index
men-chameleon-bus
ntb
diff --git a/Documentation/driver-api/lightnvm-pblk.rst b/Documentation/driver-api/lightnvm-pblk.rst
deleted file mode 100644
index 1040ed1cec81..000000000000
--- a/Documentation/driver-api/lightnvm-pblk.rst
+++ /dev/null
@@ -1,21 +0,0 @@
-pblk: Physical Block Device Target
-==================================
-
-pblk implements a fully associative, host-based FTL that exposes a traditional
-block I/O interface. Its primary responsibilities are:
-
- - Map logical addresses onto physical addresses (4KB granularity) in a
- logical-to-physical (L2P) table.
- - Maintain the integrity and consistency of the L2P table as well as its
- recovery from normal tear down and power outage.
- - Deal with controller- and media-specific constrains.
- - Handle I/O errors.
- - Implement garbage collection.
- - Maintain consistency across the I/O stack during synchronization points.
-
-For more information please refer to:
-
- http://lightnvm.io
-
-which maintains updated FAQs, manual pages, technical documentation, tools,
-contacts, etc.
diff --git a/Documentation/driver-api/media/camera-sensor.rst b/Documentation/driver-api/media/camera-sensor.rst
index 7160336aa475..c7d4891bd24e 100644
--- a/Documentation/driver-api/media/camera-sensor.rst
+++ b/Documentation/driver-api/media/camera-sensor.rst
@@ -3,10 +3,10 @@
Writing camera sensor drivers
=============================
-CSI-2
------
+CSI-2 and parallel (BT.601 and BT.656) busses
+---------------------------------------------
-Please see what is written on :ref:`MIPI_CSI_2`.
+Please see :ref:`transmitter-receiver`.
Handling clocks
---------------
@@ -26,15 +26,16 @@ user.
ACPI
~~~~
-Read the "clock-frequency" _DSD property to denote the frequency. The driver can
-rely on this frequency being used.
+Read the ``clock-frequency`` _DSD property to denote the frequency. The driver
+can rely on this frequency being used.
Devicetree
~~~~~~~~~~
-The currently preferred way to achieve this is using "assigned-clock-rates"
-property. See Documentation/devicetree/bindings/clock/clock-bindings.txt for
-more information. The driver then gets the frequency using clk_get_rate().
+The currently preferred way to achieve this is using ``assigned-clocks``,
+``assigned-clock-parents`` and ``assigned-clock-rates`` properties. See
+``Documentation/devicetree/bindings/clock/clock-bindings.txt`` for more
+information. The driver then gets the frequency using ``clk_get_rate()``.
This approach has the drawback that there's no guarantee that the frequency
hasn't been modified directly or indirectly by another driver, or supported by
@@ -55,7 +56,7 @@ processing pipeline as one or more sub-devices with different cropping and
scaling configurations. The output size of the device is the result of a series
of cropping and scaling operations from the device's pixel array's size.
-An example of such a driver is the smiapp driver (see drivers/media/i2c/smiapp).
+An example of such a driver is the CCS driver (see ``drivers/media/i2c/ccs``).
Register list based drivers
~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -67,7 +68,7 @@ level are independent. How a driver picks such configuration is based on the
format set on a source pad at the end of the device's internal pipeline.
Most sensor drivers are implemented this way, see e.g.
-drivers/media/i2c/imx319.c for an example.
+``drivers/media/i2c/imx319.c`` for an example.
Frame interval configuration
----------------------------
@@ -94,9 +95,10 @@ large variety of devices beyond camera sensors. Devices that have no analogue
crop, use the full source image size, i.e. pixel array size.
Horizontal and vertical blanking are specified by ``V4L2_CID_HBLANK`` and
-``V4L2_CID_VBLANK``, respectively. The unit of these controls are lines. The
-pixel rate is specified by ``V4L2_CID_PIXEL_RATE`` in the same sub-device. The
-unit of that control is Hz.
+``V4L2_CID_VBLANK``, respectively. The unit of the ``V4L2_CID_HBLANK`` control
+is pixels and the unit of the ``V4L2_CID_VBLANK`` is lines. The pixel rate in
+the sensor's **pixel array** is specified by ``V4L2_CID_PIXEL_RATE`` in the same
+sub-device. The unit of that control is pixels per second.
Register list based drivers need to implement read-only sub-device nodes for the
purpose. Devices that are not register list based need these to configure the
@@ -125,14 +127,14 @@ general, the device must be powered on at least when its registers are being
accessed and when it is streaming.
Existing camera sensor drivers may rely on the old
-:c:type:`v4l2_subdev_core_ops`->s_power() callback for bridge or ISP drivers to
+struct v4l2_subdev_core_ops->s_power() callback for bridge or ISP drivers to
manage their power state. This is however **deprecated**. If you feel you need
to begin calling an s_power from an ISP or a bridge driver, instead please add
runtime PM support to the sensor driver you are using. Likewise, new drivers
should not use s_power.
