summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2020-10-05xfs: only relog deferred intent items if free space in the log gets lowdefer-ops-stalls-5.10_2020-10-05Darrick J. Wong
Now that we have the ability to ask the log how far the tail needs to be pushed to maintain its free space targets, augment the decision to relog an intent item so that we only do it if the log has hit the 75% full threshold. There's no point in relogging an intent into the same checkpoint, and there's no need to relog if there's plenty of free space in the log. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-05xfs: expose the log push thresholdDarrick J. Wong
Separate the computation of the log push threshold and the push logic in xlog_grant_push_ail. This enables higher level code to determine (for example) that it is holding on to a logged intent item and the log is so busy that it is more than 75% full. In that case, it would be desirable to move the log item towards the head to release the tail, which we will cover in the next patch. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-05xfs: periodically relog deferred intent itemsDarrick J. Wong
There's a subtle design flaw in the deferred log item code that can lead to pinning the log tail. Taking up the defer ops chain examples from the previous commit, we can get trapped in sequences like this: Caller hands us a transaction t0 with D0-D3 attached. The defer ops chain will look like the following if the transaction rolls succeed: t1: D0(t0), D1(t0), D2(t0), D3(t0) t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0) t3: d5(t1), D1(t0), D2(t0), D3(t0) ... t9: d9(t7), D3(t0) t10: D3(t0) t11: d10(t10), d11(t10) t12: d11(t10) In transaction 9, we finish d9 and try to roll to t10 while holding onto an intent item for D3 that we logged in t0. The previous commit changed the order in which we place new defer ops in the defer ops processing chain to reduce the maximum chain length. Now make xfs_defer_finish_noroll capable of relogging the entire chain periodically so that we can always move the log tail forward. Most chains will never get relogged, except for operations that generate very long chains (large extents containing many blocks with different sharing levels) or are on filesystems with small logs and a lot of ongoing metadata updates. Callers are now required to ensure that the transaction reservation is large enough to handle logging done items and new intent items for the maximum possible chain length. Most callers are careful to keep the chain lengths low, so the overhead should be minimal. The decision to relog an intent item is made based on whether the intent was logged in a previous checkpoint, since there's no point in relogging an intent into the same checkpoint. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-05xfs: change the order in which child and parent defer ops are finishedDarrick J. Wong
The defer ops code has been finishing items in the wrong order -- if a top level defer op creates items A and B, and finishing item A creates more defer ops A1 and A2, we'll put the new items on the end of the chain and process them in the order A B A1 A2. This is kind of weird, since it's convenient for programmers to be able to think of A and B as an ordered sequence where all the sub-tasks for A must finish before we move on to B, e.g. A A1 A2 D. Right now, our log intent items are not so complex that this matters, but this will become important for the atomic extent swapping patchset. In order to maintain correct reference counting of extents, we have to unmap and remap extents in that order, and we want to complete that work before moving on to the next range that the user wants to swap. This patch fixes defer ops to satsify that requirement. The primary symptom of the incorrect order was noticed in an early performance analysis of the atomic extent swap code. An astonishingly large number of deferred work items accumulated when userspace requested an atomic update of two very fragmented files. The cause of this was traced to the same ordering bug in the inner loop of xfs_defer_finish_noroll. If the ->finish_item method of a deferred operation queues new deferred operations, those new deferred ops are appended to the tail of the pending work list. To illustrate, say that a caller creates a transaction t0 with four deferred operations D0-D3. The first thing defer ops does is roll the transaction to t1, leaving us with: t1: D0(t0), D1(t0), D2(t0), D3(t0) Let's say that finishing each of D0-D3 will create two new deferred ops. After finish D0 and roll, we'll have the following chain: t2: D1(t0), D2(t0), D3(t0), d4(t1), d5(t1) d4 and d5 were logged to t1. Notice that while we're about to start work on D1, we haven't actually completed all the work implied by D0 being finished. So far we've been careful (or lucky) to structure the dfops callers such that D1 doesn't depend on d4 or d5 being finished, but this is a potential logic bomb. There's a second problem lurking. Let's see what happens as we finish D1-D3: t3: D2(t0), D3(t0), d4(t1), d5(t1), d6(t2), d7(t2) t4: D3(t0), d4(t1), d5(t1), d6(t2), d7(t2), d8(t3), d9(t3) t5: d4(t1), d5(t1), d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4) Let's say that d4-d11 are simple work items that don't queue any other operations, which means that we can complete each d4 and roll to t6: t6: d5(t1), d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4) t7: d6(t2), d7(t2), d8(t3), d9(t3), d10(t4), d11(t4) ... t11: d10(t4), d11(t4) t12: d11(t4) <done> When we try to roll to transaction #12, we're holding defer op d11, which we logged way back in t4. This means that the tail of the log is pinned at t4. If the log is very small or there are a lot of other threads updating metadata, this means that we might have wrapped the log and cannot get roll to t11 because there isn't enough space left before we'd run into t4. Let's shift back to the original failure. I mentioned before that I discovered this flaw while developing the atomic file update code. In that scenario, we have a defer op (D0) that finds a range of file blocks to remap, creates a handful of new defer ops to do that, and then asks to be continued with however much work remains. So, D0 is the original swapext deferred op. The first thing defer ops does is rolls to t1: t1: D0(t0) We try to finish D0, logging d1 and d2 in the process, but can't get all the work done. We log a done item and a new intent item for the work that D0 still has to do, and roll to t2: t2: D0'(t1), d1(t1), d2(t1) We roll and try to finish D0', but still can't get all the work done, so we log a done item and a new intent item for it, requeue D0 a second time, and roll to t3: t3: D0''(t2), d1(t1), d2(t1), d3(t2), d4(t2) If it takes 48 more rolls to complete D0, then we'll finally dispense with D0 in t50: t50: D<fifty primes>(t49), d1(t1), ..., d102(t50) We then try to roll again to get a chain like this: t51: d1(t1), d2(t1), ..., d101(t50), d102(t50) ... t152: d102(t50) <done> Notice that in rolling to transaction #51, we're holding on to a log intent item for d1 that was logged in transaction #1. This means that the tail of the log is pinned at t1. If the log is very small or there are a lot of other threads updating metadata, this means that we might have wrapped the log and cannot roll to t51 because there isn't enough space left before we'd run into t1. This is of course problem #2 again. But notice the third problem with this scenario: we have 102 defer ops tied to this transaction! Each of these items are backed by pinned kernel memory, which means that we risk OOM if the chains get too long. Yikes. Problem #1 is a subtle logic bomb that could hit someone in the future; problem #2 applies (rarely) to the current upstream, and problem #3 applies to work under development. This is not how incremental deferred operations were supposed to work. The dfops design of logging in the same transaction an intent-done item and a new intent item for the work remaining was to make it so that we only have to juggle enough deferred work items to finish that one small piece of work. Deferred log item recovery will find that first unfinished work item and restart it, no matter how many other intent items might follow it in the log. Therefore, it's ok to put the new intents at the start of the dfops chain. For the first example, the chains look like this: t2: d4(t1), d5(t1), D1(t0), D2(t0), D3(t0) t3: d5(t1), D1(t0), D2(t0), D3(t0) ... t9: d9(t7), D3(t0) t10: D3(t0) t11: d10(t10), d11(t10) t12: d11(t10) For the second example, the chains look like this: t1: D0(t0) t2: d1(t1), d2(t1), D0'(t1) t3: d2(t1), D0'(t1) t4: D0'(t1) t5: d1(t4), d2(t4), D0''(t4) ... t148: D0<50 primes>(t147) t149: d101(t148), d102(t148) t150: d102(t148) <done> This actually sucks more for pinning the log tail (we try to roll to t10 while holding an intent item that was logged in t1) but we've solved problem #1. We've also reduced the maximum chain length from: sum(all the new items) + nr_original_items to: max(new items that each original item creates) + nr_original_items This solves problem #3 by sharply reducing the number of defer ops that can be attached to a transaction at any given time. The change makes the problem of log tail pinning worse, but is improvement we need to solve problem #2. Actually solving #2, however, is left to the next patch. Note that a subsequent analysis of some hard-to-trigger reflink and COW livelocks on extremely fragmented filesystems (or systems running a lot of IO threads) showed the same symptoms -- uncomfortably large numbers of incore deferred work items and occasional stalls in the transaction grant code while waiting for log reservations. I think this patch and the next one will also solve these problems. As originally written, the code used list_splice_tail_init instead of list_splice_init, so change that, and leave a short comment explaining our actions. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-05xfs: fix an incore inode UAF in xfs_bui_recoverfix-bmap-intent-recovery-5.10_2020-10-05Darrick J. Wong
