summaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2024-02-22mm: thp: batch-collapse PMD with set_ptes()Ryan Roberts
Refactor __split_huge_pmd_locked() so that a present PMD can be collapsed to PTEs in a single batch using set_ptes(). This should improve performance a little bit, but the real motivation is to remove the need for the arm64 backend to have to fold the contpte entries. Instead, since the ptes are set as a batch, the contpte blocks can be initially set up pre-folded (once the arm64 contpte support is added in the next few patches). This leads to noticeable performance improvement during split. Link: https://lkml.kernel.org/r/20240215103205.2607016-3-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm: clarify the spec for set_ptes()Ryan Roberts
Patch series "Transparent Contiguous PTEs for User Mappings", v6. This is a series to opportunistically and transparently use contpte mappings (set the contiguous bit in ptes) for user memory when those mappings meet the requirements. The change benefits arm64, but there is some (very) minor refactoring for x86 to enable its integration with core-mm. It is part of a wider effort to improve performance by allocating and mapping variable-sized blocks of memory (folios). One aim is for the 4K kernel to approach the performance of the 16K kernel, but without breaking compatibility and without the associated increase in memory. Another aim is to benefit the 16K and 64K kernels by enabling 2M THP, since this is the contpte size for those kernels. We have good performance data that demonstrates both aims are being met (see below). Of course this is only one half of the change. We require the mapped physical memory to be the correct size and alignment for this to actually be useful (i.e. 64K for 4K pages, or 2M for 16K/64K pages). Fortunately folios are solving this problem for us. Filesystems that support it (XFS, AFS, EROFS, tmpfs, ...) will allocate large folios up to the PMD size today, and more filesystems are coming. And for anonymous memory, "multi-size THP" is now upstream. Patch Layout ============ In this version, I've split the patches to better show each optimization: - 1-2: mm prep: misc code and docs cleanups - 3-6: mm,arm64,x86 prep: Add pte_advance_pfn() and make pte_next_pfn() a generic wrapper around it - 7-11: arm64 prep: Refactor ptep helpers into new layer - 12: functional contpte implementation - 23-18: various optimizations on top of the contpte implementation Testing ======= I've tested this series on both Ampere Altra (bare metal) and Apple M2 (VM): - mm selftests (inc new tests written for multi-size THP); no regressions - Speedometer Java script benchmark in Chromium web browser; no issues - Kernel compilation; no issues - Various tests under high memory pressure with swap enabled; no issues Performance =========== High Level Use Cases ~~~~~~~~~~~~~~~~~~~~ First some high level use cases (kernel compilation and speedometer JavaScript benchmarks). These are running on Ampere Altra (I've seen similar improvements on Android/Pixel 6). baseline: mm-unstable (mTHP switched off) mTHP: + enable 16K, 32K, 64K mTHP sizes "always" mTHP + contpte: + this series mTHP + contpte + exefolio: + patch at [6], which series supports Kernel Compilation with -j8 (negative is faster): | kernel | real-time | kern-time | user-time | |---------------------------|-----------|-----------|-----------| | baseline | 0.0% | 0.0% | 0.0% | | mTHP | -5.0% | -39.1% | -0.7% | | mTHP + contpte | -6.0% | -41.4% | -1.5% | | mTHP + contpte + exefolio | -7.8% | -43.1% | -3.4% | Kernel Compilation with -j80 (negative is faster): | kernel | real-time | kern-time | user-time | |---------------------------|-----------|-----------|-----------| | baseline | 0.0% | 0.0% | 0.0% | | mTHP | -5.0% | -36.6% | -0.6% | | mTHP + contpte | -6.1% | -38.2% | -1.6% | | mTHP + contpte + exefolio | -7.4% | -39.2% | -3.2% | Speedometer (positive is faster): | kernel | runs_per_min | |:--------------------------|--------------| | baseline | 0.0% | | mTHP | 1.5% | | mTHP + contpte | 3.2% | | mTHP + contpte + exefolio | 4.5% | Micro Benchmarks ~~~~~~~~~~~~~~~~ The following microbenchmarks are intended to demonstrate the performance of fork() and munmap() do not regress. I'm showing results for order-0 (4K) mappings, and for order-9 (2M) PTE-mapped THP. Thanks to David for sharing his benchmarks. baseline: mm-unstable + batch zap [7] series contpte-basic: + patches 0-19; functional contpte implementation contpte-batch: + patches 20-23; implement new batched APIs contpte-inline: + patch 24; __always_inline to help compiler contpte-fold: + patch 25; fold contpte mapping when sensible Primary platform is Ampere Altra bare metal. I'm also showing results for M2 VM (on top of MacOS) for reference, although experience suggests this might not be the most reliable for performance numbers of this sort: | FORK | order-0 | order-9 | | Ampere Altra |------------------------|------------------------| | (pte-map) | mean | stdev | mean | stdev | |----------------|------------|-----------|------------|-----------| | baseline | 0.0% | 2.7% | 0.0% | 0.2% | | contpte-basic | 6.3% | 1.4% | 1948.7% | 0.2% | | contpte-batch | 7.6% | 2.0% | -1.9% | 0.4% | | contpte-inline | 3.6% | 1.5% | -1.0% | 0.2% | | contpte-fold | 4.6% | 2.1% | -1.8% | 0.2% | | MUNMAP | order-0 | order-9 | | Ampere Altra |------------------------|------------------------| | (pte-map) | mean | stdev | mean | stdev | |----------------|------------|-----------|------------|-----------| | baseline | 0.0% | 0.5% | 0.0% | 0.3% | | contpte-basic | 1.8% | 0.3% | 1104.8% | 0.1% | | contpte-batch | -0.3% | 0.4% | 2.7% | 0.1% | | contpte-inline | -0.1% | 0.6% | 0.9% | 0.1% | | contpte-fold | 0.1% | 0.6% | 0.8% | 0.1% | | FORK | order-0 | order-9 | | Apple M2 VM |------------------------|------------------------| | (pte-map) | mean | stdev | mean | stdev | |----------------|------------|-----------|------------|-----------| | baseline | 0.0% | 1.4% | 0.0% | 0.8% | | contpte-basic | 6.8% | 1.2% | 469.4% | 1.4% | | contpte-batch | -7.7% | 2.0% | -8.9% | 0.7% | | contpte-inline | -6.0% | 2.1% | -6.0% | 2.0% | | contpte-fold | 5.9% | 1.4% | -6.4% | 1.4% | | MUNMAP | order-0 | order-9 | | Apple M2 VM |------------------------|------------------------| | (pte-map) | mean | stdev | mean | stdev | |----------------|------------|-----------|------------|-----------| | baseline | 0.0% | 0.6% | 0.0% | 0.4% | | contpte-basic | 1.6% | 0.6% | 233.6% | 0.7% | | contpte-batch | 1.9% | 0.3% | -3.9% | 0.4% | | contpte-inline | 2.2% | 0.8% | -1.6% | 0.9% | | contpte-fold | 1.5% | 0.7% | -1.7% | 0.7% | Misc ~~~~ John Hubbard at Nvidia has indicated dramatic 10x