summaryrefslogtreecommitdiff
path: root/include/linux/percpu-refcount.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/percpu-refcount.h')
-rw-r--r--include/linux/percpu-refcount.h114
1 files changed, 114 insertions, 0 deletions
diff --git a/include/linux/percpu-refcount.h b/include/linux/percpu-refcount.h
new file mode 100644
index 000000000000..d0cf8872dc43
--- /dev/null
+++ b/include/linux/percpu-refcount.h
@@ -0,0 +1,114 @@
+/*
+ * Dynamic percpu refcounts:
+ * (C) 2012 Google, Inc.
+ * Author: Kent Overstreet <koverstreet@google.com>
+ *
+ * This implements a refcount with similar semantics to atomic_t - atomic_inc(),
+ * atomic_dec_and_test() - but potentially percpu.
+ *
+ * There's one important difference between percpu refs and normal atomic_t
+ * refcounts; you have to keep track of your initial refcount, and then when you
+ * start shutting down you call percpu_ref_kill() _before_ dropping the initial
+ * refcount.
+ *
+ * Before you call percpu_ref_kill(), percpu_ref_put() does not check for the
+ * refcount hitting 0 - it can't, if it was in percpu mode. percpu_ref_kill()
+ * puts the ref back in single atomic_t mode, collecting the per cpu refs and
+ * issuing the appropriate barriers, and then marks the ref as shutting down so
+ * that percpu_ref_put() will check for the ref hitting 0. After it returns,
+ * it's safe to drop the initial ref.
+ *
+ * BACKGROUND:
+ *
+ * Percpu refcounts are quite useful for performance, but if we blindly
+ * converted all refcounts to percpu counters we'd waste quite a bit of memory.
+ *
+ * Think about all the refcounts embedded in kobjects, files, etc. most of which
+ * aren't used much. These start out as simple atomic counters - a little bigger
+ * than a bare atomic_t, 16 bytes instead of 4 - but if we exceed some arbitrary
+ * number of gets in one second, we then switch to percpu counters.
+ *
+ * This heuristic isn't perfect because it'll fire if the refcount was only
+ * being used on one cpu; ideally we'd be able to count the number of cache
+ * misses on percpu_ref_get() or something similar, but that'd make the non
+ * percpu path significantly heavier/more complex. We can count the number of
+ * gets() without any extra atomic instructions on arches that support
+ * atomic64_t - simply by changing the atomic_inc() to atomic_add_return().
+ *
+ * USAGE:
+ *
+ * See fs/aio.c for some example usage; it's used there for struct kioctx, which
+ * is created when userspaces calls io_setup(), and destroyed when userspace
+ * calls io_destroy() or the process exits.
+ *
+ * In the aio code, kill_ioctx() is called when we wish to destroy a kioctx; it
+ * calls percpu_ref_kill(), then hlist_del_rcu() and sychronize_rcu() to remove
+ * the kioctx from the proccess's list of kioctxs - after that, there can't be
+ * any new users of the kioctx (from lookup_ioctx()) and it's then safe to drop
+ * the initial ref with percpu_ref_put().
+ *
+ * Code that does a two stage shutdown like this often needs some kind of
+ * explicit synchronization to ensure the initial refcount can only be dropped
+ * once - percpu_ref_kill() does this for you, it returns true once and false if
+ * someone else already called it. The aio code uses it this way, but it's not
+ * necessary if the code has some other mechanism to synchronize teardown.
+ *
+ * As mentioned previously, we decide when to convert a ref to percpu counters
+ * in percpu_ref_get(). However, since percpu_ref_get() will often be called
+ * with rcu_read_lock() held, it's not done there - percpu_ref_get() returns
+ * true if the ref should be converted to percpu counters.
+ *
+ * The caller should then call percpu_ref_alloc() after dropping
+ * rcu_read_lock(); if there is an uncommonly used codepath where it's
+ * inconvenient to call percpu_ref_alloc() after get(), it may be safely skipped
+ * and percpu_ref_get() will return true again the next time the counter wraps
+ * around.
+ */
+
+#ifndef _LINUX_PERCPU_REFCOUNT_H
+#define _LINUX_PERCPU_REFCOUNT_H
+
+#include <linux/atomic.h>
+#include <linux/percpu.h>
+
+struct percpu_ref {
+ atomic64_t count;
+ unsigned long pcpu_count;
+};
+
+void percpu_ref_init(struct percpu_ref *ref);
+void __percpu_ref_get(struct percpu_ref *ref, bool alloc);
+int percpu_ref_put(struct percpu_ref *ref);
+
+int percpu_ref_kill(struct percpu_ref *ref);
+int percpu_ref_dead(struct percpu_ref *ref);
+
+/**
+ * percpu_ref_get - increment a dynamic percpu refcount
+ *
+ * Increments @ref and possibly converts it to percpu counters. Must be called
+ * with rcu_read_lock() held, and may potentially drop/reacquire rcu_read_lock()
+ * to allocate percpu counters - if sleeping/allocation isn't safe for some
+ * other reason (e.g. a spinlock), see percpu_ref_get_noalloc().
+ *
+ * Analagous to atomic_inc().
+ */
+static inline void percpu_ref_get(struct percpu_ref *ref)
+{
+ __percpu_ref_get(ref, true);
+}
+
+/**
+ * percpu_ref_get_noalloc - increment a dynamic percpu refcount
+ *
+ * Increments @ref, to be used when it's not safe to allocate percpu counters.
+ * Must be called with rcu_read_lock() held.
+ *
+ * Analagous to atomic_inc().
+ */
+static inline void percpu_ref_get_noalloc(struct percpu_ref *ref)
+{
+ __percpu_ref_get(ref, false);
+}
+
+#endif