In xfs_bui_item_recover, there exists a use-after-free bug with regards to the inode that is involved in the bmap replay operation. If the mapping operation does not complete, we call xfs_bmap_unmap_extent to create a deferred op to finish the unmapping work, and we retain a pointer to the incore inode. Unfortunately, the very next thing we do is commit the transaction and drop the inode. If reclaim tears down the inode before we try to finish the defer ops, we dereference garbage and blow up. Therefore, create a way to join inodes to the defer ops freezer so that we can maintain the xfs_inode reference until we're done with the inode. Note: This imposes the requirement that there be enough memory to keep every incore inode in memory throughout recovery. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-05xfs: clean up xfs_bui_item_recover iget/trans_alloc/ilock orderingDarrick J. Wong
In most places in XFS, we have a specific order in which we gather resources: grab the inode, allocate a transaction, then lock the inode. xfs_bui_item_recover doesn't do it in that order, so fix it to be more consistent. This also makes the error bailout code a bit less weird. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-05xfs: clean up bmap intent item recovery checkingDarrick J. Wong
The bmap intent item checking code in xfs_bui_item_recover is spread all over the function. We should check the recovered log item at the top before we allocate any resources or do anything else, so do that. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-05xfs: xfs_defer_capture should absorb remaining transaction reservationfix-recovery-intent-chaining-5.10_2020-10-05Darrick J. Wong
When xfs_defer_capture extracts the deferred ops and transaction state from a transaction, it should record the transaction reservation type from the old transaction so that when we continue the dfops chain, we still use the same reservation parameters. Doing this means that the log item recovery functions get to determine the transaction reservation instead of abusing tr_itruncate in yet another part of xfs. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-05xfs: xfs_defer_capture should absorb remaining block reservationsDarrick J. Wong
When xfs_defer_capture extracts the deferred ops and transaction state from a transaction, it should record the remaining block reservations so that when we continue the dfops chain, we can reserve the same number of blocks to use. We capture the reservations for both data and realtime volumes. This adds the requirement that every log intent item recovery function must be careful to reserve enough blocks to handle both itself and all defer ops that it can queue. On the other hand, this enables us to do away with the handwaving block estimation nonsense that was going on in xlog_finish_defer_ops. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-10-05xfs: proper replay of deferred ops queued during log recoveryDarrick J. Wong
When we replay unfinished intent items that have been recovered from the log, it's possible that the replay will cause the creation of more deferred work items. As outlined in commit 509955823cc9c ("xfs: log recovery should replay deferred ops in order"), later work items have an implicit ordering dependency on earlier work items. Therefore, recovery must replay the items (both recovered and created) in the same order that they would have been during normal operation. For log recovery, we enforce this ordering by using an empty transaction to collect deferred ops that get created in the process of recovering a log intent item to prevent them from being committed before the rest of the recovered intent items. After we finish committing all the recovered log items, we allocate a transaction with an enormous block reservation, splice our huge list of created deferred ops into that transaction, and commit it, thereby finishing all those ops. This is /really/ hokey -- it's the one place in XFS where we allow nested transactions; the splicing of the defer ops list is is inelegant and has to be done twice per recovery function; and the broken way we handle inode pointers and block reservations cause subtle use-after-free and allocator problems that will be fixed by this patch and the two patches after it. Therefore, replace the hokey empty transaction with a structure designed to capture each chain of deferred ops that are created as part of recovering a single unfinished log intent. Finally, refactor the loop that replays those chains to do so using one transaction per chain. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-10-05xfs: remove XFS_LI_RECOVEREDDarrick J. Wong
The ->iop_recover method of a log intent item removes the recovered intent item from the AIL by logging an intent done item and committing the transaction, so it's superfluous to have this flag check. Nothing else uses it, so get rid of the flag entirely. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-30xfs: remove xfs_defer_resetDarrick J. Wong
Remove this one-line helper since the assert is trivially true in one call site and the rest obscures a bitmask operation. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-09-30iomap: Set all uptodate bits for an Uptodate pageiomap-5.10-merge_2020-10-05iomap-5.10-merge_2020-10-04iomap-5.10-merge_2020-10-01Matthew Wilcox (Oracle)
