summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/x86.h
AgeCommit message (Collapse)Author
2020-03-31KVM: x86: Copy kvm_x86_ops by value to eliminate layer of indirectionSean Christopherson
Replace the kvm_x86_ops pointer in common x86 with an instance of the struct to save one pointer dereference when invoking functions. Copy the struct by value to set the ops during kvm_init(). Arbitrarily use kvm_x86_ops.hardware_enable to track whether or not the ops have been initialized, i.e. a vendor KVM module has been loaded. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20200321202603.19355-7-sean.j.christopherson@intel.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16KVM: CPUID: add support for supervisor statesPaolo Bonzini
Current CPUID 0xd enumeration code does not support supervisor states, because KVM only supports setting IA32_XSS to zero. Change it instead to use a new variable supported_xss, to be set from the hardware_setup callback which is in charge of CPU capabilities. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16KVM: x86: Make kvm_mpx_supported() an inline functionSean Christopherson
Expose kvm_mpx_supported() as a static inline so that it can be inlined in kvm_intel.ko. No functional change intended. Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16KVM: x86: Calculate the supported xcr0 mask at load timeSean Christopherson
Add a new global variable, supported_xcr0, to track which xcr0 bits can be exposed to the guest instead of calculating the mask on every call. The supported bits are constant for a given instance of KVM. This paves the way toward eliminating the ->mpx_supported() call in kvm_mpx_supported(), e.g. eliminates multiple retpolines in VMX's nested VM-Enter path, and eventually toward eliminating ->mpx_supported() altogether. No functional change intended. Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16KVM: x86: Move kvm_emulate.h into KVM's private directorySean Christopherson
Now that the emulation context is dynamically allocated and not embedded in struct kvm_vcpu, move its header, kvm_emulate.h, out of the public asm directory and into KVM's private x86 directory. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16KVM: x86: Move emulation-only helpers to emulate.cSean Christopherson
Move ctxt_virt_addr_bits() and emul_is_noncanonical_address() from x86.h to emulate.c. This eliminates all references to struct x86_emulate_ctxt from x86.h, and sets the stage for a future patch to stop including kvm_emulate.h in asm/kvm_host.h. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-02-05KVM: x86: Take a u64 when checking for a valid dr7 valueSean Christopherson
Take a u64 instead of an unsigned long in kvm_dr7_valid() to fix a build warning on i386 due to right-shifting a 32-bit value by 32 when checking for bits being set in dr7[63:32]. Alternatively, the warning could be resolved by rewriting the check to use an i386-friendly method, but taking a u64 fixes another oddity on 32-bit KVM. Beause KVM implements natural width VMCS fields as u64s to avoid layout issues between 32-bit and 64-bit, a devious guest can stuff vmcs12->guest_dr7 with a 64-bit value even when both the guest and host are 32-bit kernels. KVM eventually drops vmcs12->guest_dr7[63:32] when propagating vmcs12->guest_dr7 to vmcs02, but ideally KVM would not rely on that behavior for correctness. Cc: Jim Mattson <jmattson@google.com> Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com> Fixes: ecb697d10f70 ("KVM: nVMX: Check GUEST_DR7 on vmentry of nested guests") Reported-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: nVMX: Check GUEST_DR7 on vmentry of nested guestsKrish Sadhukhan
According to section "Checks on Guest Control Registers, Debug Registers, and and MSRs" in Intel SDM vol 3C, the following checks are performed on vmentry of nested guests: If the "load debug controls" VM-entry control is 1, bits 63:32 in the DR7 field must be 0. In KVM, GUEST_DR7 is set prior to the vmcs02 VM-entry by kvm_set_dr() and the latter synthesizes a #GP if any bit in the high dword in the former is set. Hence this field needs to be checked in software. Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-27KVM: x86: Perform non-canonical checks in 32-bit KVMSean Christopherson
