summaryrefslogtreecommitdiff
path: root/fs/iomap/buffered-io.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/iomap/buffered-io.c')
-rw-r--r--fs/iomap/buffered-io.c254
1 files changed, 253 insertions, 1 deletions
diff --git a/fs/iomap/buffered-io.c b/fs/iomap/buffered-io.c
index 91ee0b308e13..356193e44cf0 100644
--- a/fs/iomap/buffered-io.c
+++ b/fs/iomap/buffered-io.c
@@ -584,7 +584,7 @@ static int iomap_write_begin_inline(const struct iomap_iter *iter,
return iomap_read_inline_data(iter, folio);
}
-static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
+static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
size_t len, struct folio **foliop)
{
const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
@@ -618,6 +618,27 @@ static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
status = (iter->flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOMEM;
goto out_no_page;
}
+
+ /*
+ * Now we have a locked folio, before we do anything with it we need to
+ * check that the iomap we have cached is not stale. The inode extent
+ * mapping can change due to concurrent IO in flight (e.g.
+ * IOMAP_UNWRITTEN state can change and memory reclaim could have
+ * reclaimed a previously partially written page at this index after IO
+ * completion before this write reaches this file offset) and hence we
+ * could do the wrong thing here (zero a page range incorrectly or fail
+ * to zero) and corrupt data.
+ */
+ if (page_ops && page_ops->iomap_valid) {
+ bool iomap_valid = page_ops->iomap_valid(iter->inode,
+ &iter->iomap);
+ if (!iomap_valid) {
+ iter->iomap.flags |= IOMAP_F_STALE;
+ status = 0;
+ goto out_unlock;
+ }
+ }
+
if (pos + len > folio_pos(folio) + folio_size(folio))
len = folio_pos(folio) + folio_size(folio) - pos;
@@ -773,6 +794,8 @@ again:
status = iomap_write_begin(iter, pos, bytes, &folio);
if (unlikely(status))
break;
+ if (iter->iomap.flags & IOMAP_F_STALE)
+ break;
page = folio_file_page(folio, pos >> PAGE_SHIFT);
if (mapping_writably_mapped(mapping))
@@ -832,6 +855,231 @@ iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
}
EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
+/*
+ * Scan the data range passed to us for dirty page cache folios. If we find a
+ * dirty folio, punch out the preceeding range and update the offset from which
+ * the next punch will start from.
+ *
+ * We can punch out storage reservations under clean pages because they either
+ * contain data that has been written back - in which case the delalloc punch
+ * over that range is a no-op - or they have been read faults in which case they
+ * contain zeroes and we can remove the delalloc backing range and any new
+ * writes to those pages will do the normal hole filling operation...
+ *
+ * This makes the logic simple: we only need to keep the delalloc extents only
+ * over the dirty ranges of the page cache.
+ *
+ * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
+ * simplify range iterations.
+ */
+static int iomap_write_delalloc_scan(struct inode *inode,
+ loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
+ int (*punch)(struct inode *inode, loff_t offset, loff_t length))
+{
+ while (start_byte < end_byte) {
+ struct folio *folio;
+
+ /* grab locked page */
+ folio = filemap_lock_folio(inode->i_mapping,
+ start_byte >> PAGE_SHIFT);
+ if (!folio) {
+ start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
+ PAGE_SIZE;
+ continue;
+ }
+
+ /* if dirty, punch up to offset */
+ if (folio_test_dirty(folio)) {
+ if (start_byte > *punch_start_byte) {
+ int error;
+
+ error = punch(inode, *punch_start_byte,
+ start_byte - *punch_start_byte);
+ if (error) {
+ folio_unlock(folio);
+ folio_put(folio);
+ return error;
+ }
+ }
+
+ /*
+ * Make sure the next punch start is correctly bound to
+ * the end of this data range, not the end of the folio.
+ */
+ *punch_start_byte = min_t(loff_t, end_byte,
+ folio_next_index(folio) << PAGE_SHIFT);
+ }
+
+ /* move offset to start of next folio in range */
+ start_byte = folio_next_index(folio) << PAGE_SHIFT;
+ folio_unlock(folio);
+ folio_put(folio);
+ }
+ return 0;
+}
+
+/*
+ * Punch out all the delalloc blocks in the range given except for those that
+ * have dirty data still pending in the page cache - those are going to be
+ * written and so must still retain the delalloc backing for writeback.
+ *
+ * As we are scanning the page cache for data, we don't need to reimplement the
+ * wheel - mapping_seek_hole_data() does exactly what we need to identify the
+ * start and end of data ranges correctly even for sub-folio block sizes. This
+ * byte range based iteration is especially convenient because it means we
+ * don't have to care about variable size folios, nor where the start or end of
+ * the data range lies within a folio, if they lie within the same folio or even
+ * if there are multiple discontiguous data ranges within the folio.
+ *
+ * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
+ * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
+ * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
+ * date. A write page fault can then mark it dirty. If we then fail a write()
+ * beyond EOF into that up to date cached range, we allocate a delalloc block
+ * beyond EOF and then have to punch it out. Because the range is up to date,
+ * mapping_seek_hole_data() will return it, and we will skip the punch because
+ * the folio is dirty. THis is incorrect - we always need to punch out delalloc
+ * beyond EOF in this case as writeback will never write back and covert that
+ * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
+ * resulting in always punching out the range from the EOF to the end of the
+ * range the iomap spans.
+ *
+ * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
+ * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
+ * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
+ * returns the end of the data range (data_end). Using closed intervals would
+ * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
+ * the code to subtle off-by-one bugs....