performance improvements for some workloads at [8], when using 64K base page kernel. [1] https://lore.kernel.org/linux-arm-kernel/20230622144210.2623299-1-ryan.roberts@arm.com/ [2] https://lore.kernel.org/linux-arm-kernel/20231115163018.1303287-1-ryan.roberts@arm.com/ [3] https://lore.kernel.org/linux-arm-kernel/20231204105440.61448-1-ryan.roberts@arm.com/ [4] https://lore.kernel.org/lkml/20231218105100.172635-1-ryan.roberts@arm.com/ [5] https://lore.kernel.org/linux-mm/633af0a7-0823-424f-b6ef-374d99483f05@arm.com/ [6] https://lore.kernel.org/lkml/08c16f7d-f3b3-4f22-9acc-da943f647dc3@arm.com/ [7] https://lore.kernel.org/linux-mm/20240214204435.167852-1-david@redhat.com/ [8] https://lore.kernel.org/linux-mm/c507308d-bdd4-5f9e-d4ff-e96e4520be85@nvidia.com/ [9] https://gitlab.arm.com/linux-arm/linux-rr/-/tree/features/granule_perf/contpte-lkml_v6 This patch (of 18): set_ptes() spec implies that it can only be used to set a present pte because it interprets the PFN field to increment it. However, set_pte_at() has been implemented on top of set_ptes() since set_ptes() was introduced, and set_pte_at() allows setting a pte to a not-present state. So clarify the spec to state that when nr==1, new state of pte may be present or not present. When nr>1, new state of all ptes must be present. While we are at it, tighten the spec to set requirements around the initial state of ptes; when nr==1 it may be either present or not-present. But when nr>1 all ptes must initially be not-present. All set_ptes() callsites already conform to this requirement. Stating it explicitly is useful because it allows for a simplification to the upcoming arm64 contpte implementation. Link: https://lkml.kernel.org/r/20240215103205.2607016-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20240215103205.2607016-2-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Barry Song <21cnbao@gmail.com> Cc: Borislav Petkov (AMD) <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/memory: optimize unmap/zap with PTE-mapped THPDavid Hildenbrand
Similar to how we optimized fork(), let's implement PTE batching when consecutive (present) PTEs map consecutive pages of the same large folio. Most infrastructure we need for batching (mmu gather, rmap) is already there. We only have to add get_and_clear_full_ptes() and clear_full_ptes(). Similarly, extend zap_install_uffd_wp_if_needed() to process a PTE range. We won't bother sanity-checking the mapcount of all subpages, but only check the mapcount of the first subpage we process. If there is a real problem hiding somewhere, we can trigger it simply by using small folios, or when we zap single pages of a large folio. Ideally, we had that check in rmap code (including for delayed rmap), but then we cannot print the PTE. Let's keep it simple for now. If we ever have a cheap folio_mapcount(), we might just want to check for underflows there. To keep small folios as fast as possible force inlining of a specialized variant using __always_inline with nr=1. Link: https://lkml.kernel.org/r/20240214204435.167852-11-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mmu_gather: improve cond_resched() handling with large folios and ↵David Hildenbrand
expensive page freeing In tlb_batch_pages_flush(), we can end up freeing up to 512 pages or now up to 256 folio fragments that span more than one page, before we conditionally reschedule. It's a pain that we have to handle cond_resched() in tlb_batch_pages_flush() manually and cannot simply handle it in release_pages() -- release_pages() can be called from atomic context. Well, in a perfect world we wouldn't have to make our code more complicated at all. With page poisoning and init_on_free, we might now run into soft lockups when we free a lot of rather large folio fragments, because page freeing time then depends on the actual memory size we are freeing instead of on the number of folios that are involved. In the absolute (unlikely) worst case, on arm64 with 64k we will be able to free up to 256 folio fragments that each span 512 MiB: zeroing out 128 GiB does sound like it might take a while. But instead of ignoring this unlikely case, let's just handle it. So, let's teach tlb_batch_pages_flush() that there are some configurations where page freeing is horribly slow, and let's reschedule more frequently -- similarly like we did for now before we had large folio fragments in there. Avoid yet another loop over all encoded pages in the common case by handling that separately. Note that with page poisoning/zeroing, we might now end up freeing only a single folio fragment at a time that might exceed the old 512 pages limit: but if we cannot even free a single MAX_ORDER page on a system without running into soft lockups, something else is already completely bogus. Freeing a PMD-mapped THP would similarly cause trouble. In theory, we might even free 511 order-0 pages + a single MAX_ORDER page, effectively having to zero out 8703 pages on arm64 with 64k, translating to ~544 MiB of memory: however, if 512 MiB doesn't result in soft lockups, 544 MiB is unlikely to result in soft lockups, so we won't care about that for the time being. In the future, we might want to detect if handling cond_resched() is required at all, and just not do any of that with full preemption enabled. Link: https://lkml.kernel.org/r/20240214204435.167852-10-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mmu_gather: add __tlb_remove_folio_pages()David Hildenbrand
Add __tlb_remove_folio_pages(), which will remove multiple consecutive pages that belong to the same large folio, instead of only a single page. We'll be using this function when optimizing unmapping/zapping of large folios that are mapped by PTEs. We're using the remaining spare bit in an encoded_page to indicate that the next enoced page in an array contains actually shifted "nr_pages". Teach swap/freeing code about putting multiple folio references, and delayed rmap handling to remove page ranges of a folio. This extension allows for still gathering almost as many small folios as we used to (-1, because we have to prepare for a possibly bigger next entry), but still allows for gathering consecutive pages that belong to the same large folio. Note that we don't pass the folio pointer, because it is not required for now. Further, we don't support page_size != PAGE_SIZE, it won't be required for simple PTE batching. We have to provide a separate s390 implementation, but it's fairly straight forward. Another, more invasive and likely more expensive, approach would be to use folio+range or a PFN range instead of page+nr_pages. But, we should do that consistently for the whole mmu_gather. For now, let's keep it simple and add "nr_pages" only. Note that it is now possible to gather significantly more pages: In the past, we were able to gather ~10000 pages, now we can also gather ~5000 folio fragments that span multiple pages. A folio fragment on x86-64 can span up to 512 pages (2 MiB THP) and on arm64 with 64k in theory 8192 pages (512 MiB THP). Gathering more memory is not considered something we should worry about, especially because these are already corner cases. While we can gather more total memory, we won't free more folio fragments. As long as page freeing time primarily only depends on the number of involved folios, there is no effective change for !preempt configurations. However, we'll adjust tlb_batch_pages_flush() separately to handle corner cases where page freeing time grows proportionally with the actual memory size. Link: https://lkml.kernel.org/r/20240214204435.167852-9-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mmu_gather: add tlb_remove_tlb_entries()David Hildenbrand
