summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-bus-pci43
-rw-r--r--Documentation/DocBook/Makefile2
-rw-r--r--Documentation/DocBook/device-drivers.tmpl418
-rw-r--r--Documentation/DocBook/kernel-api.tmpl377
-rw-r--r--Documentation/cgroups/cpusets.txt65
-rw-r--r--Documentation/driver-model/device.txt8
-rw-r--r--Documentation/dvb/README.flexcop205
-rw-r--r--Documentation/dvb/technisat.txt34
-rw-r--r--Documentation/filesystems/sysfs.txt50
-rw-r--r--Documentation/kernel-parameters.txt19
-rw-r--r--Documentation/scsi/cxgb3i.txt11
-rw-r--r--Documentation/x86/boot.txt5
12 files changed, 574 insertions, 663 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-pci b/Documentation/ABI/testing/sysfs-bus-pci
index ceddcff4082a..e638e15a8895 100644
--- a/Documentation/ABI/testing/sysfs-bus-pci
+++ b/Documentation/ABI/testing/sysfs-bus-pci
@@ -1,3 +1,46 @@
+What: /sys/bus/pci/drivers/.../bind
+Date: December 2003
+Contact: linux-pci@vger.kernel.org
+Description:
+ Writing a device location to this file will cause
+ the driver to attempt to bind to the device found at
+ this location. This is useful for overriding default
+ bindings. The format for the location is: DDDD:BB:DD.F.
+ That is Domain:Bus:Device.Function and is the same as
+ found in /sys/bus/pci/devices/. For example:
+ # echo 0000:00:19.0 > /sys/bus/pci/drivers/foo/bind
+ (Note: kernels before 2.6.28 may require echo -n).
+
+What: /sys/bus/pci/drivers/.../unbind
+Date: December 2003
+Contact: linux-pci@vger.kernel.org
+Description:
+ Writing a device location to this file will cause the
+ driver to attempt to unbind from the device found at
+ this location. This may be useful when overriding default
+ bindings. The format for the location is: DDDD:BB:DD.F.
+ That is Domain:Bus:Device.Function and is the same as
+ found in /sys/bus/pci/devices/. For example:
+ # echo 0000:00:19.0 > /sys/bus/pci/drivers/foo/unbind
+ (Note: kernels before 2.6.28 may require echo -n).
+
+What: /sys/bus/pci/drivers/.../new_id
+Date: December 2003
+Contact: linux-pci@vger.kernel.org
+Description:
+ Writing a device ID to this file will attempt to
+ dynamically add a new device ID to a PCI device driver.
+ This may allow the driver to support more hardware than
+ was included in the driver's static device ID support
+ table at compile time. The format for the device ID is:
+ VVVV DDDD SVVV SDDD CCCC MMMM PPPP. That is Vendor ID,
+ Device ID, Subsystem Vendor ID, Subsystem Device ID,
+ Class, Class Mask, and Private Driver Data. The Vendor ID
+ and Device ID fields are required, the rest are optional.
+ Upon successfully adding an ID, the driver will probe
+ for the device and attempt to bind to it. For example:
+ # echo "8086 10f5" > /sys/bus/pci/drivers/foo/new_id
+
What: /sys/bus/pci/devices/.../vpd
Date: February 2008
Contact: Ben Hutchings <bhutchings@solarflare.com>
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index dc3154e49279..1462ed86d40a 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -6,7 +6,7 @@
# To add a new book the only step required is to add the book to the
# list of DOCBOOKS.
-DOCBOOKS := z8530book.xml mcabook.xml \
+DOCBOOKS := z8530book.xml mcabook.xml device-drivers.xml \
kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
procfs-guide.xml writing_usb_driver.xml networking.xml \
kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
diff --git a/Documentation/DocBook/device-drivers.tmpl b/Documentation/DocBook/device-drivers.tmpl
new file mode 100644
index 000000000000..94a20fe8fedf
--- /dev/null
+++ b/Documentation/DocBook/device-drivers.tmpl
@@ -0,0 +1,418 @@
+<?xml version="1.0" encoding="UTF-8"?>
+<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
+ "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
+
+<book id="LinuxDriversAPI">
+ <bookinfo>
+ <title>Linux Device Drivers</title>
+
+ <legalnotice>
+ <para>
+ This documentation is free software; you can redistribute
+ it and/or modify it under the terms of the GNU General Public
+ License as published by the Free Software Foundation; either
+ version 2 of the License, or (at your option) any later
+ version.
+ </para>
+
+ <para>
+ This program is distributed in the hope that it will be
+ useful, but WITHOUT ANY WARRANTY; without even the implied
+ warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+ See the GNU General Public License for more details.
+ </para>
+
+ <para>
+ You should have received a copy of the GNU General Public
+ License along with this program; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ MA 02111-1307 USA
+ </para>
+
+ <para>
+ For more details see the file COPYING in the source
+ distribution of Linux.
+ </para>
+ </legalnotice>
+ </bookinfo>
+
+<toc></toc>
+
+ <chapter id="Basics">
+ <title>Driver Basics</title>
+ <sect1><title>Driver Entry and Exit points</title>
+!Iinclude/linux/init.h
+ </sect1>
+
+ <sect1><title>Atomic and pointer manipulation</title>
+!Iarch/x86/include/asm/atomic_32.h
+!Iarch/x86/include/asm/unaligned.h
+ </sect1>
+
+ <sect1><title>Delaying, scheduling, and timer routines</title>
+!Iinclude/linux/sched.h
+!Ekernel/sched.c
+!Ekernel/timer.c
+ </sect1>
+ <sect1><title>High-resolution timers</title>
+!Iinclude/linux/ktime.h
+!Iinclude/linux/hrtimer.h
+!Ekernel/hrtimer.c
+ </sect1>
+ <sect1><title>Workqueues and Kevents</title>
+!Ekernel/workqueue.c
+ </sect1>
+ <sect1><title>Internal Functions</title>
+!Ikernel/exit.c
+!Ikernel/signal.c
+!Iinclude/linux/kthread.h
+!Ekernel/kthread.c
+ </sect1>
+
+ <sect1><title>Kernel objects manipulation</title>
+<!--
+X!Iinclude/linux/kobject.h
+-->
+!Elib/kobject.c
+ </sect1>
+
+ <sect1><title>Kernel utility functions</title>
+!Iinclude/linux/kernel.h
+!Ekernel/printk.c
+!Ekernel/panic.c
+!Ekernel/sys.c
+!Ekernel/rcupdate.c
+ </sect1>
+
+ <sect1><title>Device Resource Management</title>
+!Edrivers/base/devres.c
+ </sect1>
+
+ </chapter>
+
+ <chapter id="devdrivers">
+ <title>Device drivers infrastructure</title>
+ <sect1><title>Device Drivers Base</title>
+<!--
+X!Iinclude/linux/device.h
+-->
+!Edrivers/base/driver.c
+!Edrivers/base/core.c
+!Edrivers/base/class.c
+!Edrivers/base/firmware_class.c
+!Edrivers/base/transport_class.c
+<!-- Cannot be included, because
+ attribute_container_add_class_device_adapter
+ and attribute_container_classdev_to_container
+ exceed allowed 44 characters maximum
+X!Edrivers/base/attribute_container.c
+-->
+!Edrivers/base/sys.c
+<!--
+X!Edrivers/base/interface.c
+-->
+!Edrivers/base/platform.c
+!Edrivers/base/bus.c
+ </sect1>
+ <sect1><title>Device Drivers Power Management</title>