For filesystems with block size < page size, we need to set all the per-block uptodate bits if the page was already uptodate at the time we create the per-block metadata. This can happen if the page is invalidated (eg by a write to drop_caches) but ultimately not removed from the page cache. This is a data corruption issue as page writeback skips blocks which are marked !uptodate. Fixes: 9dc55f1389f9 ("iomap: add support for sub-pagesize buffered I/O without buffer heads") Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reported-by: Qian Cai <cai@redhat.com> Cc: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30iomap: Call inode_dio_end() before generic_write_sync()Goldwyn Rodrigues
iomap complete routine can deadlock with btrfs_fallocate because of the call to generic_write_sync(). P0 P1 inode_lock() fallocate(FALLOC_FL_ZERO_RANGE) __iomap_dio_rw() inode_lock() <block> <submits IO> <completes IO> inode_unlock() <gets inode_lock()> inode_dio_wait() iomap_dio_complete() generic_write_sync() btrfs_file_fsync() inode_lock() <deadlock> inode_dio_end() is used to notify the end of DIO data in order to synchronize with truncate. Call inode_dio_end() before calling generic_write_sync(), so filesystems can lock i_rwsem during a sync. This matches the way it is done in fs/direct-io.c:dio_complete(). Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30iomap: Allow filesystem to call iomap_dio_complete without i_rwsemChristoph Hellwig
This is to avoid the deadlock caused in btrfs because of O_DIRECT | O_DSYNC. Filesystems such as btrfs require i_rwsem while performing sync on a file. iomap_dio_rw() is called under i_rw_sem. This leads to a deadlock because of: iomap_dio_complete() generic_write_sync() btrfs_sync_file() Separate out iomap_dio_complete() from iomap_dio_rw(), so filesystems can call iomap_dio_complete() after unlocking i_rwsem. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30iomap: Change calling convention for zeroingMatthew Wilcox (Oracle)
Pass the full length to iomap_zero() and dax_iomap_zero(), and have them return how many bytes they actually handled. This is preparatory work for handling THP, although it looks like DAX could actually take advantage of it if there's a larger contiguous area. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-30iomap: Convert iomap_write_end typesMatthew Wilcox (Oracle)
iomap_write_end cannot return an error, so switch it to return size_t instead of int and remove the error checking from the callers. Also convert the arguments to size_t from unsigned int, in case anyone ever wants to support a page size larger than 2GB. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30iomap: Convert write_count to write_bytes_pendingMatthew Wilcox (Oracle)
Instead of counting bio segments, count the number of bytes submitted. This insulates us from the block layer's definition of what a 'same page' is, which is not necessarily clear once THPs are involved. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30iomap: Convert read_count to read_bytes_pendingMatthew Wilcox (Oracle)
Instead of counting bio segments, count the number of bytes submitted. This insulates us from the block layer's definition of what a 'same page' is, which is not necessarily clear once THPs are involved. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-30iomap: Support arbitrarily many blocks per pageMatthew Wilcox (Oracle)
Size the uptodate array dynamically to support larger pages in the page cache. With a 64kB page, we're only saving 8 bytes per page today, but with a 2MB maximum page size, we'd have to allocate more than 4kB per page. Add a few debugging assertions. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-30iomap: Use bitmap ops to set uptodate bitsMatthew Wilcox (Oracle)
Now that the bitmap is protected by a spinlock, we can use the more efficient bitmap ops instead of individual test/set bit ops. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30iomap: Use kzalloc to allocate iomap_pageMatthew Wilcox (Oracle)
We can skip most of the initialisation, although spinlocks still need explicit initialisation as architectures may use a non-zero value to indicate unlocked. The comment is no longer useful as attach_page_private() handles the refcount now. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30fs: Introduce i_blocks_per_pageMatthew Wilcox (Oracle)
This helper is useful for both THPs and for supporting block size larger than page size. Convert all users that I could find (we have a few different ways of writing this idiom, and I may have missed some). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
2020-09-30iomap: Fix misplaced page flushingMatthew Wilcox (Oracle)
If iomap_unshare_actor() unshares to an inline iomap, the page was not being flushed. block_write_end() and __iomap_write_end() already contain flushes, so adding it to iomap_write_end_inline() seems like the best place. That means we can remove it from iomap_write_actor(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30iomap: Use round_down/round_up macros in __iomap_write_beginNikolay Borisov
Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30quota: widen timestamps for the fs_disk_quota structureDarrick J. Wong
Soon, XFS will support quota grace period expiration timestamps beyond the year 2038, widen the timestamp fields to handle the extra time bits. Internally, XFS now stores unsigned 34-bit quantities, so the extra 8 bits here should work fine. (Note that XFS is the only user of this structure.) Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> --- v4: don't set timer_hi if !DQ_BIGTIME v3: remove the old rt_spc_timer assignment statement v2: fix calling conventions, widen timestamps
2020-09-30iomap: Mark read blocks uptodate in write_beginMatthew Wilcox (Oracle)
When bringing (portions of) a page uptodate, we were marking blocks that were zeroed as being uptodate, but not blocks that were read from storage. Like the previous commit, this problem was found with generic/127 and a kernel which failed readahead I/Os. This bug causes writes to be silently lost when working with flaky storage. Fixes: 9dc55f1389f9 ("iomap: add support for sub-pagesize buffered I/O without buffer heads") Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-30iomap: Clear page error before beginning a writeMatthew Wilcox (Oracle)
If we find a page in write_begin which is !Uptodate, we need to clear any error on the page before starting to read data into it. This matches how filemap_fault(), do_read_cache_page() and generic_file_buffered_read() handle PageError on !Uptodate pages. When calling iomap_set_range_uptodate() in __iomap_write_begin(), blocks were not being marked as uptodate. This was found with generic/127 and a specially modified kernel which would fail (some) readahead I/Os. The test read some bytes in a prior page which caused readahead to extend into page 0x34. There was a subsequent write to page 0x34, followed by a read to page 0x34. Because the blocks were still marked as !Uptodate, the read caused all blocks to be re-read, overwriting the write. With this change, and the next one, the bytes which were written are marked as being Uptodate, so even though the page is still marked as !Uptodate, the blocks containing the written data are not re-read from storage. Fixes: 9dc55f1389f9 ("iomap: add support for sub-pagesize buffered I/O without buffer heads") Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-30iomap: Fix direct I/O write consistency checkAndreas Gruenbacher
When a direct I/O write falls back to buffered I/O entirely, dio->size will be 0 in iomap_dio_complete. Function invalidate_inode_pages2_range will try to invalidate the rest of the address space. If there are any dirty pages in that range, the write will fail and a "Page cache invalidation failure on direct I/O" error will be logged. On gfs2, this can be reproduced as follows: xfs_io \ -c "open -ft foo" -c "pwrite 4k 4k" -c "close" \ -c "open -d foo" -c "pwrite 0 4k" Fix this by recognizing 0-length writes. Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-30iomap: fix WARN_ON_ONCE() from unprivileged usersQian Cai
It is trivial to trigger a WARN_ON_ONCE(1) in iomap_dio_actor() by unprivileged users which would taint the kernel, or worse - panic if panic_on_warn or panic_on_taint is set. Hence, just convert it to pr_warn_ratelimited() to let users know their workloads are racing. Thank Dave Chinner for the initial analysis of the racing reproducers. Signed-off-by: Qian Cai <cai@lca.pw> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30vsprintf: disable pointer hashingDarrick J. Wong
Turn off pointer hashing in dmesg, this makes debugging hard. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30slub: print lost object addressDarrick J. Wong
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30mtr: Build script adjustmentsDarrick J. Wong
Adjust the kernel build scripts so that we can attach a tag to a kernel build and have that tag appear in both the generated kernel directories and the debian package. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-30xfs: don't crash with assfailDarrick J. Wong
2020-09-30xfs: fix finobt btree block recovery orderingDave Chinner
Nathan popped up on #xfs and pointed out that we fail to handle finobt btree blocks in xlog_recover_get_buf_lsn(). This means they always fall through the entire magic number matching code to "recover immediately". Whilst most of the time this is the correct behaviour, occasionally it will be incorrect and could potentially overwrite more recent metadata because we don't check the LSN in the on disk metadata at all. This bug has been present since the finobt was first introduced, and is a potential cause of the occasional xfs_iget_check_free_state() failures we see that indicate that the inode btree state does not match the on disk inode state. Fixes: aafc3c246529 ("xfs: support the XFS_BTNUM_FINOBT free inode btree type") Reported-by: Nathan Scott <nathans@redhat.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2020-09-25xfs: remove deprecated sysctl optionsxfs-5.10-merge_2020-10-05xfs-5.10-merge_2020-10-04xfs-5.10-merge_2020-10-01xfs-5.10-merge_2020-09-29xfs-5.10-merge_2020-09-27Pavel Reichl