Let's add a helper that lets us batch-process multiple consecutive PTEs. Note that the loop will get optimized out on all architectures except on powerpc. We have to add an early define of __tlb_remove_tlb_entry() on ppc to make the compiler happy (and avoid making tlb_remove_tlb_entries() a macro). [arnd@kernel.org: change __tlb_remove_tlb_entry() to an inline function] Link: https://lkml.kernel.org/r/20240221154549.2026073-1-arnd@kernel.org Link: https://lkml.kernel.org/r/20240214204435.167852-8-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mmu_gather: define ENCODED_PAGE_FLAG_DELAY_RMAPDavid Hildenbrand
Nowadays, encoded pages are only used in mmu_gather handling. Let's update the documentation, and define ENCODED_PAGE_BIT_DELAY_RMAP. While at it, rename ENCODE_PAGE_BITS to ENCODED_PAGE_BITS. If encoded page pointers would ever be used in other context again, we'd likely want to change the defines to reflect their context (e.g., ENCODED_PAGE_FLAG_MMU_GATHER_DELAY_RMAP). For now, let's keep it simple. This is a preparation for using the remaining spare bit to indicate that the next item in an array of encoded pages is a "nr_pages" argument and not an encoded page. Link: https://lkml.kernel.org/r/20240214204435.167852-7-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mmu_gather: pass "delay_rmap" instead of encoded page to ↵David Hildenbrand
__tlb_remove_page_size() We have two bits available in the encoded page pointer to store additional information. Currently, we use one bit to request delay of the rmap removal until after a TLB flush. We want to make use of the remaining bit internally for batching of multiple pages of the same folio, specifying that the next encoded page pointer in an array is actually "nr_pages". So pass page + delay_rmap flag instead of an encoded page, to handle the encoding internally. Link: https://lkml.kernel.org/r/20240214204435.167852-6-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/memory: factor out zapping folio pte into zap_present_folio_pte()David Hildenbrand
Let's prepare for further changes by factoring it out into a separate function. Link: https://lkml.kernel.org/r/20240214204435.167852-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/memory: further separate anon and pagecache folio handling in ↵David Hildenbrand
zap_present_pte() We don't need up-to-date accessed-dirty information for anon folios and can simply work with the ptent we already have. Also, we know the RSS counter we want to update. We can safely move arch_check_zapped_pte() + tlb_remove_tlb_entry() + zap_install_uffd_wp_if_needed() after updating the folio and RSS. While at it, only call zap_install_uffd_wp_if_needed() if there is even any chance that pte_install_uffd_wp_if_needed() would do *something*. That is, just don't bother if uffd-wp does not apply. Link: https://lkml.kernel.org/r/20240214204435.167852-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/memory: handle !page case in zap_present_pte() separatelyDavid Hildenbrand
We don't need uptodate accessed/dirty bits, so in theory we could replace ptep_get_and_clear_full() by an optimized ptep_clear_full() function. Let's rely on the provided pte. Further, there is no scenario where we would have to insert uffd-wp markers when zapping something that is not a normal page (i.e., zeropage). Add a sanity check to make sure this remains true. should_zap_folio() no longer has to handle NULL pointers. This change replaces 2/3 "!page/!folio" checks by a single "!page" one. Note that arch_check_zapped_pte() on x86-64 checks the HW-dirty bit to detect shadow stack entries. But for shadow stack entries, the HW dirty bit (in combination with non-writable PTEs) is set by software. So for the arch_check_zapped_pte() check, we don't have to sync against HW setting the HW dirty bit concurrently, it is always set. Link: https://lkml.kernel.org/r/20240214204435.167852-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/memory: factor out zapping of present pte into zap_present_pte()David Hildenbrand
Patch series "mm/memory: optimize unmap/zap with PTE-mapped THP", v3. This series is based on [1]. Similar to what we did with fork(), let's implement PTE batching during unmap/zap when processing PTE-mapped THPs. We collect consecutive PTEs that map consecutive pages of the same large folio, making sure that the other PTE bits are compatible, and (a) adjust the refcount only once per batch, (b) call rmap handling functions only once per batch, (c) perform batch PTE setting/updates and (d) perform TLB entry removal once per batch. Ryan was previously working on this in the context of cont-pte for arm64, int latest iteration [2] with a focus on arm6 with cont-pte only. This series implements the optimization for all architectures, independent of such PTE bits, teaches MMU gather/TLB code to be fully aware of such large-folio-pages batches as well, and amkes use of our new rmap batching function when removing the rmap. To achieve that, we have to enlighten MMU gather / page freeing code (i.e., everything that consumes encoded_page) to process unmapping of consecutive pages that all belong to the same large folio. I'm being very careful to not degrade order-0 performance, and it looks like I managed to achieve that. While this series should -- similar to [1] -- be beneficial for adding cont-pte support on arm64[2], it's one of the requirements for maintaining a total mapcount[3] for large folios with minimal added overhead and further changes[4] that build up on top of the total mapcount. Independent of all that, this series results in a speedup during munmap() and similar unmapping (process teardown, MADV_DONTNEED on larger ranges) with PTE-mapped THP, which is