+!Edrivers/base/power/main.c
+ </sect1>
+ <sect1><title>Device Drivers ACPI Support</title>
+<!-- Internal functions only
+X!Edrivers/acpi/sleep/main.c
+X!Edrivers/acpi/sleep/wakeup.c
+X!Edrivers/acpi/motherboard.c
+X!Edrivers/acpi/bus.c
+-->
+!Edrivers/acpi/scan.c
+!Idrivers/acpi/scan.c
+<!-- No correct structured comments
+X!Edrivers/acpi/pci_bind.c
+-->
+ </sect1>
+ <sect1><title>Device drivers PnP support</title>
+!Idrivers/pnp/core.c
+<!-- No correct structured comments
+X!Edrivers/pnp/system.c
+ -->
+!Edrivers/pnp/card.c
+!Idrivers/pnp/driver.c
+!Edrivers/pnp/manager.c
+!Edrivers/pnp/support.c
+ </sect1>
+ <sect1><title>Userspace IO devices</title>
+!Edrivers/uio/uio.c
+!Iinclude/linux/uio_driver.h
+ </sect1>
+ </chapter>
+
+ <chapter id="parportdev">
+ <title>Parallel Port Devices</title>
+!Iinclude/linux/parport.h
+!Edrivers/parport/ieee1284.c
+!Edrivers/parport/share.c
+!Idrivers/parport/daisy.c
+ </chapter>
+
+ <chapter id="message_devices">
+ <title>Message-based devices</title>
+ <sect1><title>Fusion message devices</title>
+!Edrivers/message/fusion/mptbase.c
+!Idrivers/message/fusion/mptbase.c
+!Edrivers/message/fusion/mptscsih.c
+!Idrivers/message/fusion/mptscsih.c
+!Idrivers/message/fusion/mptctl.c
+!Idrivers/message/fusion/mptspi.c
+!Idrivers/message/fusion/mptfc.c
+!Idrivers/message/fusion/mptlan.c
+ </sect1>
+ <sect1><title>I2O message devices</title>
+!Iinclude/linux/i2o.h
+!Idrivers/message/i2o/core.h
+!Edrivers/message/i2o/iop.c
+!Idrivers/message/i2o/iop.c
+!Idrivers/message/i2o/config-osm.c
+!Edrivers/message/i2o/exec-osm.c
+!Idrivers/message/i2o/exec-osm.c
+!Idrivers/message/i2o/bus-osm.c
+!Edrivers/message/i2o/device.c
+!Idrivers/message/i2o/device.c
+!Idrivers/message/i2o/driver.c
+!Idrivers/message/i2o/pci.c
+!Idrivers/message/i2o/i2o_block.c
+!Idrivers/message/i2o/i2o_scsi.c
+!Idrivers/message/i2o/i2o_proc.c
+ </sect1>
+ </chapter>
+
+ <chapter id="snddev">
+ <title>Sound Devices</title>
+!Iinclude/sound/core.h
+!Esound/sound_core.c
+!Iinclude/sound/pcm.h
+!Esound/core/pcm.c
+!Esound/core/device.c
+!Esound/core/info.c
+!Esound/core/rawmidi.c
+!Esound/core/sound.c
+!Esound/core/memory.c
+!Esound/core/pcm_memory.c
+!Esound/core/init.c
+!Esound/core/isadma.c
+!Esound/core/control.c
+!Esound/core/pcm_lib.c
+!Esound/core/hwdep.c
+!Esound/core/pcm_native.c
+!Esound/core/memalloc.c
+<!-- FIXME: Removed for now since no structured comments in source
+X!Isound/sound_firmware.c
+-->
+ </chapter>
+
+ <chapter id="uart16x50">
+ <title>16x50 UART Driver</title>
+!Iinclude/linux/serial_core.h
+!Edrivers/serial/serial_core.c
+!Edrivers/serial/8250.c
+ </chapter>
+
+ <chapter id="fbdev">
+ <title>Frame Buffer Library</title>
+
+ <para>
+ The frame buffer drivers depend heavily on four data structures.
+ These structures are declared in include/linux/fb.h. They are
+ fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs.
+ The last three can be made available to and from userland.
+ </para>
+
+ <para>
+ fb_info defines the current state of a particular video card.
+ Inside fb_info, there exists a fb_ops structure which is a
+ collection of needed functions to make fbdev and fbcon work.
+ fb_info is only visible to the kernel.
+ </para>
+
+ <para>
+ fb_var_screeninfo is used to describe the features of a video card
+ that are user defined. With fb_var_screeninfo, things such as
+ depth and the resolution may be defined.
+ </para>
+
+ <para>
+ The next structure is fb_fix_screeninfo. This defines the
+ properties of a card that are created when a mode is set and can't
+ be changed otherwise. A good example of this is the start of the
+ frame buffer memory. This "locks" the address of the frame buffer
+ memory, so that it cannot be changed or moved.
+ </para>
+
+ <para>
+ The last structure is fb_monospecs. In the old API, there was
+ little importance for fb_monospecs. This allowed for forbidden things
+ such as setting a mode of 800x600 on a fix frequency monitor. With
+ the new API, fb_monospecs prevents such things, and if used
+ correctly, can prevent a monitor from being cooked. fb_monospecs
+ will not be useful until kernels 2.5.x.
+ </para>
+
+ <sect1><title>Frame Buffer Memory</title>
+!Edrivers/video/fbmem.c
+ </sect1>
+<!--
+ <sect1><title>Frame Buffer Console</title>
+X!Edrivers/video/console/fbcon.c
+ </sect1>
+-->
+ <sect1><title>Frame Buffer Colormap</title>
+!Edrivers/video/fbcmap.c
+ </sect1>
+<!-- FIXME:
+ drivers/video/fbgen.c has no docs, which stuffs up the sgml. Comment
+ out until somebody adds docs. KAO
+ <sect1><title>Frame Buffer Generic Functions</title>
+X!Idrivers/video/fbgen.c
+ </sect1>
+KAO -->
+ <sect1><title>Frame Buffer Video Mode Database</title>
+!Idrivers/video/modedb.c
+!Edrivers/video/modedb.c
+ </sect1>
+ <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
+!Edrivers/video/macmodes.c
+ </sect1>
+ <sect1><title>Frame Buffer Fonts</title>
+ <para>
+ Refer to the file drivers/video/console/fonts.c for more information.
+ </para>
+<!-- FIXME: Removed for now since no structured comments in source
+X!Idrivers/video/console/fonts.c
+-->
+ </sect1>
+ </chapter>
+
+ <chapter id="input_subsystem">
+ <title>Input Subsystem</title>
+!Iinclude/linux/input.h
+!Edrivers/input/input.c
+!Edrivers/input/ff-core.c
+!Edrivers/input/ff-memless.c
+ </chapter>
+
+ <chapter id="spi">
+ <title>Serial Peripheral Interface (SPI)</title>
+ <para>
+ SPI is the "Serial Peripheral Interface", widely used with
+ embedded systems because it is a simple and efficient
+ interface: basically a multiplexed shift register.
+ Its three signal wires hold a clock (SCK, often in the range
+ of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
+ a "Master In, Slave Out" (MISO) data line.
+ SPI is a full duplex protocol; for each bit shifted out the
+ MOSI line (one per clock) another is shifted in on the MISO line.
+ Those bits are assembled into words of various sizes on the
+ way to and from system memory.
+ An additional chipselect line is usually active-low (nCS);
+ four signals are normally used for each peripheral, plus
+ sometimes an interrupt.
+ </para>
+ <para>
+ The SPI bus facilities listed here provide a generalized
+ interface to declare SPI busses and devices, manage them
+ according to the standard Linux driver model, and perform
+ input/output operations.
+ At this time, only "master" side interfaces are supported,
+ where Linux talks to SPI peripherals and does not implement
+ such a peripheral itself.
+ (Interfaces to support implementing SPI slaves would
+ necessarily look different.)