Please see examples in e.g. ``drivers/media/i2c/ov8856.c`` and
-``drivers/media/i2c/smiapp/smiapp-core.c``. The two drivers work in both ACPI
+``drivers/media/i2c/ccs/ccs-core.c``. The two drivers work in both ACPI
and DT based systems.
Control framework
@@ -149,16 +151,3 @@ used to obtain device's power state after the power state transition:
The function returns a non-zero value if it succeeded getting the power count or
runtime PM was disabled, in either of which cases the driver may proceed to
access the device.
-
-Controls
---------
-
-For camera sensors that are connected to a bus where transmitter and receiver
-require common configuration set by drivers, such as CSI-2 or parallel (BT.601
-or BT.656) bus, the ``V4L2_CID_LINK_FREQ`` control is mandatory on transmitter
-drivers. Receiver drivers can use the ``V4L2_CID_LINK_FREQ`` to query the
-frequency used on the bus.
-
-The transmitter drivers should also implement ``V4L2_CID_PIXEL_RATE`` control in
-order to tell the maximum pixel rate to the receiver. This is required on raw
-camera sensors.
diff --git a/Documentation/driver-api/media/cec-core.rst b/Documentation/driver-api/media/cec-core.rst
index 56345eae9a26..c6194ee81c41 100644
--- a/Documentation/driver-api/media/cec-core.rst
+++ b/Documentation/driver-api/media/cec-core.rst
@@ -130,9 +130,12 @@ To enable/disable the hardware::
int (*adap_enable)(struct cec_adapter *adap, bool enable);
This callback enables or disables the CEC hardware. Enabling the CEC hardware
-means powering it up in a state where no logical addresses are claimed. This
-op assumes that the physical address (adap->phys_addr) is valid when enable is
-true and will not change while the CEC adapter remains enabled. The initial
+means powering it up in a state where no logical addresses are claimed. The
+physical address will always be valid if CEC_CAP_NEEDS_HPD is set. If that
+capability is not set, then the physical address can change while the CEC
+hardware is enabled. CEC drivers should not set CEC_CAP_NEEDS_HPD unless
+the hardware design requires that as this will make it impossible to wake
+up displays that pull the HPD low when in standby mode. The initial
state of the CEC adapter after calling cec_allocate_adapter() is disabled.
Note that adap_enable must return 0 if enable is false.
diff --git a/Documentation/driver-api/media/csi2.rst b/Documentation/driver-api/media/csi2.rst
deleted file mode 100644
index 11c52b0be8b8..000000000000
--- a/Documentation/driver-api/media/csi2.rst
+++ /dev/null
@@ -1,94 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-
-.. _MIPI_CSI_2:
-
-MIPI CSI-2
-==========
-
-CSI-2 is a data bus intended for transferring images from cameras to
-the host SoC. It is defined by the `MIPI alliance`_.
-
-.. _`MIPI alliance`: http://www.mipi.org/
-
-Media bus formats
------------------
-
-See :ref:`v4l2-mbus-pixelcode` for details on which media bus formats should
-be used for CSI-2 interfaces.
-
-Transmitter drivers
--------------------
-
-CSI-2 transmitter, such as a sensor or a TV tuner, drivers need to
-provide the CSI-2 receiver with information on the CSI-2 bus
-configuration. These include the V4L2_CID_LINK_FREQ and
-V4L2_CID_PIXEL_RATE controls and
-(:c:type:`v4l2_subdev_video_ops`->s_stream() callback). These
-interface elements must be present on the sub-device represents the
-CSI-2 transmitter.
-
-The V4L2_CID_LINK_FREQ control is used to tell the receiver driver the
-frequency (and not the symbol rate) of the link. The V4L2_CID_PIXEL_RATE
-control may be used by the receiver to obtain the pixel rate the transmitter
-uses. The :c:type:`v4l2_subdev_video_ops`->s_stream() callback provides an
-ability to start and stop the stream.
-
-The value of the V4L2_CID_PIXEL_RATE is calculated as follows::
-
- pixel_rate = link_freq * 2 * nr_of_lanes * 16 / k / bits_per_sample
-
-where
-
-.. list-table:: variables in pixel rate calculation
- :header-rows: 1
-
- * - variable or constant
- - description
- * - link_freq
- - The value of the V4L2_CID_LINK_FREQ integer64 menu item.
- * - nr_of_lanes
- - Number of data lanes used on the CSI-2 link. This can
- be obtained from the OF endpoint configuration.
- * - 2
- - Two bits are transferred per clock cycle per lane.
- * - bits_per_sample
- - Number of bits per sample.