+ */
+static int iomap_write_delalloc_release(struct inode *inode,
+ loff_t start_byte, loff_t end_byte,
+ int (*punch)(struct inode *inode, loff_t pos, loff_t length))
+{
+ loff_t punch_start_byte = start_byte;
+ loff_t scan_end_byte = min(i_size_read(inode), end_byte);
+ int error = 0;
+
+ /*
+ * Lock the mapping to avoid races with page faults re-instantiating
+ * folios and dirtying them via ->page_mkwrite whilst we walk the
+ * cache and perform delalloc extent removal. Failing to do this can
+ * leave dirty pages with no space reservation in the cache.
+ */
+ filemap_invalidate_lock(inode->i_mapping);
+ while (start_byte < scan_end_byte) {
+ loff_t data_end;
+
+ start_byte = mapping_seek_hole_data(inode->i_mapping,
+ start_byte, scan_end_byte, SEEK_DATA);
+ /*
+ * If there is no more data to scan, all that is left is to
+ * punch out the remaining range.
+ */
+ if (start_byte == -ENXIO || start_byte == scan_end_byte)
+ break;
+ if (start_byte < 0) {
+ error = start_byte;
+ goto out_unlock;
+ }
+ WARN_ON_ONCE(start_byte < punch_start_byte);
+ WARN_ON_ONCE(start_byte > scan_end_byte);
+
+ /*
+ * We find the end of this contiguous cached data range by
+ * seeking from start_byte to the beginning of the next hole.
+ */
+ data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
+ scan_end_byte, SEEK_HOLE);
+ if (data_end < 0) {
+ error = data_end;
+ goto out_unlock;
+ }
+ WARN_ON_ONCE(data_end <= start_byte);
+ WARN_ON_ONCE(data_end > scan_end_byte);
+
+ error = iomap_write_delalloc_scan(inode, &punch_start_byte,
+ start_byte, data_end, punch);
+ if (error)
+ goto out_unlock;
+
+ /* The next data search starts at the end of this one. */
+ start_byte = data_end;
+ }
+
+ if (punch_start_byte < end_byte)
+ error = punch(inode, punch_start_byte,
+ end_byte - punch_start_byte);
+out_unlock:
+ filemap_invalidate_unlock(inode->i_mapping);
+ return error;
+}
+
+/*
+ * When a short write occurs, the filesystem may need to remove reserved space
+ * that was allocated in ->iomap_begin from it's ->iomap_end method. For
+ * filesystems that use delayed allocation, we need to punch out delalloc
+ * extents from the range that are not dirty in the page cache. As the write can
+ * race with page faults, there can be dirty pages over the delalloc extent
+ * outside the range of a short write but still within the delalloc extent
+ * allocated for this iomap.
+ *
+ * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
+ * simplify range iterations.
+ *
+ * The punch() callback *must* only punch delalloc extents in the range passed
+ * to it. It must skip over all other types of extents in the range and leave
+ * them completely unchanged. It must do this punch atomically with respect to
+ * other extent modifications.
+ *
+ * The punch() callback may be called with a folio locked to prevent writeback
+ * extent allocation racing at the edge of the range we are currently punching.
+ * The locked folio may or may not cover the range being punched, so it is not
+ * safe for the punch() callback to lock folios itself.
+ *
+ * Lock order is:
+ *
+ * inode->i_rwsem (shared or exclusive)
+ * inode->i_mapping->invalidate_lock (exclusive)
+ * folio_lock()
+ * ->punch
+ * internal filesystem allocation lock
+ */
+int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
+ struct iomap *iomap, loff_t pos, loff_t length,
+ ssize_t written,
+ int (*punch)(struct inode *inode, loff_t pos, loff_t length))
+{
+ loff_t start_byte;
+ loff_t end_byte;
+ int blocksize = i_blocksize(inode);
+
+ if (iomap->type != IOMAP_DELALLOC)
+ return 0;
+
+ /* If we didn't reserve the blocks, we're not allowed to punch them. */
+ if (!(iomap->flags & IOMAP_F_NEW))
+ return 0;
+
+ /*
+ * start_byte refers to the first unused block after a short write. If
+ * nothing was written, round offset down to point at the first block in
+ * the range.
+ */
+ if (unlikely(!written))
+ start_byte = round_down(pos, blocksize);
+ else
+ start_byte = round_up(pos + written, blocksize);
+ end_byte = round_up(pos + length, blocksize);
+
+ /* Nothing to do if we've written the entire delalloc extent */
+ if (start_byte >= end_byte)
+ return 0;
+
+ return iomap_write_delalloc_release(inode, start_byte, end_byte,
+ punch);
+}
+EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
+
static loff_t iomap_unshare_iter(struct iomap_iter *iter)
{
struct iomap *iomap = &iter->iomap;
@@ -856,6 +1104,8 @@ static loff_t iomap_unshare_iter(struct iomap_iter *iter)
status = iomap_write_begin(iter, pos, bytes, &folio);
if (unlikely(status))
return status;
+ if (iter->iomap.flags & IOMAP_F_STALE)
+ break;
status = iomap_write_end(iter, pos, bytes, bytes, folio);
if (WARN_ON_ONCE(status == 0))
@@ -911,6 +1161,8 @@ static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
status = iomap_write_begin(iter, pos, bytes, &folio);
if (status)
return status;
+ if (iter->iomap.flags & IOMAP_F_STALE)
+ break;
offset = offset_in_folio(folio, pos);
if (bytes > folio_size(folio) - offset)