+ </para>
+ <para>
+ The programming interface is structured around two kinds of driver,
+ and two kinds of device.
+ A "Controller Driver" abstracts the controller hardware, which may
+ be as simple as a set of GPIO pins or as complex as a pair of FIFOs
+ connected to dual DMA engines on the other side of the SPI shift
+ register (maximizing throughput). Such drivers bridge between
+ whatever bus they sit on (often the platform bus) and SPI, and
+ expose the SPI side of their device as a
+ <structname>struct spi_master</structname>.
+ SPI devices are children of that master, represented as a
+ <structname>struct spi_device</structname> and manufactured from
+ <structname>struct spi_board_info</structname> descriptors which
+ are usually provided by board-specific initialization code.
+ A <structname>struct spi_driver</structname> is called a
+ "Protocol Driver", and is bound to a spi_device using normal
+ driver model calls.
+ </para>
+ <para>
+ The I/O model is a set of queued messages. Protocol drivers
+ submit one or more <structname>struct spi_message</structname>
+ objects, which are processed and completed asynchronously.
+ (There are synchronous wrappers, however.) Messages are
+ built from one or more <structname>struct spi_transfer</structname>
+ objects, each of which wraps a full duplex SPI transfer.
+ A variety of protocol tweaking options are needed, because
+ different chips adopt very different policies for how they
+ use the bits transferred with SPI.
+ </para>
+!Iinclude/linux/spi/spi.h
+!Fdrivers/spi/spi.c spi_register_board_info
+!Edrivers/spi/spi.c
+ </chapter>
+
+ <chapter id="i2c">
+ <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
+
+ <para>
+ I<superscript>2</superscript>C (or without fancy typography, "I2C")
+ is an acronym for the "Inter-IC" bus, a simple bus protocol which is
+ widely used where low data rate communications suffice.
+ Since it's also a licensed trademark, some vendors use another
+ name (such as "Two-Wire Interface", TWI) for the same bus.
+ I2C only needs two signals (SCL for clock, SDA for data), conserving
+ board real estate and minimizing signal quality issues.
+ Most I2C devices use seven bit addresses, and bus speeds of up
+ to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
+ found wide use.
+ I2C is a multi-master bus; open drain signaling is used to
+ arbitrate between masters, as well as to handshake and to
+ synchronize clocks from slower clients.
+ </para>
+
+ <para>
+ The Linux I2C programming interfaces support only the master
+ side of bus interactions, not the slave side.
+ The programming interface is structured around two kinds of driver,
+ and two kinds of device.
+ An I2C "Adapter Driver" abstracts the controller hardware; it binds
+ to a physical device (perhaps a PCI device or platform_device) and
+ exposes a <structname>struct i2c_adapter</structname> representing
+ each I2C bus segment it manages.
+ On each I2C bus segment will be I2C devices represented by a
+ <structname>struct i2c_client</structname>. Those devices will
+ be bound to a <structname>struct i2c_driver</structname>,
+ which should follow the standard Linux driver model.
+ (At this writing, a legacy model is more widely used.)
+ There are functions to perform various I2C protocol operations; at
+ this writing all such functions are usable only from task context.
+ </para>
+
+ <para>
+ The System Management Bus (SMBus) is a sibling protocol. Most SMBus
+ systems are also I2C conformant. The electrical constraints are
+ tighter for SMBus, and it standardizes particular protocol messages
+ and idioms. Controllers that support I2C can also support most
+ SMBus operations, but SMBus controllers don't support all the protocol
+ options that an I2C controller will.
+ There are functions to perform various SMBus protocol operations,
+ either using I2C primitives or by issuing SMBus commands to
+ i2c_adapter devices which don't support those I2C operations.
+ </para>
+
+!Iinclude/linux/i2c.h
+!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
+!Edrivers/i2c/i2c-core.c
+ </chapter>
+
+</book>
diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl
index 5818ff75786a..bc962cda6504 100644
--- a/Documentation/DocBook/kernel-api.tmpl
+++ b/Documentation/DocBook/kernel-api.tmpl
@@ -38,58 +38,6 @@
<toc></toc>
- <chapter id="Basics">
- <title>Driver Basics</title>
- <sect1><title>Driver Entry and Exit points</title>
-!Iinclude/linux/init.h
- </sect1>
-
- <sect1><title>Atomic and pointer manipulation</title>
-!Iarch/x86/include/asm/atomic_32.h
-!Iarch/x86/include/asm/unaligned.h
- </sect1>
-
- <sect1><title>Delaying, scheduling, and timer routines</title>
-!Iinclude/linux/sched.h
-!Ekernel/sched.c
-!Ekernel/timer.c
- </sect1>
- <sect1><title>High-resolution timers</title>
-!Iinclude/linux/ktime.h
-!Iinclude/linux/hrtimer.h
-!Ekernel/hrtimer.c
- </sect1>
- <sect1><title>Workqueues and Kevents</title>
-!Ekernel/workqueue.c
- </sect1>
- <sect1><title>Internal Functions</title>
-!Ikernel/exit.c
-!Ikernel/signal.c
-!Iinclude/linux/kthread.h
-!Ekernel/kthread.c
- </sect1>
-
- <sect1><title>Kernel objects manipulation</title>
-<!--
-X!Iinclude/linux/kobject.h
--->
-!Elib/kobject.c
- </sect1>
-
- <sect1><title>Kernel utility functions</title>
-!Iinclude/linux/kernel.h
-!Ekernel/printk.c
-!Ekernel/panic.c
-!Ekernel/sys.c
-!Ekernel/rcupdate.c
- </sect1>
-
- <sect1><title>Device Resource Management</title>
-!Edrivers/base/devres.c
- </sect1>
-
- </chapter>
-
<chapter id="adt">
<title>Data Types</title>
<sect1><title>Doubly Linked Lists</title>
@@ -298,62 +246,6 @@ X!Earch/x86/kernel/mca_32.c
!Ikernel/acct.c
</chapter>
- <chapter id="devdrivers">
- <title>Device drivers infrastructure</title>
- <sect1><title>Device Drivers Base</title>
-<!--
-X!Iinclude/linux/device.h
--->
-!Edrivers/base/driver.c
-!Edrivers/base/core.c
-!Edrivers/base/class.c
-!Edrivers/base/firmware_class.c
-!Edrivers/base/transport_class.c
-<!-- Cannot be included, because
- attribute_container_add_class_device_adapter
- and attribute_container_classdev_to_container
- exceed allowed 44 characters maximum
-X!Edrivers/base/attribute_container.c
--->
-!Edrivers/base/sys.c
-<!--
-X!Edrivers/base/interface.c
--->
-!Edrivers/base/platform.c
-!Edrivers/base/bus.c
- </sect1>
- <sect1><title>Device Drivers Power Management</title>
-!Edrivers/base/power/main.c
- </sect1>
- <sect1><title>Device Drivers ACPI Support</title>
-<!-- Internal functions only
-X!Edrivers/acpi/sleep/main.c
-X!Edrivers/acpi/sleep/wakeup.c
-X!Edrivers/acpi/motherboard.c
-X!Edrivers/acpi/bus.c
--->
-!Edrivers/acpi/scan.c
-!Idrivers/acpi/scan.c
-<!-- No correct structured comments
-X!Edrivers/acpi/pci_bind.c
--->
- </sect1>
- <sect1><title>Device drivers PnP support</title>
-!Idrivers/pnp/core.c
-<!-- No correct structured comments
-X!Edrivers/pnp/system.c
- -->
-!Edrivers/pnp/card.c
-!Idrivers/pnp/driver.c
-!Edrivers/pnp/manager.c