Remove the CONFIG_X86_64 condition from the low level non-canonical helpers to effectively enable non-canonical checks on 32-bit KVM. Non-canonical checks are performed by hardware if the CPU *supports* 64-bit mode, whether or not the CPU is actually in 64-bit mode is irrelevant. For the most part, skipping non-canonical checks on 32-bit KVM is ok-ish because 32-bit KVM always (hopefully) drops bits 63:32 of whatever value it's checking before propagating it to hardware, and architecturally, the expected behavior for the guest is a bit of a grey area since the vCPU itself doesn't support 64-bit mode. I.e. a 32-bit KVM guest can observe the missed checks in several paths, e.g. INVVPID and VM-Enter, but it's debatable whether or not the missed checks constitute a bug because technically the vCPU doesn't support 64-bit mode. The primary motivation for enabling the non-canonical checks is defense in depth. As mentioned above, a guest can trigger a missed check via INVVPID or VM-Enter. INVVPID is straightforward as it takes a 64-bit virtual address as part of its 128-bit INVVPID descriptor and fails if the address is non-canonical, even if INVVPID is executed in 32-bit PM. Nested VM-Enter is a bit more convoluted as it requires the guest to write natural width VMCS fields via memory accesses and then VMPTRLD the VMCS, but it's still possible. In both cases, KVM is saved from a true bug only because its flows that propagate values to hardware (correctly) take "unsigned long" parameters and so drop bits 63:32 of the bad value. Explicitly performing the non-canonical checks makes it less likely that a bad value will be propagated to hardware, e.g. in the INVVPID case, if __invvpid() didn't implicitly drop bits 63:32 then KVM would BUG() on the resulting unexpected INVVPID failure due to hardware rejecting the non-canonical address. The only downside to enabling the non-canonical checks is that it adds a relatively small amount of overhead, but the affected flows are not hot paths, i.e. the overhead is negligible. Note, KVM technically could gate the non-canonical checks on 32-bit KVM with static_cpu_has(X86_FEATURE_LM), but on bare metal that's an even bigger waste of code for everyone except the 0.00000000000001% of the population running on Yonah, and nested 32-bit on 64-bit already fudges things with respect to 64-bit CPU behavior. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> [Also do so in nested_vmx_check_host_state as reported by Krish. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24KVM: x86: avoid incorrect writes to host MSR_IA32_SPEC_CTRLPaolo Bonzini
If the guest is configured to have SPEC_CTRL but the host does not (which is a nonsensical configuration but these are not explicitly forbidden) then a host-initiated MSR write can write vmx->spec_ctrl (respectively svm->spec_ctrl) and trigger a #GP when KVM tries to restore the host value of the MSR. Add a more comprehensive check for valid bits of SPEC_CTRL, covering host CPUID flags and, since we are at it and it is more correct that way, guest CPUID flags too. For AMD, remove the unnecessary is_guest_mode check around setting the MSR interception bitmap, so that the code looks the same as for Intel. Cc: Jim Mattson <jmattson@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21KVM: x86: Move bit() helper to cpuid.hSean Christopherson
Move bit() to cpuid.h in preparation for incorporating the reverse_cpuid array in bit() build-time assertions. Opportunistically use the BIT() macro instead of open-coding the shift. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-21KVM: VMX: FIXED+PHYSICAL mode single target IPI fastpathWanpeng Li
ICR and TSCDEADLINE MSRs write cause the main MSRs write vmexits in our product observation, multicast IPIs are not as common as unicast IPI like RESCHEDULE_VECTOR and CALL_FUNCTION_SINGLE_VECTOR etc. This patch introduce a mechanism to handle certain performance-critical WRMSRs in a very early stage of KVM VMExit handler. This mechanism is specifically used for accelerating writes to x2APIC ICR that attempt to send a virtual IPI with physical destination-mode, fixed delivery-mode and single target. Which was found as one of the main causes of VMExits for Linux workloads. The reason this mechanism significantly reduce the latency of such virtual IPIs is by sending the physical IPI to the target vCPU in a very early stage of KVM VMExit handler, before host interrupts are enabled and before expensive operations such as reacquiring KVM’s SRCU lock. Latency is reduced even more when KVM is able to use APICv posted-interrupt mechanism (which allows to deliver the virtual IPI directly to target vCPU without the need to kick it to host). Testing on Xeon Skylake server: The virtual IPI latency from sender send to receiver receive reduces more than 200+ cpu cycles. Reviewed-by: Liran Alon <liran.alon@oracle.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Liran Alon <liran.alon@oracle.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-08KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVMSean Christopherson