the default with THPs that are smaller than a PMD (for example, 16KiB to 1024KiB mTHPs for anonymous memory[5]). On an Intel Xeon Silver 4210R CPU, munmap'ing a 1GiB VMA backed by PTE-mapped folios of the same size (stddev < 1%) results in the following runtimes for munmap() in seconds (shorter is better): Folio Size | mm-unstable | New | Change --------------------------------------------- 4KiB | 0.058110 | 0.057715 | - 1% 16KiB | 0.044198 | 0.035469 | -20% 32KiB | 0.034216 | 0.023522 | -31% 64KiB | 0.029207 | 0.018434 | -37% 128KiB | 0.026579 | 0.014026 | -47% 256KiB | 0.025130 | 0.011756 | -53% 512KiB | 0.024292 | 0.010703 | -56% 1024KiB | 0.023812 | 0.010294 | -57% 2048KiB | 0.023785 | 0.009910 | -58% [1] https://lkml.kernel.org/r/20240129124649.189745-1-david@redhat.com [2] https://lkml.kernel.org/r/20231218105100.172635-1-ryan.roberts@arm.com [3] https://lkml.kernel.org/r/20230809083256.699513-1-david@redhat.com [4] https://lkml.kernel.org/r/20231124132626.235350-1-david@redhat.com [5] https://lkml.kernel.org/r/20231207161211.2374093-1-ryan.roberts@arm.com This patch (of 10): Let's prepare for further changes by factoring out processing of present PTEs. Link: https://lkml.kernel.org/r/20240214204435.167852-1-david@redhat.com Link: https://lkml.kernel.org/r/20240214204435.167852-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: linuxppc-dev@lists.ozlabs.org Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Hocko <mhocko@suse.com> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests: add zswapin and no zswap testsNhat Pham
Add a selftest to cover the zswapin code path, allocating more memory than the cgroup limit to trigger swapout/zswapout, then reading the pages back in memory several times. This is inspired by a recently encountered kernel crash on the zswapin path in our internal kernel, which went undetected because of a lack of test coverage for this path. Add a selftest to verify that when memory.zswap.max = 0, no pages can go to the zswap pool for the cgroup. [nphamcs@gmail.com: remove redundant comment, add success checks] Link: https://lkml.kernel.org/r/20240222043132.616320-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20240205225608.3083251-4-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Suggested-by: Rik van Riel <riel@surriel.com> Suggested-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Yosry Ahmed <yosryahmed@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shuah Khan <shuah@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests: fix the zswap invasive shrink testNhat Pham
The zswap no invasive shrink selftest breaks because we rename the zswap writeback counter (see [1]). Fix the test. [1]: https://patchwork.kernel.org/project/linux-kselftest/patch/20231205193307.2432803-1-nphamcs@gmail.com/ Link: https://lkml.kernel.org/r/20240205225608.3083251-3-nphamcs@gmail.com Fixes: a697dc2be925 ("selftests: cgroup: update per-memcg zswap writeback selftest") Signed-off-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Yosry Ahmed <yosryahmed@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shuah Khan <shuah@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests: zswap: add zswap selftest file to zswap maintainer entryNhat Pham
Patch series "fix and extend zswap kselftests", v3. Fix a broken zswap kselftest due to cgroup zswap writeback counter renaming, and add 2 zswap kselftests, one to cover the (z)swapin case, and another to check that no zswapping happens when the cgroup limit is 0. Also, add the zswap kselftest file to zswap maintainer entry so that get_maintainers script can find zswap maintainers. This patch (of 3): Make it easier for contributors to find the zswap maintainers when they update the zswap tests. Link: https://lkml.kernel.org/r/20240205225608.3083251-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20240205225608.3083251-2-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Yosry Ahmed <yosryahmed@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shuah Khan <shuah@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm: compaction: limit the suitable target page order to be less than cc->orderBaolin Wang
It can not improve the fragmentation if we isolate the target free pages exceeding cc->order, especially when the cc->order is less than pageblock_order. For example, suppose the pageblock_order is MAX_ORDER (size is 4M) and cc->order is 2M THP size, we should not isolate other 2M free pages to be the migration target, which can not improve the fragmentation. Moreover this is also applicable for large folio compaction. Link: https://lkml.kernel.org/r/afcd9377351c259df7a25a388a4a0d5862b986f4.1705928395.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22zram: do not allocate physically contiguous strm buffersBarry Song
Currently zram allocates 2 physically contiguous pages per-CPU's compression stream (we may have up to 4 streams per-CPU). Since those buffers are per-CPU we allocate them from CPU hotplug path, which may have higher risks of failed allocations on devices with fragmented memory. Switch to virtually contiguous allocations - crypto comp does not seem impose requirements on compression working buffers to be physically contiguous. Link: https://lkml.kernel.org/r/20240213065400.6561-1-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/hugetlb: move page order check inside hugetlb_cma_reserve()Anshuman Khandual
All platforms could benefit from page order check against MAX_PAGE_ORDER before allocating a CMA area for gigantic hugetlb pages. Let's move this check from individual platforms to generic hugetlb. Link: https://lkml.kernel.org/r/20240209054221.1403364-1-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Jane Chu <jane.chu@oracle.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mglru: improve swappiness handlingKinsey Ho
The reclaimable number of anon pages used to set initial reclaim priority is only based on get_swappiness(). Use can_reclaim_anon_pages() to include NUMA node demotion. Also move the swappiness handling of when !__GFP_IO in try_to_shrink_lruvec() into isolate_folios(). Link: https://lkml.kernel.org/r/20240214060538.3524462-6-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mglru: improve struct lru_gen_mm_walkKinsey Ho
Rename max_seq to seq in struct lru_gen_mm_walk to keep consistent with struct lru_gen_mm_state. Note that seq is not always up to date with max_seq from lru_gen_folio. No functional changes. Link: https://lkml.kernel.org/r/20240214060538.3524462-5-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mglru: improve reset_mm_stats()Kinsey Ho