-!Edrivers/pnp/support.c
- </sect1>
- <sect1><title>Userspace IO devices</title>
-!Edrivers/uio/uio.c
-!Iinclude/linux/uio_driver.h
- </sect1>
- </chapter>
-
<chapter id="blkdev">
<title>Block Devices</title>
!Eblock/blk-core.c
@@ -381,275 +273,6 @@ X!Edrivers/pnp/system.c
!Edrivers/char/misc.c
</chapter>
- <chapter id="parportdev">
- <title>Parallel Port Devices</title>
-!Iinclude/linux/parport.h
-!Edrivers/parport/ieee1284.c
-!Edrivers/parport/share.c
-!Idrivers/parport/daisy.c
- </chapter>
-
- <chapter id="message_devices">
- <title>Message-based devices</title>
- <sect1><title>Fusion message devices</title>
-!Edrivers/message/fusion/mptbase.c
-!Idrivers/message/fusion/mptbase.c
-!Edrivers/message/fusion/mptscsih.c
-!Idrivers/message/fusion/mptscsih.c
-!Idrivers/message/fusion/mptctl.c
-!Idrivers/message/fusion/mptspi.c
-!Idrivers/message/fusion/mptfc.c
-!Idrivers/message/fusion/mptlan.c
- </sect1>
- <sect1><title>I2O message devices</title>
-!Iinclude/linux/i2o.h
-!Idrivers/message/i2o/core.h
-!Edrivers/message/i2o/iop.c
-!Idrivers/message/i2o/iop.c
-!Idrivers/message/i2o/config-osm.c
-!Edrivers/message/i2o/exec-osm.c
-!Idrivers/message/i2o/exec-osm.c
-!Idrivers/message/i2o/bus-osm.c
-!Edrivers/message/i2o/device.c
-!Idrivers/message/i2o/device.c
-!Idrivers/message/i2o/driver.c
-!Idrivers/message/i2o/pci.c
-!Idrivers/message/i2o/i2o_block.c
-!Idrivers/message/i2o/i2o_scsi.c
-!Idrivers/message/i2o/i2o_proc.c
- </sect1>
- </chapter>
-
- <chapter id="snddev">
- <title>Sound Devices</title>
-!Iinclude/sound/core.h
-!Esound/sound_core.c
-!Iinclude/sound/pcm.h
-!Esound/core/pcm.c
-!Esound/core/device.c
-!Esound/core/info.c
-!Esound/core/rawmidi.c
-!Esound/core/sound.c
-!Esound/core/memory.c
-!Esound/core/pcm_memory.c
-!Esound/core/init.c
-!Esound/core/isadma.c
-!Esound/core/control.c
-!Esound/core/pcm_lib.c
-!Esound/core/hwdep.c
-!Esound/core/pcm_native.c
-!Esound/core/memalloc.c
-<!-- FIXME: Removed for now since no structured comments in source
-X!Isound/sound_firmware.c
--->
- </chapter>
-
- <chapter id="uart16x50">
- <title>16x50 UART Driver</title>
-!Iinclude/linux/serial_core.h
-!Edrivers/serial/serial_core.c
-!Edrivers/serial/8250.c
- </chapter>
-
- <chapter id="fbdev">
- <title>Frame Buffer Library</title>
-
- <para>
- The frame buffer drivers depend heavily on four data structures.
- These structures are declared in include/linux/fb.h. They are
- fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs.
- The last three can be made available to and from userland.
- </para>
-
- <para>
- fb_info defines the current state of a particular video card.
- Inside fb_info, there exists a fb_ops structure which is a
- collection of needed functions to make fbdev and fbcon work.
- fb_info is only visible to the kernel.
- </para>
-
- <para>
- fb_var_screeninfo is used to describe the features of a video card
- that are user defined. With fb_var_screeninfo, things such as
- depth and the resolution may be defined.
- </para>
-
- <para>
- The next structure is fb_fix_screeninfo. This defines the
- properties of a card that are created when a mode is set and can't
- be changed otherwise. A good example of this is the start of the
- frame buffer memory. This "locks" the address of the frame buffer
- memory, so that it cannot be changed or moved.
- </para>
-
- <para>
- The last structure is fb_monospecs. In the old API, there was
- little importance for fb_monospecs. This allowed for forbidden things
- such as setting a mode of 800x600 on a fix frequency monitor. With
- the new API, fb_monospecs prevents such things, and if used
- correctly, can prevent a monitor from being cooked. fb_monospecs
- will not be useful until kernels 2.5.x.
- </para>
-
- <sect1><title>Frame Buffer Memory</title>
-!Edrivers/video/fbmem.c
- </sect1>
-<!--
- <sect1><title>Frame Buffer Console</title>
-X!Edrivers/video/console/fbcon.c
- </sect1>
--->
- <sect1><title>Frame Buffer Colormap</title>
-!Edrivers/video/fbcmap.c
- </sect1>
-<!-- FIXME:
- drivers/video/fbgen.c has no docs, which stuffs up the sgml. Comment
- out until somebody adds docs. KAO
- <sect1><title>Frame Buffer Generic Functions</title>
-X!Idrivers/video/fbgen.c
- </sect1>
-KAO -->
- <sect1><title>Frame Buffer Video Mode Database</title>
-!Idrivers/video/modedb.c
-!Edrivers/video/modedb.c
- </sect1>
- <sect1><title>Frame Buffer Macintosh Video Mode Database</title>
-!Edrivers/video/macmodes.c
- </sect1>
- <sect1><title>Frame Buffer Fonts</title>
- <para>
- Refer to the file drivers/video/console/fonts.c for more information.
- </para>
-<!-- FIXME: Removed for now since no structured comments in source
-X!Idrivers/video/console/fonts.c
--->
- </sect1>
- </chapter>
-
- <chapter id="input_subsystem">
- <title>Input Subsystem</title>
-!Iinclude/linux/input.h
-!Edrivers/input/input.c
-!Edrivers/input/ff-core.c
-!Edrivers/input/ff-memless.c
- </chapter>
-
- <chapter id="spi">
- <title>Serial Peripheral Interface (SPI)</title>
- <para>
- SPI is the "Serial Peripheral Interface", widely used with
- embedded systems because it is a simple and efficient
- interface: basically a multiplexed shift register.
- Its three signal wires hold a clock (SCK, often in the range
- of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
- a "Master In, Slave Out" (MISO) data line.
- SPI is a full duplex protocol; for each bit shifted out the
- MOSI line (one per clock) another is shifted in on the MISO line.
- Those bits are assembled into words of various sizes on the
- way to and from system memory.
- An additional chipselect line is usually active-low (nCS);
- four signals are normally used for each peripheral, plus
- sometimes an interrupt.
- </para>
- <para>
- The SPI bus facilities listed here provide a generalized
- interface to declare SPI busses and devices, manage them
- according to the standard Linux driver model, and perform
- input/output operations.
- At this time, only "master" side interfaces are supported,
- where Linux talks to SPI peripherals and does not implement
- such a peripheral itself.
- (Interfaces to support implementing SPI slaves would
- necessarily look different.)
- </para>
- <para>
- The programming interface is structured around two kinds of driver,
- and two kinds of device.
- A "Controller Driver" abstracts the controller hardware, which may
- be as simple as a set of GPIO pins or as complex as a pair of FIFOs
- connected to dual DMA engines on the other side of the SPI shift
- register (maximizing throughput). Such drivers bridge between
- whatever bus they sit on (often the platform bus) and SPI, and
- expose the SPI side of their device as a
- <structname>struct spi_master</structname>.
- SPI devices are children of that master, represented as a
- <structname>struct spi_device</structname> and manufactured from
- <structname>struct spi_board_info</structname> descriptors which
- are usually provided by board-specific initialization code.