- * - k
- - 16 for D-PHY and 7 for C-PHY
-
-The transmitter drivers must, if possible, configure the CSI-2
-transmitter to *LP-11 mode* whenever the transmitter is powered on but
-not active, and maintain *LP-11 mode* until stream on. Only at stream
-on should the transmitter activate the clock on the clock lane and
-transition to *HS mode*.
-
-Some transmitters do this automatically but some have to be explicitly
-programmed to do so, and some are unable to do so altogether due to
-hardware constraints.
-
-Stopping the transmitter
-^^^^^^^^^^^^^^^^^^^^^^^^
-
-A transmitter stops sending the stream of images as a result of
-calling the ``.s_stream()`` callback. Some transmitters may stop the
-stream at a frame boundary whereas others stop immediately,
-effectively leaving the current frame unfinished. The receiver driver
-should not make assumptions either way, but function properly in both
-cases.
-
-Receiver drivers
-----------------
-
-Before the receiver driver may enable the CSI-2 transmitter by using
-the :c:type:`v4l2_subdev_video_ops`->s_stream(), it must have powered
-the transmitter up by using the
-:c:type:`v4l2_subdev_core_ops`->s_power() callback. This may take
-place either indirectly by using :c:func:`v4l2_pipeline_pm_get` or
-directly.
-
-Formats
--------
-
-The media bus pixel codes document parallel formats. Should the pixel data be
-transported over a serial bus, the media bus pixel code that describes a
-parallel format that transfers a sample on a single clock cycle is used.
diff --git a/Documentation/driver-api/media/index.rst b/Documentation/driver-api/media/index.rst
index 813d7db59da7..08e206567408 100644
--- a/Documentation/driver-api/media/index.rst
+++ b/Documentation/driver-api/media/index.rst
@@ -37,7 +37,7 @@ Documentation/userspace-api/media/index.rst
rc-core
mc-core
cec-core
- csi2
+ tx-rx
camera-sensor
drivers/index
diff --git a/Documentation/driver-api/media/tx-rx.rst b/Documentation/driver-api/media/tx-rx.rst
new file mode 100644
index 000000000000..e1e9258dd862
--- /dev/null
+++ b/Documentation/driver-api/media/tx-rx.rst
@@ -0,0 +1,133 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. _transmitter-receiver:
+
+Pixel data transmitter and receiver drivers
+===========================================
+
+V4L2 supports various devices that transmit and receive pixel data. Examples of
+these devices include a camera sensor, a TV tuner and a parallel or a CSI-2
+receiver in an SoC.
+
+Bus types
+---------
+
+The following busses are the most common. This section discusses these two only.
+
+MIPI CSI-2
+^^^^^^^^^^
+
+CSI-2 is a data bus intended for transferring images from cameras to
+the host SoC. It is defined by the `MIPI alliance`_.
+
+.. _`MIPI alliance`: https://www.mipi.org/
+
+Parallel
+^^^^^^^^
+
+`BT.601`_ and `BT.656`_ are the most common parallel busses.
+
+.. _`BT.601`: https://en.wikipedia.org/wiki/Rec._601
+.. _`BT.656`: https://en.wikipedia.org/wiki/ITU-R_BT.656
+
+Transmitter drivers
+-------------------
+
+Transmitter drivers generally need to provide the receiver drivers with the
+configuration of the transmitter. What is required depends on the type of the
+bus. These are common for both busses.
+
+Media bus pixel code
+^^^^^^^^^^^^^^^^^^^^
+
+See :ref:`v4l2-mbus-pixelcode`.
+
+Link frequency
+^^^^^^^^^^^^^^
+
+The :ref:`V4L2_CID_LINK_FREQ <v4l2-cid-link-freq>` control is used to tell the
+receiver the frequency of the bus (i.e. it is not the same as the symbol rate).
+
+``.s_stream()`` callback
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+The struct struct v4l2_subdev_video_ops->s_stream() callback is used by the
+receiver driver to control the transmitter driver's streaming state.
+
+
+CSI-2 transmitter drivers
+-------------------------
+
+Pixel rate
+^^^^^^^^^^
+
+The pixel rate on the bus is calculated as follows::
+
+ pixel_rate = link_freq * 2 * nr_of_lanes * 16 / k / bits_per_sample
+
+where
+
+.. list-table:: variables in pixel rate calculation
+ :header-rows: 1
+
+ * - variable or constant
+ - description
+ * - link_freq
+ - The value of the ``V4L2_CID_LINK_FREQ`` integer64 menu item.
+ * - nr_of_lanes
+ - Number of data lanes used on the CSI-2 link. This can
+ be obtained from the OF endpoint configuration.
+ * - 2
+ - Data is transferred on both rising and falling edge of the signal.
+ * - bits_per_sample
+ - Number of bits per sample.