struct lruvec* is already a field of struct lru_gen_mm_walk. Remove the parameter struct lruvec* into functions that already have access to struct lru_gen_mm_walk*. Also, we do not need to handle reset histogram stats when !should_walk_mmu(). Remove the call to reset_mm_stats() in iterate_mm_list_nowalk(). Link: https://lkml.kernel.org/r/20240214060538.3524462-4-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mglru: improve should_run_aging()Kinsey Ho
scan_control *sc does not need to be passed into should_run_aging(), as it provides only the reclaim priority. This can be moved to get_nr_to_scan(). Refactor should_run_aging() and get_nr_to_scan() to improve code readability. No functional changes. Link: https://lkml.kernel.org/r/20240214060538.3524462-3-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mglru: drop unused parameterKinsey Ho
Patch series "mm/mglru: code cleanup and refactoring" This provides MGLRU code cleanup and refactoring for better readability. This patch (of 5): struct scan_control *sc is currently passed into try_to_inc_max_seq() and run_aging(). This parameter is not used. Drop the unused parameter struct scan_control *sc. No functional change. Link: https://lkml.kernel.org/r/20240214060538.3524462-1-kinseyho@google.com Link: https://lkml.kernel.org/r/20240214060538.3524462-2-kinseyho@google.com Signed-off-by: Kinsey Ho <kinseyho@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22kasan/test: avoid gcc warning for intentional overflowArnd Bergmann
The out-of-bounds test allocates an object that is three bytes too short in order to validate the bounds checking. Starting with gcc-14, this causes a compile-time warning as gcc has grown smart enough to understand the sizeof() logic: mm/kasan/kasan_test.c: In function 'kmalloc_oob_16': mm/kasan/kasan_test.c:443:14: error: allocation of insufficient size '13' for type 'struct <anonymous>' with size '16' [-Werror=alloc-size] 443 | ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL); | ^ Hide the actual computation behind a RELOC_HIDE() that ensures the compiler misses the intentional bug. Link: https://lkml.kernel.org/r/20240212111609.869266-1-arnd@kernel.org Fixes: 3f15801cdc23 ("lib: add kasan test module") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm: document memalloc_noreclaim_save() and memalloc_pin_save()Vlastimil Babka
The memalloc_noreclaim_save() function currently has no documentation comment, so the implications of its usage are not obvious. Namely that it not only prevents entering reclaim (as the name suggests), but also allows using all memory reserves and thus should be only used in contexts that are allocating memory to free memory. This may lead to new improper usages being added. Thus add a documenting comment, based on the description of __GFP_MEMALLOC. While at it, also document memalloc_pin_save() so that all the memalloc_ scopes are documented. For those already documented, add missing Return: descriptions, and mark Context: description per kernel-docs style guide. In the comments describing the relevant PF_MEMALLOC flags, refer to their scope setting functions. [vbabka@suse.cz: fix issues that Mike pointed out] Link: https://lkml.kernel.org/r/20240215095827.13756-2-vbabka@suse.cz Link: https://lkml.kernel.org/r/20240212182950.32730-2-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/zswap: optimize and cleanup the invalidation of duplicate entryChengming Zhou
We may encounter duplicate entry in the zswap_store(): 1. swap slot that freed to per-cpu swap cache, doesn't invalidate the zswap entry, then got reused. This has been fixed. 2. !exclusive load mode, swapin folio will leave its zswap entry on the tree, then swapout again. This has been removed. 3. one folio can be dirtied again after zswap_store(), so need to zswap_store() again. This should be handled correctly. So we must invalidate the old duplicate entry before inserting the new one, which actually doesn't have to be done at the beginning of zswap_store(). The good point is that we don't need to lock the tree twice in the normal store success path. And cleanup the loop as we are here. Note we still need to invalidate the old duplicate entry when store failed or zswap is disabled , otherwise the new data in swapfile could be overwrite by the old data in zswap pool when lru writeback. Link: https://lkml.kernel.org/r/20240209044112.3883835-1-chengming.zhou@linux.dev Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Chris Li <chrisl@kernel.org> Acked-by: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests/mm: log a consistent test name for check_compactionMark Brown
Every test result report in the compaction test prints a distinct log messae, and some of the reports print a name that varies at runtime. This causes problems for automation since a lot of automation software uses the printed string as the name of the test, if the name varies from run to run and from pass to fail then the automation software can't identify that a test changed result or that the same tests are being run. Refactor the logging to use a consistent name when printing the result of the test, printing the existing messages as diagnostic information instead so they are still available for people trying to interpret the results. Link: https://lkml.kernel.org/r/20240209-kselftest-mm-cleanup-v1-2-a3c0386496b5@kernel.org Signed-off-by: Mark Brown <broonie@kernel.org> Cc: Muhammad Usama Anjum <usama.anjum@collabora.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests/mm: log skipped compaction test as a skipMark Brown
Patch series "selftests/mm: Output cleanups for the compaction test". A couple of small updates for the check_compaction selftest which make it play more nicely with test automation systems. This patch (of 2): When the compaction test is run it checks to make sure that prerequistives the test requires are available and skips the tests if not. When this happens we log the test as a pass rather than a skip, log as a skip so that the distinction is clear and automation can see unexpected skips. Link: https://lkml.kernel.org/r/20240209-kselftest-mm-cleanup-v1-0-a3c0386496b5@kernel.org Link: https://lkml.kernel.org/r/20240209-kselftest-mm-cleanup-v1-1-a3c0386496b5@kernel.org Signed-off-by: Mark Brown <broonie@kernel.org> Cc: Muhammad Usama Anjum <usama.anjum@collabora.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm: compaction: refactor compact_node()Kefeng Wang
Refactor compact_node() to handle both proactive and synchronous compact memory, which cleanups code a bit. Link: https://lkml.kernel.org/r/20240208013607.1731817-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/cma: add sysfs file 'release_pages_success'Anshuman Khandual