- A <structname>struct spi_driver</structname> is called a
- "Protocol Driver", and is bound to a spi_device using normal
- driver model calls.
- </para>
- <para>
- The I/O model is a set of queued messages. Protocol drivers
- submit one or more <structname>struct spi_message</structname>
- objects, which are processed and completed asynchronously.
- (There are synchronous wrappers, however.) Messages are
- built from one or more <structname>struct spi_transfer</structname>
- objects, each of which wraps a full duplex SPI transfer.
- A variety of protocol tweaking options are needed, because
- different chips adopt very different policies for how they
- use the bits transferred with SPI.
- </para>
-!Iinclude/linux/spi/spi.h
-!Fdrivers/spi/spi.c spi_register_board_info
-!Edrivers/spi/spi.c
- </chapter>
-
- <chapter id="i2c">
- <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
-
- <para>
- I<superscript>2</superscript>C (or without fancy typography, "I2C")
- is an acronym for the "Inter-IC" bus, a simple bus protocol which is
- widely used where low data rate communications suffice.
- Since it's also a licensed trademark, some vendors use another
- name (such as "Two-Wire Interface", TWI) for the same bus.
- I2C only needs two signals (SCL for clock, SDA for data), conserving
- board real estate and minimizing signal quality issues.
- Most I2C devices use seven bit addresses, and bus speeds of up
- to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
- found wide use.
- I2C is a multi-master bus; open drain signaling is used to
- arbitrate between masters, as well as to handshake and to
- synchronize clocks from slower clients.
- </para>
-
- <para>
- The Linux I2C programming interfaces support only the master
- side of bus interactions, not the slave side.
- The programming interface is structured around two kinds of driver,
- and two kinds of device.
- An I2C "Adapter Driver" abstracts the controller hardware; it binds
- to a physical device (perhaps a PCI device or platform_device) and
- exposes a <structname>struct i2c_adapter</structname> representing
- each I2C bus segment it manages.
- On each I2C bus segment will be I2C devices represented by a
- <structname>struct i2c_client</structname>. Those devices will
- be bound to a <structname>struct i2c_driver</structname>,
- which should follow the standard Linux driver model.
- (At this writing, a legacy model is more widely used.)
- There are functions to perform various I2C protocol operations; at
- this writing all such functions are usable only from task context.
- </para>
-
- <para>
- The System Management Bus (SMBus) is a sibling protocol. Most SMBus
- systems are also I2C conformant. The electrical constraints are
- tighter for SMBus, and it standardizes particular protocol messages
- and idioms. Controllers that support I2C can also support most
- SMBus operations, but SMBus controllers don't support all the protocol
- options that an I2C controller will.
- There are functions to perform various SMBus protocol operations,
- either using I2C primitives or by issuing SMBus commands to
- i2c_adapter devices which don't support those I2C operations.
- </para>
-
-!Iinclude/linux/i2c.h
-!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
-!Edrivers/i2c/i2c-core.c
- </chapter>
-
<chapter id="clk">
<title>Clock Framework</title>
diff --git a/Documentation/cgroups/cpusets.txt b/Documentation/cgroups/cpusets.txt
index 5c86c258c791..0611e9528c7c 100644
--- a/Documentation/cgroups/cpusets.txt
+++ b/Documentation/cgroups/cpusets.txt
@@ -142,7 +142,7 @@ into the rest of the kernel, none in performance critical paths:
- in fork and exit, to attach and detach a task from its cpuset.
- in sched_setaffinity, to mask the requested CPUs by what's
allowed in that tasks cpuset.
- - in sched.c migrate_all_tasks(), to keep migrating tasks within
+ - in sched.c migrate_live_tasks(), to keep migrating tasks within
the CPUs allowed by their cpuset, if possible.
- in the mbind and set_mempolicy system calls, to mask the requested
Memory Nodes by what's allowed in that tasks cpuset.
@@ -175,6 +175,10 @@ files describing that cpuset:
- mem_exclusive flag: is memory placement exclusive?
- mem_hardwall flag: is memory allocation hardwalled
- memory_pressure: measure of how much paging pressure in cpuset
+ - memory_spread_page flag: if set, spread page cache evenly on allowed nodes
+ - memory_spread_slab flag: if set, spread slab cache evenly on allowed nodes
+ - sched_load_balance flag: if set, load balance within CPUs on that cpuset
+ - sched_relax_domain_level: the searching range when migrating tasks
In addition, the root cpuset only has the following file:
- memory_pressure_enabled flag: compute memory_pressure?
@@ -252,7 +256,7 @@ is causing.
This is useful both on tightly managed systems running a wide mix of
submitted jobs, which may choose to terminate or re-prioritize jobs that
-are trying to use more memory than allowed on the nodes assigned them,
+are trying to use more memory than allowed on the nodes assigned to them,
and with tightly coupled, long running, massively parallel scientific
computing jobs that will dramatically fail to meet required performance
goals if they start to use more memory than allowed to them.
@@ -378,7 +382,7 @@ as cpusets and sched_setaffinity.
The algorithmic cost of load balancing and its impact on key shared
kernel data structures such as the task list increases more than
linearly with the number of CPUs being balanced. So the scheduler
-has support to partition the systems CPUs into a number of sched
+has support to partition the systems CPUs into a number of sched
domains such that it only load balances within each sched domain.
Each sched domain covers some subset of the CPUs in the system;
no two sched domains overlap; some CPUs might not be in any sched
@@ -485,17 +489,22 @@ of CPUs allowed to a cpuset having 'sched_load_balance' enabled.
The internal kernel cpuset to scheduler interface passes from the
cpuset code to the scheduler code a partition of the load balanced
CPUs in the system. This partition is a set of subsets (represented
-as an array of cpumask_t) of CPUs, pairwise disjoint, that cover all
-the CPUs that must be load balanced.
-
-Whenever the 'sched_load_balance' flag changes, or CPUs come or go
-from a cpuset with this flag enabled, or a cpuset with this flag
-enabled is removed, the cpuset code builds a new such partition and
-passes it to the scheduler sched domain setup code, to have the sched
-domains rebuilt as necessary.
+as an array of struct cpumask) of CPUs, pairwise disjoint, that cover
+all the CPUs that must be load balanced.
+
+The cpuset code builds a new such partition and passes it to the
+scheduler sched domain setup code, to have the sched domains rebuilt
+as necessary, whenever:
+ - the 'sched_load_balance' flag of a cpuset with non-empty CPUs changes,
+ - or CPUs come or go from a cpuset with this flag enabled,
+ - or 'sched_relax_domain_level' value of a cpuset with non-empty CPUs
+ and with this flag enabled changes,
+ - or a cpuset with non-empty CPUs and with this flag enabled is removed,
+ - or a cpu is offlined/onlined.
This partition exactly defines what sched domains the scheduler should
-setup - one sched domain for each element (cpumask_t) in the partition.
+setup - one sched domain for each element (struct cpumask) in the
+partition.
The scheduler remembers the currently active sched domain partitions.
When the scheduler routine partition_sched_domains() is invoked from
@@ -559,7 +568,7 @@ domain, the largest value among those is used. Be careful, if one
requests 0 and others are -1 then 0 is used.
Note that modifying this file will have both good and bad effects,
-and whether it is acceptable or not will be depend on your situation.
+and whether it is acceptable or not depends on your situation.
Don't modify this file if you are not sure.
If your situation is:
@@ -600,19 +609,15 @@ to allocate a page of memory for that task.
If a cpuset has its 'cpus' modified, then each task in that cpuset
will have its allowed CPU placement changed immediately. Similarly,
-if a tasks pid is written to a cpusets 'tasks' file, in either its
-current cpuset or another cpuset, then its allowed CPU placement is
-changed immediately. If such a task had been bound to some subset
-of its cpuset using the sched_setaffinity() call, the task will be
-allowed to run on any CPU allowed in its new cpuset, negating the
-affect of the prior sched_setaffinity() call.