+ * - k
+ - 16 for D-PHY and 7 for C-PHY
+
+.. note::
+
+ The pixel rate calculated this way is **not** the same thing as the
+ pixel rate on the camera sensor's pixel array which is indicated by the
+ :ref:`V4L2_CID_PIXEL_RATE <v4l2-cid-pixel-rate>` control.
+
+LP-11 and LP-111 modes
+^^^^^^^^^^^^^^^^^^^^^^
+
+As part of transitioning to high speed mode, a CSI-2 transmitter typically
+briefly sets the bus to LP-11 or LP-111 state, depending on the PHY. This period
+may be as short as 100 µs, during which the receiver observes this state and
+proceeds its own part of high speed mode transition.
+
+Most receivers are capable of autonomously handling this once the software has
+configured them to do so, but there are receivers which require software
+involvement in observing LP-11 or LP-111 state. 100 µs is a brief period to hit
+in software, especially when there is no interrupt telling something is
+happening.
+
+One way to address this is to configure the transmitter side explicitly to LP-11
+or LP-111 mode, which requires support from the transmitter hardware. This is
+not universally available. Many devices return to this state once streaming is
+stopped while the state after power-on is LP-00 or LP-000.
+
+The ``.pre_streamon()`` callback may be used to prepare a transmitter for
+transitioning to streaming state, but not yet start streaming. Similarly, the
+``.post_streamoff()`` callback is used to undo what was done by the
+``.pre_streamon()`` callback. The caller of ``.pre_streamon()`` is thus required
+to call ``.post_streamoff()`` for each successful call of ``.pre_streamon()``.
+
+In the context of CSI-2, the ``.pre_streamon()`` callback is used to transition
+the transmitter to the LP-11 or LP-111 mode. This also requires powering on the
+device, so this should be only done when it is needed.
+
+Receiver drivers that do not need explicit LP-11 or LP-111 mode setup are waived
+from calling the two callbacks.
+
+Stopping the transmitter
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+A transmitter stops sending the stream of images as a result of
+calling the ``.s_stream()`` callback. Some transmitters may stop the
+stream at a frame boundary whereas others stop immediately,
+effectively leaving the current frame unfinished. The receiver driver
+should not make assumptions either way, but function properly in both
+cases.
diff --git a/Documentation/driver-api/nfc/nfc-hci.rst b/Documentation/driver-api/nfc/nfc-hci.rst
index eb8a1a14e919..f10fe53aa9fe 100644
--- a/Documentation/driver-api/nfc/nfc-hci.rst
+++ b/Documentation/driver-api/nfc/nfc-hci.rst
@@ -181,7 +181,7 @@ xmit_from_hci():
The llc must be registered with nfc before it can be used. Do that by
calling::
- nfc_llc_register(const char *name, struct nfc_llc_ops *ops);
+ nfc_llc_register(const char *name, const struct nfc_llc_ops *ops);
Again, note that the llc does not handle the physical link. It is thus very
easy to mix any physical link with any llc for a given chip driver.
diff --git a/Documentation/driver-api/thermal/nouveau_thermal.rst b/Documentation/driver-api/thermal/nouveau_thermal.rst
index 79ece266cf6d..aa10db6df309 100644
--- a/Documentation/driver-api/thermal/nouveau_thermal.rst
+++ b/Documentation/driver-api/thermal/nouveau_thermal.rst
@@ -90,7 +90,7 @@ Bug reports
-----------
Thermal management on Nouveau is new and may not work on all cards. If you have
-inquiries, please ping mupuf on IRC (#nouveau, freenode).
+inquiries, please ping mupuf on IRC (#nouveau, OFTC).
Bug reports should be filled on Freedesktop's bug tracker. Please follow
https://nouveau.freedesktop.org/wiki/Bugs
diff --git a/Documentation/driver-api/vfio.rst b/Documentation/driver-api/vfio.rst
index 606eed8823ce..c663b6f97825 100644
--- a/Documentation/driver-api/vfio.rst
+++ b/Documentation/driver-api/vfio.rst
@@ -255,11 +255,13 @@ vfio_unregister_group_dev() respectively::
void vfio_init_group_dev(struct vfio_device *device,
struct device *dev,
const struct vfio_device_ops *ops);
+ void vfio_uninit_group_dev(struct vfio_device *device);
int vfio_register_group_dev(struct vfio_device *device);
void vfio_unregister_group_dev(struct vfio_device *device);
The driver should embed the vfio_device in its own structure and call
-vfio_init_group_dev() to pre-configure it before going to registration.
+vfio_init_group_dev() to pre-configure it before going to registration
+and call vfio_uninit_group_dev() after completing the un-registration.
vfio_register_group_dev() indicates to the core to begin tracking the
iommu_group of the specified dev and register the dev as owned by a VFIO bus
driver. Once vfio_register_group_dev() returns it is possible for userspace to