This adds the following new sysfs file tracking the number of successfully released pages from a given CMA heap area. This file will be available via CONFIG_CMA_SYSFS and help in determining active CMA pages available on the CMA heap area. This adds a new 'nr_pages_released' (CONFIG_CMA_SYSFS) into 'struct cma' which gets updated during cma_release(). /sys/kernel/mm/cma/<cma-heap-area>/release_pages_success After this change, an user will be able to find active CMA pages available in a given CMA heap area via the following method. Active pages = alloc_pages_success - release_pages_success That's valuable information for both software designers, and system admins as it allows them to tune the number of CMA pages available in the system. This increases user visibility for allocated CMA area and its utilization. Link: https://lkml.kernel.org/r/20240206045731.472759-1-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests/damon/_chk_dependency: get debugfs mount point from /proc/mountsSeongJae Park
DAMON debugfs selftests dependency checker assumes debugfs would be mounted at /sys/kernel/debug. That would be ok for many cases, but some systems might mounted the file system on some different places. Parse the real mount point using /proc/mounts file. Link: https://lkml.kernel.org/r/20240207203134.69976-9-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests/damon: add a test for the pid leak of dbgfs_target_ids_write()SeongJae Park
Commit ebb3f994dd92 ("mm/damon/dbgfs: fix 'struct pid' leaks in 'dbgfs_target_ids_write()'") fixes a pid leak bug in DAMON debugfs interface, namely dbgfs_target_ids_write() function. Add a selftest for the issue to prevent the problem from mistakenly recurring. Link: https://lkml.kernel.org/r/20240207203134.69976-8-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests/damon: add a test for a race between target_ids_read() and ↵SeongJae Park
dbgfs_before_terminate() commit 34796417964b ("mm/damon/dbgfs: protect targets destructions with kdamond_lock") fixed a race of DAMON debugfs interface. Specifically, the race was happening between target_ids_read() and dbgfs_before_terminate(). Add a test for the issue to prevent the problem from accidentally recurring. Link: https://lkml.kernel.org/r/20240207203134.69976-7-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests/damon: add a test for DAMOS apply intervalsSeongJae Park
Add a selftest for DAMOS apply intervals. It runs two schemes having different apply interval agains an artificial memory access workload, and check if the scheme with smaller apply interval was applied more frequently. Link: https://lkml.kernel.org/r/20240207203134.69976-6-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests/damon: add a test for DAMOS quotaSeongJae Park
Add a selftest for verifying the DAMOS quota feature. The test is very similar to sysfs_update_schemes_tried_regions_wss_estimation.py. It starts an artificial workload of 20 MiB working set, run DAMON to find the working set size, but with 1 MiB/100 ms size quota. Then, it collect the DAMON-found working set size every 100 ms and check if the quota was always applied as expected. For the confirmation, the tests shows the stat-applied region size and the qt_exceeds stat. Link: https://lkml.kernel.org/r/20240207203134.69976-5-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests/damon/_damon_sysfs: support DAMOS apply intervalSeongJae Park
Update the test-purpose DAMON sysfs control Python module to support DAMOS apply interval. Link: https://lkml.kernel.org/r/20240207203134.69976-4-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests/damon/_damon_sysfs: support DAMOS statsSeongJae Park
Update the test-purpose DAMON sysfs control Python module to support DAMOS stats. Link: https://lkml.kernel.org/r/20240207203134.69976-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22selftests/damon/_damon_sysfs: support DAMOS quotaSeongJae Park
Patch series "selftests/damon: add more tests for core functionalities and corner cases". Continue DAMON selftests' test coverage improvement works with a trivial improvement of the test code itself. The sequence of the patches in patchset is as follows. The first five patches add two DAMON core functionalities tests. Those begins with three patches (patches 1-3) that update the test-purpose DAMON sysfs interface wrapper to support DAMOS quota, stats, and apply interval features, respectively. The fourth patch implements and adds a selftest for DAMOS quota feature, using the DAMON sysfs interface wrapper's newly added support of the quota and the stats feature. The fifth patch further implements and adds a selftest for DAMOS apply interval using the DAMON sysfs interface wrapper's newly added support of the apply interval and the stats feature. Two patches (patches 6 and 7) for implementing and adding two corner cases handling selftests follow. Those try to avoid two previously fixed bugs from recurring. Finally, a patch for making DAMON debugfs selftests dependency checker to use /proc/mounts instead of the hard-coded mount point assumption follows. This patch (of 8): Update the test-purpose DAMON sysfs control Python module to support DAMOS quota. Link: https://lkml.kernel.org/r/20240207203134.69976-1-sj@kernel.org Link: https://lkml.kernel.org/r/20240207203134.69976-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22memremap.h: correct an error in a commentJohn Groves
It tried to send me off to memory_hotplug.h for an enum that is a few lines above... Link: https://lkml.kernel.org/r/dba0f5f01162d6fa16e4da2a9fede7f97080e92d.1707179960.git.john@groves.net Signed-off-by: John Groves <john@groves.net> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22zram: use copy_page for full page copyMark-PK Tsai
Some architectures, such as arm, have implemented optimized copy_page for full page copying. Replace the full page memcpy with copy_page to take advantage of the optimization. Link: https://lkml.kernel.org/r/20231007070554.8657-1-mark-pk.tsai@mediatek.com Signed-off-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: YJ Chiang <yj.chiang@mediatek.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/demotion: print demotion targetsLi Zhijian