+if a tasks pid is written to another cpusets 'tasks' file, then its
+allowed CPU placement is changed immediately. If such a task had been
+bound to some subset of its cpuset using the sched_setaffinity() call,
+the task will be allowed to run on any CPU allowed in its new cpuset,
+negating the effect of the prior sched_setaffinity() call.
In summary, the memory placement of a task whose cpuset is changed is
updated by the kernel, on the next allocation of a page for that task,
-but the processor placement is not updated, until that tasks pid is
-rewritten to the 'tasks' file of its cpuset. This is done to avoid
-impacting the scheduler code in the kernel with a check for changes
-in a tasks processor placement.
+and the processor placement is updated immediately.
Normally, once a page is allocated (given a physical page
of main memory) then that page stays on whatever node it
@@ -681,10 +686,14 @@ and then start a subshell 'sh' in that cpuset:
# The next line should display '/Charlie'
cat /proc/self/cpuset
-In the future, a C library interface to cpusets will likely be
-available. For now, the only way to query or modify cpusets is
-via the cpuset file system, using the various cd, mkdir, echo, cat,
-rmdir commands from the shell, or their equivalent from C.
+There are ways to query or modify cpusets:
+ - via the cpuset file system directly, using the various cd, mkdir, echo,
+ cat, rmdir commands from the shell, or their equivalent from C.
+ - via the C library libcpuset.
+ - via the C library libcgroup.
+ (http://sourceforge.net/proects/libcg/)
+ - via the python application cset.
+ (http://developer.novell.com/wiki/index.php/Cpuset)
The sched_setaffinity calls can also be done at the shell prompt using
SGI's runon or Robert Love's taskset. The mbind and set_mempolicy
@@ -756,7 +765,7 @@ mount -t cpuset X /dev/cpuset
is equivalent to
-mount -t cgroup -ocpuset X /dev/cpuset
+mount -t cgroup -ocpuset,noprefix X /dev/cpuset
echo "/sbin/cpuset_release_agent" > /dev/cpuset/release_agent
2.2 Adding/removing cpus
diff --git a/Documentation/driver-model/device.txt b/Documentation/driver-model/device.txt
index a05ec50f8004..a7cbfff40d07 100644
--- a/Documentation/driver-model/device.txt
+++ b/Documentation/driver-model/device.txt
@@ -127,9 +127,11 @@ void unlock_device(struct device * dev);
Attributes
~~~~~~~~~~
struct device_attribute {
- struct attribute attr;
- ssize_t (*show)(struct device * dev, char * buf, size_t count, loff_t off);
- ssize_t (*store)(struct device * dev, const char * buf, size_t count, loff_t off);
+ struct attribute attr;
+ ssize_t (*show)(struct device *dev, struct device_attribute *attr,
+ char *buf);
+ ssize_t (*store)(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count);
};
Attributes of devices can be exported via drivers using a simple
diff --git a/Documentation/dvb/README.flexcop b/Documentation/dvb/README.flexcop
deleted file mode 100644
index 5515469de7cf..000000000000
--- a/Documentation/dvb/README.flexcop
+++ /dev/null
@@ -1,205 +0,0 @@
-This README escorted the skystar2-driver rewriting procedure. It describes the
-state of the new flexcop-driver set and some internals are written down here
-too.
-
-This document hopefully describes things about the flexcop and its
-device-offsprings. Goal was to write an easy-to-write and easy-to-read set of
-drivers based on the skystar2.c and other information.
-
-Remark: flexcop-pci.c was a copy of skystar2.c, but every line has been
-touched and rewritten.
-
-History & News
-==============
- 2005-04-01 - correct USB ISOC transfers (thanks to Vadim Catana)
-
-
-
-
-General coding processing
-=========================
-
-We should proceed as follows (as long as no one complains):
-
-0) Think before start writing code!
-
-1) rewriting the skystar2.c with the help of the flexcop register descriptions
-and splitting up the files to a pci-bus-part and a flexcop-part.
-The new driver will be called b2c2-flexcop-pci.ko/b2c2-flexcop-usb.ko for the
-device-specific part and b2c2-flexcop.ko for the common flexcop-functions.
-
-2) Search for errors in the leftover of flexcop-pci.c (compare with pluto2.c
-and other pci drivers)
-
-3) make some beautification (see 'Improvements when rewriting (refactoring) is
-done')
-
-4) Testing the new driver and maybe substitute the skystar2.c with it, to reach
-a wider tester audience.
-
-5) creating an usb-bus-part using the already written flexcop code for the pci
-card.
-
-Idea: create a kernel-object for the flexcop and export all important
-functions. This option saves kernel-memory, but maybe a lot of functions have
-to be exported to kernel namespace.
-
-
-Current situation
-=================
-
-0) Done :)
-1) Done (some minor issues left)
-2) Done
-3) Not ready yet, more information is necessary
-4) next to be done (see the table below)
-5) USB driver is working (yes, there are some minor issues)
-
-What seems to be ready?
------------------------
-
-1) Rewriting
-1a) i2c is cut off from the flexcop-pci.c and seems to work
-1b) moved tuner and demod stuff from flexcop-pci.c to flexcop-tuner-fe.c
-1c) moved lnb and diseqc stuff from flexcop-pci.c to flexcop-tuner-fe.c
-1e) eeprom (reading MAC address)
-1d) sram (no dynamic sll size detection (commented out) (using default as JJ told me))
-1f) misc. register accesses for reading parameters (e.g. resetting, revision)
-1g) pid/mac filter (flexcop-hw-filter.c)
-1i) dvb-stuff initialization in flexcop.c (done)
-1h) dma stuff (now just using the size-irq, instead of all-together, to be done)
-1j) remove flexcop initialization from flexcop-pci.c completely (done)
-1l) use a well working dma IRQ method (done, see 'Known bugs and problems and TODO')
-1k) cleanup flexcop-files (remove unused EXPORT_SYMBOLs, make static from
-non-static where possible, moved code to proper places)
-
-2) Search for errors in the leftover of flexcop-pci.c (partially done)
-5a) add MAC address reading
-5c) feeding of ISOC data to the software demux (format of the isochronous data
-and speed optimization, no real error) (thanks to Vadim Catana)
-
-What to do in the near future?
---------------------------------------
-(no special order here)
-
-5) USB driver
-5b) optimize isoc-transfer (submitting/killing isoc URBs when transfer is starting)
-
-Testing changes
----------------
-
-O = item is working
-P = item is partially working
-X = item is not working
-N = item does not apply here
-<empty field> = item need to be examined
-
- | PCI | USB
-item | mt352 | nxt2002 | stv0299 | mt312 | mt352 | nxt2002 | stv0299 | mt312
--------+-------+---------+---------+-------+-------+---------+---------+-------
-1a) | O | | | | N | N | N | N
-1b) | O | | | | | | O |
-1c) | N | N | | | N | N | O |
-1d) | O | O
-1e) | O | O
-1f) | P
-1g) | O
-1h) | P |
-1i) | O | N
-1j) | O | N
-1l) | O | N
-2) | O | N
-5a) | N | O
-5b)* | N |
-5c) | N | O
-
-* - not done yet
-
-Known bugs and problems and TODO
---------------------------------
-
-1g/h/l) when pid filtering is enabled on the pci card
-
-DMA usage currently:
- The DMA is splitted in 2 equal-sized subbuffers. The Flexcop writes to first
- address and triggers an IRQ when it's full and starts writing to the second
- address. When the second address is full, the IRQ is triggered again, and
- the flexcop writes to first address again, and so on.
