diff options
Diffstat (limited to 'kernel/bpf/verifier.c')
-rw-r--r-- | kernel/bpf/verifier.c | 670 |
1 files changed, 566 insertions, 104 deletions
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index a7178ecf676d..857d76694517 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -1173,7 +1173,12 @@ static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg static void __mark_reg_known_zero(struct bpf_reg_state *reg); +static bool in_rcu_cs(struct bpf_verifier_env *env); + +static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta); + static int mark_stack_slots_iter(struct bpf_verifier_env *env, + struct bpf_kfunc_call_arg_meta *meta, struct bpf_reg_state *reg, int insn_idx, struct btf *btf, u32 btf_id, int nr_slots) { @@ -1194,6 +1199,12 @@ static int mark_stack_slots_iter(struct bpf_verifier_env *env, __mark_reg_known_zero(st); st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ + if (is_kfunc_rcu_protected(meta)) { + if (in_rcu_cs(env)) + st->type |= MEM_RCU; + else + st->type |= PTR_UNTRUSTED; + } st->live |= REG_LIVE_WRITTEN; st->ref_obj_id = i == 0 ? id : 0; st->iter.btf = btf; @@ -1268,7 +1279,7 @@ static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, return true; } -static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, +static int is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, struct btf *btf, u32 btf_id, int nr_slots) { struct bpf_func_state *state = func(env, reg); @@ -1276,26 +1287,28 @@ static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_ spi = iter_get_spi(env, reg, nr_slots); if (spi < 0) - return false; + return -EINVAL; for (i = 0; i < nr_slots; i++) { struct bpf_stack_state *slot = &state->stack[spi - i]; struct bpf_reg_state *st = &slot->spilled_ptr; + if (st->type & PTR_UNTRUSTED) + return -EPROTO; /* only main (first) slot has ref_obj_id set */ if (i == 0 && !st->ref_obj_id) - return false; + return -EINVAL; if (i != 0 && st->ref_obj_id) - return false; + return -EINVAL; if (st->iter.btf != btf || st->iter.btf_id != btf_id) - return false; + return -EINVAL; for (j = 0; j < BPF_REG_SIZE; j++) if (slot->slot_type[j] != STACK_ITER) - return false; + return -EINVAL; } - return true; + return 0; } /* Check if given stack slot is "special": @@ -1342,6 +1355,50 @@ static void scrub_spilled_slot(u8 *stype) *stype = STACK_MISC; } +static void print_scalar_ranges(struct bpf_verifier_env *env, + const struct bpf_reg_state *reg, + const char **sep) +{ + struct { + const char *name; + u64 val; + bool omit; + } minmaxs[] = { + {"smin", reg->smin_value, reg->smin_value == S64_MIN}, + {"smax", reg->smax_value, reg->smax_value == S64_MAX}, + {"umin", reg->umin_value, reg->umin_value == 0}, + {"umax", reg->umax_value, reg->umax_value == U64_MAX}, + {"smin32", (s64)reg->s32_min_value, reg->s32_min_value == S32_MIN}, + {"smax32", (s64)reg->s32_max_value, reg->s32_max_value == S32_MAX}, + {"umin32", reg->u32_min_value, reg->u32_min_value == 0}, + {"umax32", reg->u32_max_value, reg->u32_max_value == U32_MAX}, + }, *m1, *m2, *mend = &minmaxs[ARRAY_SIZE(minmaxs)]; + bool neg1, neg2; + + for (m1 = &minmaxs[0]; m1 < mend; m1++) { + if (m1->omit) + continue; + + neg1 = m1->name[0] == 's' && (s64)m1->val < 0; + + verbose(env, "%s%s=", *sep, m1->name); + *sep = ","; + + for (m2 = m1 + 2; m2 < mend; m2 += 2) { + if (m2->omit || m2->val != m1->val) + continue; + /* don't mix negatives with positives */ + neg2 = m2->name[0] == 's' && (s64)m2->val < 0; + if (neg2 != neg1) + continue; + m2->omit = true; + verbose(env, "%s=", m2->name); + } + + verbose(env, m1->name[0] == 's' ? "%lld" : "%llu", m1->val); + } +} + static void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_func_state *state, bool print_all) @@ -1405,34 +1462,13 @@ static void print_verifier_state(struct bpf_verifier_env *env, */ verbose_a("imm=%llx", reg->var_off.value); } else { - if (reg->smin_value != reg->umin_value && - reg->smin_value != S64_MIN) - verbose_a("smin=%lld", (long long)reg->smin_value); - if (reg->smax_value != reg->umax_value && - reg->smax_value != S64_MAX) - verbose_a("smax=%lld", (long long)reg->smax_value); - if (reg->umin_value != 0) - verbose_a("umin=%llu", (unsigned long long)reg->umin_value); - if (reg->umax_value != U64_MAX) - verbose_a("umax=%llu", (unsigned long long)reg->umax_value); + print_scalar_ranges(env, reg, &sep); if (!tnum_is_unknown(reg->var_off)) { char tn_buf[48]; tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); verbose_a("var_off=%s", tn_buf); } - if (reg->s32_min_value != reg->smin_value && - reg->s32_min_value != S32_MIN) - verbose_a("s32_min=%d", (int)(reg->s32_min_value)); - if (reg->s32_max_value != reg->smax_value && - reg->s32_max_value != S32_MAX) - verbose_a("s32_max=%d", (int)(reg->s32_max_value)); - if (reg->u32_min_value != reg->umin_value && - reg->u32_min_value != U32_MIN) - verbose_a("u32_min=%d", (int)(reg->u32_min_value)); - if (reg->u32_max_value != reg->umax_value && - reg->u32_max_value != U32_MAX) - verbose_a("u32_max=%d", (int)(reg->u32_max_value)); } #undef verbose_a @@ -1516,7 +1552,8 @@ static void print_verifier_state(struct bpf_verifier_env *env, if (state->in_async_callback_fn) verbose(env, " async_cb"); verbose(env, "\n"); - mark_verifier_state_clean(env); + if (!print_all) + mark_verifier_state_clean(env); } static inline u32 vlog_alignment(u32 pos) @@ -1765,6 +1802,8 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state, dst_state->parent = src->parent; dst_state->first_insn_idx = src->first_insn_idx; dst_state->last_insn_idx = src->last_insn_idx; + dst_state->dfs_depth = src->dfs_depth; + dst_state->used_as_loop_entry = src->used_as_loop_entry; for (i = 0; i <= src->curframe; i++) { dst = dst_state->frame[i]; if (!dst) { @@ -1780,11 +1819,203 @@ static int copy_verifier_state(struct bpf_verifier_state *dst_state, return 0; } +static u32 state_htab_size(struct bpf_verifier_env *env) +{ + return env->prog->len; +} + +static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) +{ + struct bpf_verifier_state *cur = env->cur_state; + struct bpf_func_state *state = cur->frame[cur->curframe]; + + return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; +} + +static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) +{ + int fr; + + if (a->curframe != b->curframe) + return false; + + for (fr = a->curframe; fr >= 0; fr--) + if (a->frame[fr]->callsite != b->frame[fr]->callsite) + return false; + + return true; +} + +/* Open coded iterators allow back-edges in the state graph in order to + * check unbounded loops that iterators. + * + * In is_state_visited() it is necessary to know if explored states are + * part of some loops in order to decide whether non-exact states + * comparison could be used: + * - non-exact states comparison establishes sub-state relation and uses + * read and precision marks to do so, these marks are propagated from + * children states and thus are not guaranteed to be final in a loop; + * - exact states comparison just checks if current and explored states + * are identical (and thus form a back-edge). + * + * Paper "A New Algorithm for Identifying Loops in Decompilation" + * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient + * algorithm for loop structure detection and gives an overview of + * relevant terminology. It also has helpful illustrations. + * + * [1] https://api.semanticscholar.org/CorpusID:15784067 + * + * We use a similar algorithm but because loop nested structure is + * irrelevant for verifier ours is significantly simpler and resembles + * strongly connected components algorithm from Sedgewick's textbook. + * + * Define topmost loop entry as a first node of the loop traversed in a + * depth first search starting from initial state. The goal of the loop + * tracking algorithm is to associate topmost loop entries with states + * derived from these entries. + * + * For each step in the DFS states traversal algorithm needs to identify + * the following situations: + * + * initial initial initial + * | | | + * V V V + * ... ... .---------> hdr + * | | | | + * V V | V + * cur .-> succ | .------... + * | | | | | | + * V | V | V V + * succ '-- cur | ... ... + * | | | + * | V V + * | succ <- cur + * | | + * | V + * | ... + * | | + * '----' + * + * (A) successor state of cur (B) successor state of cur or it's entry + * not yet traversed are in current DFS path, thus cur and succ + * are members of the same outermost loop + * + * initial initial + * | | + * V V + * ... ... + * | | + * V V + * .------... .------... + * | | | | + * V V V V + * .-> hdr ... ... ... + * | | | | | + * | V V V V + * | succ <- cur succ <- cur + * | | | + * | V V + * | ... ... + * | | | + * '----' exit + * + * (C) successor state of cur is a part of some loop but this loop + * does not include cur or successor state is not in a loop at all. + * + * Algorithm could be described as the following python code: + * + * traversed = set() # Set of traversed nodes + * entries = {} # Mapping from node to loop entry + * depths = {} # Depth level assigned to graph node + * path = set() # Current DFS path + * + * # Find outermost loop entry known for n + * def get_loop_entry(n): + * h = entries.get(n, None) + * while h in entries and entries[h] != h: + * h = entries[h] + * return h + * + * # Update n's loop entry if h's outermost entry comes + * # before n's outermost entry in current DFS path. + * def update_loop_entry(n, h): + * n1 = get_loop_entry(n) or