Currently, when a demotion occurs, it will prioritize selecting a node from the preferred targets as the destination node for the demotion. If the preferred node does not meet the requirements, it will try from all the lower memory tier nodes until it finds a suitable demotion destination node or ultimately fails. However, the demotion target information isn't exposed to the users, especially the preferred target information, which relies on more factors. This makes it hard for users to understand the exact demotion behavior. Rather than having a new sysfs interface to expose this information, printing directly to kernel messages, just like the current page allocation fallback order does. A dmesg example with this patch is as follows: [ 0.704860] Demotion targets for Node 0: null [ 0.705456] Demotion targets for Node 1: null // node 2 is onlined [ 32.259775] Demotion targets for Node 0: perferred: 2, fallback: 2 [ 32.261290] Demotion targets for Node 1: perferred: 2, fallback: 2 [ 32.262726] Demotion targets for Node 2: null // node 3 is onlined [ 42.448809] Demotion targets for Node 0: perferred: 2, fallback: 2-3 [ 42.450704] Demotion targets for Node 1: perferred: 2, fallback: 2-3 [ 42.452556] Demotion targets for Node 2: perferred: 3, fallback: 3 [ 42.454136] Demotion targets for Node 3: null // node 4 is onlined [ 52.676833] Demotion targets for Node 0: perferred: 2, fallback: 2-4 [ 52.678735] Demotion targets for Node 1: perferred: 2, fallback: 2-4 [ 52.680493] Demotion targets for Node 2: perferred: 4, fallback: 3-4 [ 52.682154] Demotion targets for Node 3: null [ 52.683405] Demotion targets for Node 4: null // node 5 is onlined [ 62.931902] Demotion targets for Node 0: perferred: 2, fallback: 2-5 [ 62.938266] Demotion targets for Node 1: perferred: 5, fallback: 2-5 [ 62.943515] Demotion targets for Node 2: perferred: 4, fallback: 3-4 [ 62.947471] Demotion targets for Node 3: null [ 62.949908] Demotion targets for Node 4: null [ 62.952137] Demotion targets for Node 5: perferred: 3, fallback: 3-4 Regarding this requirement, we have previously discussed [1]. The initial proposal involved introducing a new sysfs interface. However, due to concerns about potential changes and compatibility issues with the interface in the future, a consensus was not reached with the community. Therefore, this time, we are directly printing out the information. [1] https://lore.kernel.org/all/d1d5add8-8f4a-4578-8bf0-2cbe79b09989@fujitsu.com/ Link: https://lkml.kernel.org/r/20240206020151.605516-1-lizhijian@fujitsu.com Signed-off-by: Li Zhijian <lizhijian@fujitsu.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/damon/sysfs: handle 'state' file inputs for every sampling interval if ↵SeongJae Park
possible DAMON sysfs interface need to access kdamond-touching data for some of kdamond user commands. It uses ->after_aggregation() kdamond callback to safely access the data in the case. It had to use the aggregation interval callback because that was the only callback that users can access complete monitoring results. Since patch series "mm/damon: provide pseudo-moving sum based access rate", which starts from commit 78fbfb155d20 ("mm/damon/core: define and use a dedicated function for region access rate update"), DAMON provides good-to-use quality moitoring results for every sampling interval. It aims to help users who need to quickly retrieve the monitoring results. When the aggregation interval is set too long and therefore waiting for the aggregation interval can degrade user experience, or when the access pattern is expected to be significantly changed[1] could be such cases. However, because DAMON sysfs interface is still handling the commands per aggregation interval, the end user cannot get the benefit. Update DAMON sysfs interface to handle kdamond commands for every sampling interval if applicable. Specifically, all kdamond data accessing commands except 'commit' command are applicable. [1] https://lore.kernel.org/r/20240129121316.GA9706@cuiyangpei Link: https://lkml.kernel.org/r/20240206025158.203097-1-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: xiongping1 <xiongping1@xiaomi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm: hugetlb: improve the handling of hugetlb allocation failure for freed or ↵Baolin Wang
in-use hugetlb alloc_and_dissolve_hugetlb_folio() preallocates a new hugetlb page before it takes hugetlb_lock. In 3 out of 4 cases the page is not really used and therefore the newly allocated page is just freed right away. This is wasteful and it might cause pre-mature failures in those cases. Address that by moving the allocation down to the only case (hugetlb page is really in the free pages pool). We need to drop hugetlb_lock to do so and therefore need to recheck the page state after regaining it. The patch is more of a cleanup than an actual fix to an existing problem. There are no known reports about pre-mature failures. Link: https://lkml.kernel.org/r/62890fd60b1ecd5bf1cdc476c973f60fe37aa0cb.1707181934.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Cc: David Hildenbrand <david@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/migrate: preserve exact soft-dirty statePaul Gofman
pte_mkdirty() sets both _PAGE_DIRTY and _PAGE_SOFT_DIRTY bits. The _PAGE_SOFT_DIRTY can get set even if it wasn't set on original page before migration. This makes non-soft-dirty pages soft-dirty just because of migration/compaction. Clear the _PAGE_SOFT_DIRTY flag if it wasn't set on original page. By definition of soft-dirty feature, there can be spurious soft-dirty pages because of kernel's internal activity such as VMA merging or migration/compaction. This patch is eliminating the spurious soft-dirty pages because of migration/compaction. Link: https://lkml.kernel.org/r/20240206084838.34560-1-usama.anjum@collabora.com Signed-off-by: Paul Gofman <pgofman@codeweavers.com> Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Acked-by: Andrei Vagin <avagin@gmail.com> Cc: Michał Mirosław <emmir@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/zswap: zswap entry doesn't need refcount anymoreChengming Zhou
Since we don't need to leave zswap entry on the zswap tree anymore, we should remove it from tree once we find it from the tree. Then after using it, we can directly free it, no concurrent path can find it from tree. Only the shrinker can see it from lru list, which will also double check under tree lock, so no race problem. So we don't need refcount in zswap entry anymore and don't need to take the spinlock for the second time to invalidate it. The side effect is that zswap_entry_free() maybe not happen in tree spinlock, but it's ok since nothing need to be protected by the lock. Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-6-99d4084260a0@bytedance.com Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/zswap: only support zswap_exclusive_loads_enabledChengming Zhou