- The buffersize of each address is currently 640*188 bytes.
-
- Problem is, when using hw-pid-filtering and doing some low-bandwidth
- operation (like scanning) the buffers won't be filled enough to trigger
- the IRQ. That's why:
-
- When PID filtering is activated, the timer IRQ is used. Every 1.97 ms the IRQ
- is triggered. Is the current write address of DMA1 different to the one
- during the last IRQ, then the data is passed to the demuxer.
-
- There is an additional DMA-IRQ-method: packet count IRQ. This isn't
- implemented correctly yet.
-
- The solution is to disable HW PID filtering, but I don't know how the DVB
- API software demux behaves on slow systems with 45MBit/s TS.
-
-Solved bugs :)
---------------
-1g) pid-filtering (somehow pid index 4 and 5 (EMM_PID and ECM_PID) aren't
-working)
-SOLUTION: also index 0 was affected, because net_translation is done for
-these indexes by default
-
-5b) isochronous transfer does only work in the first attempt (for the Sky2PC
-USB, Air2PC is working) SOLUTION: the flexcop was going asleep and never really
-woke up again (don't know if this need fixes, see
-flexcop-fe-tuner.c:flexcop_sleep)
-
-NEWS: when the driver is loaded and unloaded and loaded again (w/o doing
-anything in the while the driver is loaded the first time), no transfers take
-place anymore.
-
-Improvements when rewriting (refactoring) is done
-=================================================
-
-- split sleeping of the flexcop (misc_204.ACPI3_sig = 1;) from lnb_control
- (enable sleeping for other demods than dvb-s)
-- add support for CableStar (stv0297 Microtune 203x/ALPS) (almost done, incompatibilities with the Nexus-CA)
-
-Debugging
----------
-- add verbose debugging to skystar2.c (dump the reg_dw_data) and compare it
- with this flexcop, this is important, because i2c is now using the
- flexcop_ibi_value union from flexcop-reg.h (do you have a better idea for
- that, please tell us so).
-
-Everything which is identical in the following table, can be put into a common
-flexcop-module.
-
- PCI USB
--------------------------------------------------------------------------------
-Different:
-Register access: accessing IO memory USB control message
-I2C bus: I2C bus of the FC USB control message
-Data transfer: DMA isochronous transfer
-EEPROM transfer: through i2c bus not clear yet
-
-Identical:
-Streaming: accessing registers
-PID Filtering: accessing registers
-Sram destinations: accessing registers
-Tuner/Demod: I2C bus
-DVB-stuff: can be written for common use
-
-Acknowledgements (just for the rewriting part)
-================
-
-Bjarne Steinsbo thought a lot in the first place of the pci part for this code
-sharing idea.
-
-Andreas Oberritter for providing a recent PCI initialization template
-(pluto2.c).
-
-Boleslaw Ciesielski for pointing out a problem with firmware loader.
-
-Vadim Catana for correcting the USB transfer.
-
-comments, critics and ideas to linux-dvb@linuxtv.org.
diff --git a/Documentation/dvb/technisat.txt b/Documentation/dvb/technisat.txt
index cdf6ee4b2da1..3f435ffb289c 100644
--- a/Documentation/dvb/technisat.txt
+++ b/Documentation/dvb/technisat.txt
@@ -1,5 +1,5 @@
-How to set up the Technisat devices
-===================================
+How to set up the Technisat/B2C2 Flexcop devices
+================================================
1) Find out what device you have
================================
@@ -16,54 +16,60 @@ DVB: registering frontend 0 (Conexant CX24123/CX24109)...
If the Technisat is the only TV device in your box get rid of unnecessary modules and check this one:
"Multimedia devices" => "Customise analog and hybrid tuner modules to build"
-In this directory uncheck every driver which is activated there.
+In this directory uncheck every driver which is activated there (except "Simple tuner support" for case 9 only).
Then please activate:
2a) Main module part:
a.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters"
-b.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC PCI" in case of a PCI card OR
+b.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC PCI" in case of a PCI card
+OR
c.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC USB" in case of an USB 1.1 adapter
d.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Enable debug for the B2C2 FlexCop drivers"
Notice: d.) is helpful for troubleshooting
2b) Frontend module part:
-1.) Revision 2.3:
+1.) SkyStar DVB-S Revision 2.3:
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink VP310/MT312/ZL10313 based"
-2.) Revision 2.6:
+2.) SkyStar DVB-S Revision 2.6:
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0299 based"
-3.) Revision 2.7:
+3.) SkyStar DVB-S Revision 2.7:
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
b.)"Multimedia devices" => "Customise DVB frontends" => "Samsung S5H1420 based"
c.)"Multimedia devices" => "Customise DVB frontends" => "Integrant ITD1000 Zero IF tuner for DVB-S/DSS"
d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller"
-4.) Revision 2.8:
+4.) SkyStar DVB-S Revision 2.8:
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
b.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24113/CX24128 tuner for DVB-S/DSS"
c.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24123 based"
d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller"
-5.) DVB-T card:
+5.) AirStar DVB-T card:
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink MT352 based"
-6.) DVB-C card:
+6.) CableStar DVB-C card:
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0297 based"
-7.) ATSC card 1st generation:
+7.) AirStar ATSC card 1st generation:
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
b.)"Multimedia devices" => "Customise DVB frontends" => "Broadcom BCM3510"
-8.) ATSC card 2nd generation:
+8.) AirStar ATSC card 2nd generation:
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
b.)"Multimedia devices" => "Customise DVB frontends" => "NxtWave Communications NXT2002/NXT2004 based"
-c.)"Multimedia devices" => "Customise DVB frontends" => "LG Electronics LGDT3302/LGDT3303 based"
+c.)"Multimedia devices" => "Customise DVB frontends" => "Generic I2C PLL based tuners"
-Author: Uwe Bugla <uwe.bugla@gmx.de> December 2008
+9.) AirStar ATSC card 3rd generation:
+a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
+b.)"Multimedia devices" => "Customise DVB frontends" => "LG Electronics LGDT3302/LGDT3303 based"
+c.)"Multimedia devices" => "Customise analog and hybrid tuner modules to build" => "Simple tuner support"
+
+Author: Uwe Bugla <uwe.bugla@gmx.de> February 2009
diff --git a/Documentation/filesystems/sysfs.txt b/Documentation/filesystems/sysfs.txt
index 9e9c348275a9..7e81e37c0b1e 100644
--- a/Documentation/filesystems/sysfs.txt
+++ b/Documentation/filesystems/sysfs.txt
@@ -2,8 +2,10 @@
sysfs - _The_ filesystem for exporting kernel objects.
Patrick Mochel <mochel@osdl.org>
+Mike Murphy <mamurph@cs.clemson.edu>
-10 January 2003
+Revised: 22 February 2009
+Original: 10 January 2003
What it is:
@@ -64,12 +66,13 @@ An attribute definition is simply:
struct attribute {
char * name;
+ struct module *owner;
mode_t mode;
};
-int sysfs_create_file(struct kobject * kobj, struct attribute * attr);
-void sysfs_remove_file(struct kobject * kobj, struct attribute * attr);
+int sysfs_create_file(struct kobject * kobj, const struct attribute * attr);
+void sysfs_remove_file(struct kobject * kobj, const struct attribute * attr);
A bare attribute contains no means to read or write the value of the
@@ -80,9 +83,11 @@ a specific object type.