These optionr were for Irix compatibility, probably for clustered XFS clients in a heterogenous cluster which contained both Irix & Linux machines, so that behavior would be consistent. That doesn't exist anymore and it's no longer needed. Signed-off-by: Pavel Reichl <preichl@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> [darrick: actually state when the sysctls go away] Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-25xfs: remove deprecated mount optionsPavel Reichl
ikeep/noikeep was a workaround for old DMAPI code which is no longer relevant. attr2/noattr2 - is for controlling upgrade behaviour from fixed attribute fork sizes in the inode (attr1) and dynamic attribute fork sizes (attr2). mkfs has defaulted to setting attr2 since 2007, hence just about every XFS filesystem out there in production right now uses attr2. Signed-off-by: Pavel Reichl <preichl@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> [darrick: fix minor typos] Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-25xfs: directly call xfs_generic_create() for ->create() and ->mkdir()Kaixu Xia
The current create and mkdir handlers both call the xfs_vn_mknod() which is a wrapper routine around xfs_generic_create() function. Actually the create and mkdir handlers can directly call xfs_generic_create() function and reduce the call chain. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-25xfs: avoid shared rmap operations for attr fork extentsDarrick J. Wong
During code review, I noticed that the rmap code uses the (slower) shared mappings rmap functions for any extent of a reflinked file, even if those extents are for the attr fork, which doesn't support sharing. We can speed up rmap a tiny bit by optimizing out this case. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-25xfs: drop the obsolete comment on filestream lockingGao Xiang
Since commit 1c1c6ebcf52 ("xfs: Replace per-ag array with a radix tree"), there is no m_peraglock anymore, so it's hard to understand the described situation since per-ag is no longer an array and no need to reallocate, call xfs_filestream_flush() in growfs. In addition, the race condition for shrink feature is quite confusing to me currently as well. Get rid of it instead. Signed-off-by: Gao Xiang <hsiangkao@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-25xfs: code cleanup in xfs_attr_leaf_entsize_{remote,local}Kaixu Xia
Cleanup the typedef usage, the unnecessary parentheses, the unnecessary backslash and use the open-coded round_up call in xfs_attr_leaf_entsize_{remote,local}. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-25xfs: do the assert for all the log done items in xfs_trans_cancelKaixu Xia
We should do the assert for all the log intent-done items if they appear here. This patch detect intent-done items by the fact that their item ops don't have iop_unpin and iop_push methods and also move the helper xlog_item_is_intent to xfs_trans.h. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-25xfs: remove the unused parameter id from xfs_qm_dqattach_oneKaixu Xia
Since we never use the second parameter id, so remove it from xfs_qm_dqattach_one() function. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-25xfs: remove the redundant crc feature check in xfs_attr3_rmt_verifyKaixu Xia
We already check whether the crc feature is enabled before calling xfs_attr3_rmt_verify(), so remove the redundant feature check in that function. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-25xfs: fix some commentsKaixu Xia
Fix the comments to help people understand the code. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> [darrick: fix the indenting problems too] Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-25xfs: remove the unnecessary xfs_dqid_t type castKaixu Xia
Since the type prid_t and xfs_dqid_t both are uint32_t, seems the type cast is unnecessary, so remove it. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-25xfs: use the existing type definition for di_projidKaixu Xia
We have already defined the project ID type prid_t, so maybe should use it here. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-25xfs: remove the unused SYNCHRONIZE macroKaixu Xia
There are no callers of the SYNCHRONIZE() macro, so remove it. Signed-off-by: Kaixu Xia <kaixuxia@tencent.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-09-23xfs: clean up calculation of LR header blocksGao Xiang
Let's use DIV_ROUND_UP() to calculate log record header blocks as what did in xlog_get_iclog_buffer_size() and wrap up a common helper for log recovery. Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Gao Xiang <hsiangkao@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-23xfs: avoid LR buffer overrun due to crafted h_lenGao Xiang
Currently, crafted h_len has been blocked for the log header of the tail block in commit a70f9fe52daa ("xfs: detect and handle invalid iclog size set by mkfs"). However, each log record could still have crafted h_len and cause log record buffer overrun. So let's check h_len vs buffer size for each log record as well. Signed-off-by: Gao Xiang <hsiangkao@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>