The !zswap_exclusive_loads_enabled mode will leave compressed copy in the zswap tree and lru list after the folio swapin. There are some disadvantages in this mode: 1. It's a waste of memory since there are two copies of data, one is folio, the other one is compressed data in zswap. And it's unlikely the compressed data is useful in the near future. 2. If that folio is dirtied, the compressed data must be not useful, but we don't know and don't invalidate the trashy memory in zswap. 3. It's not reclaimable from zswap shrinker since zswap_writeback_entry() will always return -EEXIST and terminate the shrinking process. On the other hand, the only downside of zswap_exclusive_loads_enabled is a little more cpu usage/latency when compression, and the same if the folio is removed from swapcache or dirtied. More explanation by Johannes on why we should consider exclusive load as the default for zswap: Caching "swapout work" is helpful when the system is thrashing. Then recently swapped in pages might get swapped out again very soon. It certainly makes sense with conventional swap, because keeping a clean copy on the disk saves IO work and doesn't cost any additional memory. But with zswap, it's different. It saves some compression work on a thrashing page. But the act of keeping compressed memory contributes to a higher rate of thrashing. And that can cause IO in other places like zswap writeback and file memory. And the A/B test results of the kernel build in tmpfs with limited memory can support this theory: !exclusive exclusive real 63.80 63.01 user 1063.83 1061.32 sys 290.31 266.15 workingset_refault_anon 2383084.40 1976397.40 workingset_refault_file 44134.00 45689.40 workingset_activate_anon 837878.00 728441.20 workingset_activate_file 4710.00 4085.20 workingset_restore_anon 732622.60 639428.40 workingset_restore_file 1007.00 926.80 workingset_nodereclaim 0.00 0.00 pgscan 14343003.40 12409570.20 pgscan_kswapd 0.00 0.00 pgscan_direct 14343003.40 12409570.20 pgscan_khugepaged 0.00 0.00 Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-5-99d4084260a0@bytedance.com Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Acked-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/zswap: remove duplicate_entry debug valueChengming Zhou
cat /sys/kernel/debug/zswap/duplicate_entry 2086447 When testing, the duplicate_entry value is very high, but no warning message in the kernel log. From the comment of duplicate_entry "Duplicate store was encountered (rare)", it seems something goes wrong. Actually it's incremented in the beginning of zswap_store(), which found its zswap entry has already on the tree. And this is a normal case, since the folio could leave zswap entry on the tree after swapin, later it's dirtied and swapout/zswap_store again, found its original zswap entry. So duplicate_entry should be only incremented in the real bug case, which already have "WARN_ON(1)", it looks redundant to count bug case, so this patch just remove it. Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-4-99d4084260a0@bytedance.com Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/zswap: stop lru list shrinking when encounter warm regionChengming Zhou
When the shrinker encounter an existing folio in swap cache, it means we are shrinking into the warmer region. We should terminate shrinking if we're in the dynamic shrinker context. This patch add LRU_STOP to support this, to avoid overshrinking. Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-3-99d4084260a0@bytedance.com Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Nhat Pham <nphamcs@gmail.com> Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/zswap: invalidate zswap entry when swap entry freeChengming Zhou
During testing I found there are some times the zswap_writeback_entry() return -ENOMEM, which is not we expected: bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}' @[-12]: 1563 @[0]: 277221 The reason is that __read_swap_cache_async() return NULL because swapcache_prepare() failed. The reason is that we won't invalidate zswap entry when swap entry freed to the per-cpu pool, these zswap entries are still on the zswap tree and lru list. This patch moves the invalidation ahead to when swap entry freed to the per-cpu pool, since there is no any benefit to leave trashy zswap entry on the tree and lru list. With this patch: bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}' @[0]: 259744 Note: large folio can't have zswap entry for now, so don't bother to add zswap entry invalidation in the large folio swap free path. Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-2-99d4084260a0@bytedance.com Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/zswap: add more comments in shrink_memcg_cb()Chengming Zhou
Patch series "mm/zswap: optimize zswap lru list", v2. This series is motivated when observe the zswap lru list shrinking, noted there are some unexpected cases in zswap_writeback_entry(). bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}' There are some -ENOMEM because when the swap entry is freed to per-cpu swap pool, it doesn't invalidate/drop zswap entry. Then the shrinker encounter these trashy zswap entries, it can't be reclaimed and return -ENOMEM. So move the invalidation ahead to when swap entry freed to the per-cpu swap pool, since there is no any benefit to leave trashy zswap entries on the zswap tree and lru list. Another case is -EEXIST, which is seen more in the case of !zswap_exclusive_loads_enabled, in which case the swapin folio will leave compressed copy on the tree and lru list. And it can't be reclaimed until the folio is removed from swapcache. Changing to zswap_exclusive_loads_enabled mode will invalidate when folio swapin, which has its own drawback if that folio is still clean in swapcache and swapout again, we need to compress it again. Please see the commit for details on why we choose exclusive load as the default for zswap. Another optimization for -EEXIST is that we add LRU_STOP to support terminating the shrinking process to avoid evicting warmer region. Testing using kernel build in tmpfs, one 50GB swapfile and zswap shrinker_enabled, with memory.max set to 2GB. mm-unstable zswap-optimize real 63.90s 63.25s user 1064.05s 1063.40s sys 292.32s 270.94s The main optimization is in sys cpu, about 7% improvement. This patch (of 6): Add more comments in shrink_memcg_cb() to describe the deref dance which is implemented to fix race problem between lru writeback and swapoff, and the reason why we rotate the entry at the beginning. Also fix the stale comments in zswap_writeback_entry(), and add more comments to state that we only deref the tree after we get the swapcache reference. Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-0-99d4084260a0@bytedance.com Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-1-99d4084260a0@bytedance.com Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Suggested-by: Yosry Ahmed <yosryahmed@google.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Yosry Ahmed <yosryahmed@google.com> Reviewed-by: Nhat Pham <nphamcs@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>