For example, the driver model defines struct device_attribute like:
struct device_attribute {
- struct attribute attr;
- ssize_t (*show)(struct device * dev, char * buf);
- ssize_t (*store)(struct device * dev, const char * buf);
+ struct attribute attr;
+ ssize_t (*show)(struct device *dev, struct device_attribute *attr,
+ char *buf);
+ ssize_t (*store)(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count);
};
int device_create_file(struct device *, struct device_attribute *);
@@ -90,12 +95,8 @@ void device_remove_file(struct device *, struct device_attribute *);
It also defines this helper for defining device attributes:
-#define DEVICE_ATTR(_name, _mode, _show, _store) \
-struct device_attribute dev_attr_##_name = { \
- .attr = {.name = __stringify(_name) , .mode = _mode }, \
- .show = _show, \
- .store = _store, \
-};
+#define DEVICE_ATTR(_name, _mode, _show, _store) \
+struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
For example, declaring
@@ -107,9 +108,9 @@ static struct device_attribute dev_attr_foo = {
.attr = {
.name = "foo",
.mode = S_IWUSR | S_IRUGO,
+ .show = show_foo,
+ .store = store_foo,
},
- .show = show_foo,
- .store = store_foo,
};
@@ -161,10 +162,12 @@ To read or write attributes, show() or store() methods must be
specified when declaring the attribute. The method types should be as
simple as those defined for device attributes:
- ssize_t (*show)(struct device * dev, char * buf);
- ssize_t (*store)(struct device * dev, const char * buf);
+ssize_t (*show)(struct device * dev, struct device_attribute * attr,
+ char * buf);
+ssize_t (*store)(struct device * dev, struct device_attribute * attr,
+ const char * buf);
-IOW, they should take only an object and a buffer as parameters.
+IOW, they should take only an object, an attribute, and a buffer as parameters.
sysfs allocates a buffer of size (PAGE_SIZE) and passes it to the
@@ -299,14 +302,16 @@ The following interface layers currently exist in sysfs:
Structure:
struct device_attribute {
- struct attribute attr;
- ssize_t (*show)(struct device * dev, char * buf);
- ssize_t (*store)(struct device * dev, const char * buf);
+ struct attribute attr;
+ ssize_t (*show)(struct device *dev, struct device_attribute *attr,
+ char *buf);
+ ssize_t (*store)(struct device *dev, struct device_attribute *attr,
+ const char *buf, size_t count);
};
Declaring:
-DEVICE_ATTR(_name, _str, _mode, _show, _store);
+DEVICE_ATTR(_name, _mode, _show, _store);
Creation/Removal:
@@ -342,7 +347,8 @@ Structure:
struct driver_attribute {
struct attribute attr;
ssize_t (*show)(struct device_driver *, char * buf);
- ssize_t (*store)(struct device_driver *, const char * buf);
+ ssize_t (*store)(struct device_driver *, const char * buf,
+ size_t count);
};
Declaring:
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index b182626739ea..28de395fa096 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -114,7 +114,7 @@ In addition, the following text indicates that the option:
Parameters denoted with BOOT are actually interpreted by the boot
loader, and have no meaning to the kernel directly.
Do not modify the syntax of boot loader parameters without extreme
-need or coordination with <Documentation/x86/i386/boot.txt>.
+need or coordination with <Documentation/x86/boot.txt>.
There are also arch-specific kernel-parameters not documented here.
See for example <Documentation/x86/x86_64/boot-options.txt>.
@@ -134,7 +134,7 @@ and is between 256 and 4096 characters. It is defined in the file
acpi= [HW,ACPI,X86-64,i386]
Advanced Configuration and Power Interface
- Format: { force | off | ht | strict | noirq }
+ Format: { force | off | ht | strict | noirq | rsdt }
force -- enable ACPI if default was off
off -- disable ACPI if default was on
noirq -- do not use ACPI for IRQ routing
@@ -868,8 +868,10 @@ and is between 256 and 4096 characters. It is defined in the file
icn= [HW,ISDN]
Format: <io>[,<membase>[,<icn_id>[,<icn_id2>]]]
- ide= [HW] (E)IDE subsystem
- Format: ide=nodma or ide=doubler
+ ide-core.nodma= [HW] (E)IDE subsystem
+ Format: =0.0 to prevent dma on hda, =0.1 hdb =1.0 hdc
+ .vlb_clock .pci_clock .noflush .noprobe .nowerr .cdrom
+ .chs .ignore_cable are additional options
See Documentation/ide/ide.txt.
idebus= [HW] (E)IDE subsystem - VLB/PCI bus speed
@@ -1308,8 +1310,13 @@ and is between 256 and 4096 characters. It is defined in the file
memtest= [KNL,X86] Enable memtest
Format: <integer>
- range: 0,4 : pattern number
default : 0 <disable>
+ Specifies the number of memtest passes to be
+ performed. Each pass selects another test
+ pattern from a given set of patterns. Memtest
+ fills the memory with this pattern, validates
+ memory contents and reserves bad memory
+ regions that are detected.
meye.*= [HW] Set MotionEye Camera parameters
See Documentation/video4linux/meye.txt.
@@ -2449,7 +2456,7 @@ and is between 256 and 4096 characters. It is defined in the file
See Documentation/fb/modedb.txt.
vga= [BOOT,X86-32] Select a particular video mode
- See Documentation/x86/i386/boot.txt and
+ See Documentation/x86/boot.txt and
Documentation/svga.txt.
Use vga=ask for menu.
This is actually a boot loader parameter; the value is
diff --git a/Documentation/scsi/cxgb3i.txt b/Documentation/scsi/cxgb3i.txt
index 8141fa01978e..7ac8032ee9b2 100644
--- a/Documentation/scsi/cxgb3i.txt
+++ b/Documentation/scsi/cxgb3i.txt
@@ -4,7 +4,7 @@ Introduction
============
The Chelsio T3 ASIC based Adapters (S310, S320, S302, S304, Mezz cards, etc.
-series of products) supports iSCSI acceleration and iSCSI Direct Data Placement
+series of products) support iSCSI acceleration and iSCSI Direct Data Placement
(DDP) where the hardware handles the expensive byte touching operations, such
as CRC computation and verification, and direct DMA to the final host memory
destination:
@@ -31,9 +31,9 @@ destination:
the TCP segments onto the wire. It handles TCP retransmission if
needed.
- On receving, S3 h/w recovers the iSCSI PDU by reassembling TCP
+ On receiving, S3 h/w recovers the iSCSI PDU by reassembling TCP
segments, separating the header and data, calculating and verifying
- the digests, then forwards the header to the host. The payload data,
+ the digests, then forwarding the header to the host. The payload data,
if possible, will be directly placed into the pre-posted host DDP
buffer. Otherwise, the payload data will be sent to the host too.
@@ -68,9 +68,8 @@ The following steps need to be taken to accelerates the open-iscsi initiator:
sure the ip address is unique in the network.
3. edit /etc/iscsi/iscsid.conf
- The default setting for MaxRecvDataSegmentLength (131072) is too big,
- replace "node.conn[0].iscsi.MaxRecvDataSegmentLength" to be a value no
- bigger than 15360 (for example 8192):
+ The default setting for MaxRecvDataSegmentLength (131072) is too big;
+ replace with a value no bigger than 15360 (for example 8192):
node.conn[0].iscsi.MaxRecvDataSegmentLength = 8192
diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt
index 12299697b7cd..e0203662f9e9 100644
--- a/Documentation/x86/boot.txt
+++ b/Documentation/x86/boot.txt
@@ -543,7 +543,10 @@ Protocol: 2.08+
The payload may be compressed. The format of both the compressed and
uncompressed data should be determined using the standard magic
- numbers. Currently only gzip compressed ELF is used.
+ numbers. The currently supported compression formats are gzip
+ (magic numbers 1F 8B or 1F 9E), bzip2 (magic number 42 5A) and LZMA
+ (magic number 5D 00). The uncompressed payload is currently always ELF
+ (magic number 7F 45 4C 46).
Field name: payload_length
Type: read