n + * h1 = get_loop_entry(h) or h + * if h1 in path and depths[h1] <= depths[n1]: + * entries[n] = h1 + * + * def dfs(n, depth): + * traversed.add(n) + * path.add(n) + * depths[n] = depth + * for succ in G.successors(n): + * if succ not in traversed: + * # Case A: explore succ and update cur's loop entry + * # only if succ's entry is in current DFS path. + * dfs(succ, depth + 1) + * h = get_loop_entry(succ) + * update_loop_entry(n, h) + * else: + * # Case B or C depending on `h1 in path` check in update_loop_entry(). + * update_loop_entry(n, succ) + * path.remove(n) + * + * To adapt this algorithm for use with verifier: + * - use st->branch == 0 as a signal that DFS of succ had been finished + * and cur's loop entry has to be updated (case A), handle this in + * update_branch_counts(); + * - use st->branch > 0 as a signal that st is in the current DFS path; + * - handle cases B and C in is_state_visited(); + * - update topmost loop entry for intermediate states in get_loop_entry(). + */ +static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) +{ + struct bpf_verifier_state *topmost = st->loop_entry, *old; + + while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) + topmost = topmost->loop_entry; + /* Update loop entries for intermediate states to avoid this + * traversal in future get_loop_entry() calls. + */ + while (st && st->loop_entry != topmost) { + old = st->loop_entry; + st->loop_entry = topmost; + st = old; + } + return topmost; +} + +static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) +{ + struct bpf_verifier_state *cur1, *hdr1; + + cur1 = get_loop_entry(cur) ?: cur; + hdr1 = get_loop_entry(hdr) ?: hdr; + /* The head1->branches check decides between cases B and C in + * comment for get_loop_entry(). If hdr1->branches == 0 then + * head's topmost loop entry is not in current DFS path, + * hence 'cur' and 'hdr' are not in the same loop and there is + * no need to update cur->loop_entry. + */ + if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { + cur->loop_entry = hdr; + hdr->used_as_loop_entry = true; + } +} + static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) { while (st) { u32 br = --st->branches; + /* br == 0 signals that DFS exploration for 'st' is finished, + * thus it is necessary to update parent's loop entry if it + * turned out that st is a part of some loop. + * This is a part of 'case A' in get_loop_entry() comment. + */ + if (br == 0 && st->parent && st->loop_entry) + update_loop_entry(st->parent, st->loop_entry); + /* WARN_ON(br > 1) technically makes sense here, * but see comment in push_stack(), hence: */ @@ -3114,7 +3345,7 @@ static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, if (class == BPF_LDX) { if (t != SRC_OP) - return BPF_SIZE(code) == BPF_DW; + return BPF_SIZE(code) == BPF_DW || BPF_MODE(code) == BPF_MEMSX; /* LDX source must be ptr. */ return true; } @@ -4132,11 +4363,9 @@ static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) bitmap_from_u64(mask, bt_reg_mask(bt)); for_each_set_bit(i, mask, 32) { reg = &st->frame[0]->regs[i]; - if (reg->type != SCALAR_VALUE) { - bt_clear_reg(bt, i); - continue; - } - reg->precise = true; + bt_clear_reg(bt, i); + if (reg->type == SCALAR_VALUE) + reg->precise = true; } return 0; } @@ -7618,15 +7847,24 @@ static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_id return err; } - err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); + err = mark_stack_slots_iter(env, meta, reg, insn_idx, meta->btf, btf_id, nr_slots); if (err) return err; } else { /* iter_next() or iter_destroy() expect initialized iter state*/ - if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { + err = is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots); + switch (err) { + case 0: + break; + case -EINVAL: verbose(env, "expected an initialized iter_%s as arg #%d\n", iter_type_str(meta->btf, btf_id), regno); - return -EINVAL; + return err; + case -EPROTO: + verbose(env, "expected an RCU CS when using %s\n", meta->func_name); + return err; + default: + return err; } spi = iter_get_spi(env, reg, nr_slots); @@ -7652,6 +7890,81 @@ static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_id return 0; } +/* Look for a previous loop entry at insn_idx: nearest parent state + * stopped at insn_idx with callsites matching those in cur->frame. + */ +static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, + struct bpf_verifier_state *cur, + int insn_idx) +{ + struct bpf_verifier_state_list *sl; + struct bpf_verifier_state *st; + + /* Explored states are pushed in stack order, most recent states come first */ + sl = *explored_state(env, insn_idx); + for (; sl; sl = sl->next) { + /* If st->branches != 0 state is a part of current DFS verification path, + * hence cur & st for a loop. + */ + st = &sl->state; + if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && + st->dfs_depth < cur->dfs_depth) + return st; + } + + return NULL; +} + +static void reset_idmap_scratch(struct bpf_verifier_env *env); +static bool regs_exact(const struct bpf_reg_state *rold, + const struct bpf_reg_state *rcur, + struct bpf_idmap *idmap); + +static void maybe_widen_reg(struct bpf_verifier_env *env, + struct bpf_reg_state *rold, struct bpf_reg_state *rcur, + struct bpf_idmap *idmap) +{ + if (rold->type != SCALAR_VALUE) + return; + if (rold->type != rcur->type) + return; + if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) + return; + __mark_reg_unknown(env, rcur); +} + +static int widen_imprecise_scalars(struct bpf_verifier_env *env, + struct bpf_verifier_state *old, + struct bpf_verifier_state *cur) +{ + struct bpf_func_state *fold, *fcur; + int i, fr; + + reset_idmap_scratch(env); + for (fr = old->curframe; fr >= 0; fr--) { + fold = old->frame[fr]; + fcur = cur->frame[fr]; + + for (i = 0; i < MAX_BPF_REG; i++) + maybe_widen_reg(env, + &fold->regs[i], + &fcur->regs[i], + &env->idmap_scratch); + + for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { + if (!is_spilled_reg(&fold->stack[i]) || + !is_spilled_reg(&fcur->stack[i])) + continue; + + maybe_widen_reg(env, + &fold->stack[i].spilled_ptr, + &fcur->stack[i].spilled_ptr, + &env->idmap_scratch); + } + } + return 0; +} + /* process_iter_next_call() is called when verifier gets to iterator's next * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer * to it as just "iter_next()" in comments below. @@ -7693,25 +8006,47 @@ static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_id * is some statically known limit on number of iterations (e.g., if there is * an explicit `if n > 100 then break;` statement somewhere in the loop). * - * One very subtle but very important aspect is that we *always* simulate NULL - * condition first (as the current state) before we simulate non-NULL case. - * This has to do with intricacies of scalar precision tracking. By simulating - * "exit condition" of iter_next() returning NULL first, we make sure all the - * relevant precision marks *that will be set **after** we exit iterator loop* - * are propagated backwards to common parent state of NULL and non-NULL - * branches. Thanks to that, state equivalence checks done later in forked - * state, when reaching iter_next() for ACTIVE iterator, can assume that - * precision marks are finalized and won't change. Because simulating another - * ACTIVE iterator iteration won't change them (because given same input - * states we'll end up with exactly same output states which we are currently - * comparing; and verification after the loop already propagated back what - * needs to be **additionally** tracked as precise). It's subtle, grok - * precision tracking for more intuitive understanding. + * Iteration convergence logic in is_state_visited() relies on exact + * states comparison, which ignores read and precision marks. + * This is necessary because read and precision marks are not finalized + * while in the loop. Exact comparison might preclude convergence for + * simple programs like below: + * + * i = 0; + * while(iter_next(&it)) + * i++; + * + * At each iteration step i++ would produce a new distinct state and + * eventually instruction processing limit would be reached. + * + * To avoid such behavior speculatively forget (widen) range for + * imprecise scalar registers, if those registers were not precise at the + * end of the previous iteration and do not match exactly. + * + * This is a conservative heuristic that allows to verify wide range of programs, + * however it precludes verification of programs that conjure an + * imprecise value on the first loop iteration and use it as precise on a second. + * For example, the following safe program would fail to verify: + * + * struct bpf_num_iter it; + * int arr[10]; + * int i = 0, a = 0; + * bpf_iter_num_new(&it, 0, 10); + * while (bpf_iter_num_next(&it)) { + * if (a == 0) { + * a = 1; + * i = 7; // Because i changed verifier would forget + * // it's range on second loop entry. + * } else { + * arr[i] = 42; // This would fail to verify. + * } + * } + * bpf_iter_num_destroy(&it); */ static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, struct bpf_kfunc_call_arg_meta *meta) { - struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; + struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; struct bpf_reg_state *cur_iter, *queued_iter; int iter_frameno = meta->iter.frameno; @@ -7729,6 +8064,19 @@ static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, } if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { + /* Because iter_next() call is a checkpoint is_state_visitied() + * should guarantee parent state with same call sites and insn_idx. + */ + if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || + !same_callsites(cur_st->parent, cur_st)) { + verbose(env, "bug: bad parent state for iter next call"); + return -EFAULT; + } + /* Note cur_st->parent in the call below, it is necessary to skip + * checkpoint created for cur_st by is_state_visited() + * right at this instruction. + */ + prev_st = find_prev_entry(env, cur_st->parent, insn_idx); /* branch out active iter state */ queued_st = push_stack(env, insn_idx + 1, insn_idx, false); if (!queued_st) @@ -7737,6 +8085,8 @@ static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; queued_iter->iter.depth++; + if (prev_st) + widen_imprecise_scalars(env, prev_st, queued_st); queued_fr = queued_st->frame[queued_st->curframe]; mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); @@ -10209,6 +10559,11 @@ static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) return meta->kfunc_flags & KF_RCU; } +static bool is_kfunc_rcu_protected(struct bpf_kfunc_call_arg_meta *meta) +{ + return meta->kfunc_flags & KF_RCU_PROTECTED; +} + static bool __kfunc_param_match_suffix(const struct btf *btf, const struct btf_param *arg, const char *suffix) @@ -10283,6 +10638,11 @@ static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); } +static bool is_kfunc_arg_nullable(const struct btf *btf, const struct btf_param *arg) +{ + return __kfunc_param_match_suffix(btf, arg, "__nullable"); +} + static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, const struct btf_param *arg, const char *name) @@ -10425,6 +10785,7 @@ enum kfunc_ptr_arg_type { KF_ARG_PTR_TO_CALLBACK, KF_ARG_PTR_TO_RB_ROOT, KF_ARG_PTR_TO_RB_NODE, + KF_ARG_PTR_TO_NULL, }; enum special_kfunc_type { @@ -10450,6 +10811,7 @@ enum special_kfunc_type { KF_bpf_percpu_obj_new_impl, KF_bpf_percpu_obj_drop_impl, KF_bpf_throw, + KF_bpf_iter_css_task_new, }; BTF_SET_START(special_kfunc_set) @@ -10473,6 +10835,7 @@ BTF_ID(func, bpf_dynptr_clone) BTF_ID(func, bpf_percpu_obj_new_impl) BTF_ID(func, bpf_percpu_obj_drop_impl) BTF_ID(func, bpf_throw) +BTF_ID(func, bpf_iter_css_task_new) BTF_SET_END(special_kfunc_set) BTF_ID_LIST(special_kfunc_list) @@ -10498,6 +10861,7 @@ BTF_ID(func, bpf_dynptr_clone) BTF_ID(func, bpf_percpu_obj_new_impl) BTF_ID(func, bpf_percpu_obj_drop_impl) BTF_ID(func, bpf_throw) +BTF_ID(func, bpf_iter_css_task_new) static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) { @@ -10578,6 +10942,8 @@ get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) return KF_ARG_PTR_TO_CALLBACK; + if (is_kfunc_arg_nullable(meta->btf, &args[argno]) && register_is_null(reg)) + return KF_ARG_PTR_TO_NULL; if (argno + 1 < nargs && (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || @@ -11028,6 +11394,20 @@ static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, &meta->arg_rbtree_root.field); } +static bool check_css_task_iter_allowlist(struct bpf_verifier_env *env) +{ + enum bpf_prog_type prog_type = resolve_prog_type(env->prog); + + switch (prog_type) { + case BPF_PROG_TYPE_LSM: + return true; + case BPF_TRACE_ITER: + return env->prog->aux->sleepable; + default: + return false; + } +} + static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, int insn_idx) { @@ -11114,7 +11494,8 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_ } if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && - (register_is_null(reg) || type_may_be_null(reg->type))) { + (register_is_null(reg) || type_may_be_null(reg->type)) && + !is_kfunc_arg_nullable(meta->btf, &args[i])) { verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); return -EACCES; } @@ -11139,6 +11520,8 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_ return kf_arg_type; switch (kf_arg_type) { + case KF_ARG_PTR_TO_NULL: + continue; case KF_ARG_PTR_TO_ALLOC_BTF_ID: case KF_ARG_PTR_TO_BTF_ID: if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) @@ -11278,6 +11661,12 @@ static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_ break; } case KF_ARG_PTR_TO_ITER: + if (meta->func_id == special_kfunc_list[KF_bpf_iter_css_task_new]) { + if (!check_css_task_iter_allowlist(env)) { + verbose(env, "css_task_iter is only allowed in bpf_lsm and bpf iter-s\n"); + return -EINVAL; + } + } ret = process_iter_arg(env, regno, insn_idx, meta); if (ret < 0) return ret; @@ -11537,6 +11926,7 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, if (env->cur_state->active_rcu_lock) { struct bpf_func_state *state; struct bpf_reg_state *reg; + u32 clear_mask = (1 << STACK_SPILL) | (1 << STACK_ITER); if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); @@ -11547,7 +11937,7 @@ static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); return -EINVAL; } else if (rcu_unlock) { - bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ + bpf_for_each_reg_in_vstate_mask(env->cur_state, state, reg, clear_mask, ({ if (reg->type & MEM_RCU) { reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); reg->type |= PTR_UNTRUSTED; @@ -13641,12 +14031,16 @@ static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) return !!tnum_equals_const(subreg, val); else if (val < reg->u32_min_value || val > reg->u32_max_value) return 0; + else if (sval < reg->s32_min_value || sval > reg->s32_max_value) + return 0; break; case BPF_JNE: if (tnum_is_const(subreg)) return !tnum_equals_const(subreg, val); else if (val < reg->u32_min_value || val > reg->u32_max_value) return 1; + else if (sval < reg->s32_min_value || sval > reg->s32_max_value) + return 1; break; case BPF_JSET: if ((~subreg.mask & subreg.value) & val) @@ -13718,12 +14112,16 @@ static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) return !!tnum_equals_const(reg->var_off, val); else if (val < reg->umin_value || val > reg->umax_value) return 0; + else if (sval < reg->smin_value || sval > reg->smax_value) + return 0; break; case BPF_JNE: if (tnum_is_const(reg->var_off)) return !tnum_equals_const(reg->var_off, val); else if (val < reg->umin_value || val > reg->umax_value) return 1; + else if (sval < reg->smin_value || sval > reg->smax_value) + return 1; break; case BPF_JSET: if ((~reg->var_off.mask & reg->var_off.value) & val) @@ -14385,6 +14783,8 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env, !sanitize_speculative_path(env, insn, *insn_idx + 1, *insn_idx)) return -EFAULT; + if (env->log.level & BPF_LOG_LEVEL) + print_insn_state(env, this_branch->frame[this_branch->curframe]); *insn_idx += insn->off; return 0; } else if (pred == 0) { @@ -14397,6 +14797,8 @@ static int check_cond_jmp_op(struct bpf_verifier_env *env, *insn_idx + insn->off + 1, *insn_idx)) return -EFAULT; + if (env->log.level & BPF_LOG_LEVEL) + print_insn_state(env, this_branch->frame[this_branch->curframe]); return 0; } @@ -14729,7 +15131,7 @@ static int check_return_code(struct bpf_verifier_env *env, int regno) struct tnum enforce_attach_type_range = tnum_unknown; const struct bpf_prog *prog = env->prog; struct bpf_reg_state *reg; - struct tnum range = tnum_range(0, 1); + struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); enum bpf_prog_type prog_type = resolve_prog_type(env->prog); int err; struct bpf_func_state *frame = env->cur_state->frame[0]; @@ -14777,8 +15179,8 @@ static int check_return_code(struct bpf_verifier_env *env, int regno) return -EINVAL; } - if (!tnum_in(tnum_const(0), reg->var_off)) { - verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); + if (!tnum_in(const_0, reg->var_off)) { + verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); return -EINVAL; } return 0; @@ -14797,10 +15199,13 @@ static int check_return_code(struct bpf_verifier_env *env, int regno) case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || + env->prog->expected_attach_type == BPF_CGROUP_UNIX_RECVMSG || env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || + env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETPEERNAME || env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || - env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) + env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME || + env->prog->expected_attach_type == BPF_CGROUP_UNIX_GETSOCKNAME) range = tnum_range(1, 1); if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) @@ -14929,21 +15334,6 @@ enum { BRANCH = 2, }; -static u32 state_htab_size(struct bpf_verifier_env *env) -{ - return env->prog->len; -} - -static struct bpf_verifier_state_list **explored_state( - struct bpf_verifier_env *env, - int idx) -{ - struct bpf_verifier_state *cur = env->cur_state; - struct bpf_func_state *state = cur->frame[cur->curframe]; - - return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; -} - static void mark_prune_point(struct bpf_verifier_env *env, int idx) { env->insn_aux_data[idx].prune_point = true; @@ -15339,14 +15729,12 @@ static int check_btf_func(struct bpf_verifier_env *env, bpfptr_t uattr) { const struct btf_type *type, *func_proto, *ret_type; - u32 i, nfuncs, urec_size, min_size; - u32 krec_size = sizeof(struct bpf_func_info); + u32 i, nfuncs, urec_size; struct bpf_func_info *krecord; struct bpf_func_info_aux *info_aux = NULL; struct bpf_prog *prog; const struct btf *btf; bpfptr_t urecord; - u32 prev_offset = 0; bool scalar_return; int ret = -ENOMEM; @@ -15367,7 +15755,6 @@ static int check_btf_func(struct bpf_verifier_env *env, btf = prog->aux->btf; urecord = make_bpfptr(attr->func_info, uattr.is_kernel); - min_size = min_t(u32, krec_size, urec_size); krecord = prog->aux->func_info; info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); @@ -15401,7 +15788,6 @@ static int check_btf_func(struct bpf_verifier_env *env, goto err_free; } - prev_offset = krecord[i].insn_off; bpfptr_add(&urecord, urec_size); } @@ -15824,18 +16210,14 @@ static void clean_live_states(struct bpf_verifier_env *env, int insn, struct bpf_verifier_state *cur) { struct bpf_verifier_state_list *sl; - int i; sl = *explored_state(env, insn); while (sl) { if (sl->state.branches) goto next; if (sl->state.insn_idx != insn || - sl->state.curframe != cur->curframe) + !same_callsites(&sl->state, cur)) goto next; - for (i = 0; i <= cur->curframe; i++) - if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) - goto next; clean_verifier_state(env, &sl->state); next: sl = sl->next; @@ -15853,8 +16235,11 @@ static bool regs_exact(const struct bpf_reg_state *rold, /* Returns true if (rold safe implies rcur safe) */ static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, - struct bpf_reg_state *rcur, struct bpf_idmap *idmap) + struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) { + if (exact) + return regs_exact(rold, rcur, idmap); + if (!(rold->live & REG_LIVE_READ)) /* explored state didn't use this */ return true; @@ -15971,7 +16356,7 @@ static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, } static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, - struct bpf_func_state *cur, struct bpf_idmap *idmap) + struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) { int i, spi; @@ -15984,7 +16369,12 @@ static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, spi = i / BPF_REG_SIZE; - if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { + if (exact && + old->stack[spi].slot_type[i % BPF_REG_SIZE] != + cur->stack[spi].slot_type[i % BPF_REG_SIZE]) + return false; + + if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { i += BPF_REG_SIZE - 1; /* explored state didn't use this */ continue; @@ -16034,7 +16424,7 @@ static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, * return false to continue verification of this path */ if (!regsafe(env, &old->stack[spi].spilled_ptr, - &cur->stack[spi].spilled_ptr, idmap)) + &cur->stack[spi].spilled_ptr, idmap, exact)) return false; break; case STACK_DYNPTR: @@ -16116,16 +16506,16 @@ static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, * the current state will reach 'bpf_exit' instruction safely */ static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, - struct bpf_func_state *cur) + struct bpf_func_state *cur, bool exact) { int i; for (i = 0; i < MAX_BPF_REG; i++) if (!regsafe(env, &old->regs[i], &cur->regs[i], - &env->idmap_scratch)) + &env->idmap_scratch, exact)) return false; - if (!stacksafe(env, old, cur, &env->idmap_scratch)) + if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) return false; if (!refsafe(old, cur, &env->idmap_scratch)) @@ -16134,17 +16524,23 @@ static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_stat return true; } +static void reset_idmap_scratch(struct bpf_verifier_env *env) +{ + env->idmap_scratch.tmp_id_gen = env->id_gen; + memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); +} + static bool states_equal(struct bpf_verifier_env *env, struct bpf_verifier_state *old, - struct bpf_verifier_state *cur) + struct bpf_verifier_state *cur, + bool exact) { int i; if (old->curframe != cur->curframe) return false; - env->idmap_scratch.tmp_id_gen = env->id_gen; - memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); + reset_idmap_scratch(env); /* Verification state from speculative execution simulation * must never prune a non-speculative execution one. @@ -16174,7 +16570,7 @@ static bool states_equal(struct bpf_verifier_env *env, for (i = 0; i <= old->curframe; i++) { if (old->frame[i]->callsite != cur->frame[i]->callsite) return false; - if (!func_states_equal(env, old->frame[i], cur->frame[i])) + if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) return false; } return true; @@ -16428,10 +16824,11 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) { struct bpf_verifier_state_list *new_sl; struct bpf_verifier_state_list *sl, **pprev; - struct bpf_verifier_state *cur = env->cur_state, *new; - int i, j, err, states_cnt = 0; + struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; + int i, j, n, err, states_cnt = 0; bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); bool add_new_state = force_new_state; + bool force_exact; /* bpf progs typically have pruning point every 4 instructions * http://vger.kernel.org/bpfconf2019.html#session-1 @@ -16484,9 +16881,33 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) * It's safe to assume that iterator loop will finish, taking into * account iter_next() contract of eventually returning * sticky NULL result. + * + * Note, that states have to be compared exactly in this case because + * read and precision marks might not be finalized inside the loop. + * E.g. as in the program below: + * + * 1. r7 = -16 + * 2. r6 = bpf_get_prandom_u32() + * 3. while (bpf_iter_num_next(&fp[-8])) { + * 4. if (r6 != 42) { + * 5. r7 = -32 + * 6. r6 = bpf_get_prandom_u32() + * 7. continue + * 8. } + * 9. r0 = r10 + * 10. r0 += r7 + * 11. r8 = *(u64 *)(r0 + 0) + * 12. r6 = bpf_get_prandom_u32() + * 13. } + * + * Here verifier would first visit path 1-3, create a checkpoint at 3 + * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does + * not have read or precision mark for r7 yet, thus inexact states + * comparison would discard current state with r7=-32 + * => unsafe memory access at 11 would not be caught. */ if (is_iter_next_insn(env, insn_idx)) { - if (states_equal(env, &sl->state, cur)) { + if (states_equal(env, &sl->state, cur, true)) { struct bpf_func_state *cur_frame; struct bpf_reg_state *iter_state, *iter_reg; int spi; @@ -16502,17 +16923,23 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) */ spi = __get_spi(iter_reg->off + iter_reg->var_off.value); iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; - if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) + if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { + update_loop_entry(cur, &sl->state); goto hit; + } } goto skip_inf_loop_check; } /* attempt to detect infinite loop to avoid unnecessary doomed work */ if (states_maybe_looping(&sl->state, cur) && - states_equal(env, &sl->state, cur) && + states_equal(env, &sl->state, cur, false) && !iter_active_depths_differ(&sl->state, cur)) { verbose_linfo(env, insn_idx, "; "); verbose(env, "infinite loop detected at insn %d\n", insn_idx); + verbose(env, "cur state:"); + print_verifier_state(env, cur->frame[cur->curframe], true); + verbose(env, "old state:"); + print_verifier_state(env, sl->state.frame[cur->curframe], true); return -EINVAL; } /* if the verifier is processing a loop, avoid adding new state @@ -16534,7 +16961,36 @@ skip_inf_loop_check: add_new_state = false; goto miss; } - if (states_equal(env, &sl->state, cur)) { + /* If sl->state is a part of a loop and this loop's entry is a part of + * current verification path then states have to be compared exactly. + * 'force_exact' is needed to catch the following case: + * + * initial Here state 'succ' was processed first, + * | it was eventually tracked to produce a + * V state identical to 'hdr'. + * .---------> hdr All branches from 'succ' had been explored + * | | and thus 'succ' has its .branches == 0. + * | V + * | .------... Suppose states 'cur' and 'succ' correspond + * | | | to the same instruction + callsites. + * | V V In such case it is necessary to check + * | ... ... if 'succ' and 'cur' are states_equal(). + * | | | If 'succ' and 'cur' are a part of the + * | V V same loop exact flag has to be set. + * | succ <- cur To check if that is the case, verify + * | | if loop entry of 'succ' is in current + * | V DFS path. + * | ... + * | | + * '----' + * + * Additional details are in the comment before get_loop_entry(). + */ + loop_entry = get_loop_entry(&sl->state); + force_exact = loop_entry && loop_entry->branches > 0; + if (states_equal(env, &sl->state, cur, force_exact)) { + if (force_exact) + update_loop_entry(cur, loop_entry); hit: sl->hit_cnt++; /* reached equivalent register/stack state, @@ -16573,13 +17029,18 @@ miss: * to keep checking from state equivalence point of view. * Higher numbers increase max_states_per_insn and verification time, * but do not meaningfully decrease insn_processed. + * 'n' controls how many times state could miss before eviction. + * Use bigger 'n' for checkpoints because evicting checkpoint states + * too early would hinder iterator convergence. */ - if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { + n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; + if (sl->miss_cnt > sl->hit_cnt * n + n) { /* the state is unlikely to be useful. Remove it to * speed up verification */ *pprev = sl->next; - if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { + if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && + !sl->state.used_as_loop_entry) { u32 br = sl->state.branches; WARN_ONCE(br, @@ -16648,6 +17109,7 @@ next: cur->parent = new; cur->first_insn_idx = insn_idx; + cur->dfs_depth = new->dfs_depth + 1; clear_jmp_history(cur); new_sl->next = *explored_state(env, insn_idx); *explored_state(env, insn_idx) = new_sl; |