Convert a plethora of parameters and variables in the MMU and page fault flows from type gva_t to gpa_t to properly handle TDP on 32-bit KVM. Thanks to PSE and PAE paging, 32-bit kernels can access 64-bit physical addresses. When TDP is enabled, the fault address is a guest physical address and thus can be a 64-bit value, even when both KVM and its guest are using 32-bit virtual addressing, e.g. VMX's VMCS.GUEST_PHYSICAL is a 64-bit field, not a natural width field. Using a gva_t for the fault address means KVM will incorrectly drop the upper 32-bits of the GPA. Ditto for gva_to_gpa() when it is used to translate L2 GPAs to L1 GPAs. Opportunistically rename variables and parameters to better reflect the dual address modes, e.g. use "cr2_or_gpa" for fault addresses and plain "addr" instead of "vaddr" when the address may be either a GVA or an L2 GPA. Similarly, use "gpa" in the nonpaging_page_fault() flows to avoid a confusing "gpa_t gva" declaration; this also sets the stage for a future patch to combing nonpaging_page_fault() and tdp_page_fault() with minimal churn. Sprinkle in a few comments to document flows where an address is known to be a GVA and thus can be safely truncated to a 32-bit value. Add WARNs in kvm_handle_page_fault() and FNAME(gva_to_gpa_nested)() to help document such cases and detect bugs. Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-15KVM: x86: Prevent set vCPU into INIT/SIPI_RECEIVED state when INIT are latchedLiran Alon
Commit 4b9852f4f389 ("KVM: x86: Fix INIT signal handling in various CPU states") fixed KVM to also latch pending LAPIC INIT event when vCPU is in VMX operation. However, current API of KVM_SET_MP_STATE allows userspace to put vCPU into KVM_MP_STATE_SIPI_RECEIVED or KVM_MP_STATE_INIT_RECEIVED even when vCPU is in VMX operation. Fix this by introducing a util method to check if vCPU state latch INIT signals and use it in KVM_SET_MP_STATE handler. Fixes: 4b9852f4f389 ("KVM: x86: Fix INIT signal handling in various CPU states") Reported-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com> Signed-off-by: Liran Alon <liran.alon@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-10-22KVM: x86: Move IA32_XSS-swapping on VM-entry/VM-exit to common x86 codeAaron Lewis
Hoist the vendor-specific code related to loading the hardware IA32_XSS MSR with guest/host values on VM-entry/VM-exit to common x86 code. Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Aaron Lewis <aaronlewis@google.com> Change-Id: Ic6e3430833955b98eb9b79ae6715cf2a3fdd6d82 Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-10-22KVM: x86: Add WARNs to detect out-of-bounds register indicesSean Christopherson
Add WARN_ON_ONCE() checks in kvm_register_{read,write}() to detect reg values that would cause KVM to overflow vcpu->arch.regs. Change the reg param to an 'int' to make it clear that the reg index is unverified. Regarding the overhead of WARN_ON_ONCE(), now that all fixed GPR reads and writes use dedicated accessors, e.g. kvm_rax_read(), the overhead is limited to flows where the reg index is generated at runtime. And there is at least one historical bug where KVM has generated an out-of- bounds access to arch.regs (see commit b68f3cc7d9789, "KVM: x86: Always use 32-bit SMRAM save state for 32-bit kernels"). Adding the WARN_ON_ONCE() protection paves the way for additional cleanup related to kvm_reg and kvm_reg_ex. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24KVM: x86: Move triple fault request into RM int injectionSean Christopherson
Request triple fault in kvm_inject_realmode_interrupt() instead of returning EMULATE_FAIL and deferring to the caller. All existing callers request triple fault and it's highly unlikely Real Mode is going to acquire new features. While this consolidates a small amount of code, the real goal is to remove the last reference to EMULATE_FAIL. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-08-22KVM: x86: Rename access permissions cache member in struct kvm_vcpu_archSean Christopherson
Rename "access" to "mmio_access" to match the other MMIO cache members and to make it more obvious that it's tracking the access permissions for the MMIO cache. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-07-20KVM: LAPIC: Inject timer interrupt via posted interruptWanpeng Li
Dedicated instances are currently disturbed by unnecessary jitter due to the emulated lapic timers firing on the same pCPUs where the vCPUs reside. There is no hardware virtual timer on Intel for guest like ARM, so both programming timer in guest and the emulated timer fires incur vmexits. This patch tries to avoid vmexit when the emulated timer fires, at least in dedicated instance scenario when nohz_full is enabled. In that case, the emulated timers can be offload to the nearest busy housekeeping cpus since APICv has been found for several years in server processors. The guest timer interrupt can then be injected via posted interrupts, which are delivered by the housekeeping cpu once the emulated timer fires. The host should tuned so that vCPUs are placed on isolated physical processors, and with several pCPUs surplus for busy housekeeping. If disabled mwait/hlt/pause vmexits keep the vCPUs in non-root mode, ~3% redis performance benefit can be observed on Skylake server, and the number of external interrupt vmexits drops substantially. Without patch VM-EXIT Samples Samples% Time% Min Time Max Time Avg time EXTERNAL_INTERRUPT 42916 49.43% 39.30% 0.47us 106.09us 0.71us ( +- 1.09% ) While with patch: VM-EXIT Samples Samples% Time% Min Time Max Time Avg time EXTERNAL_INTERRUPT 6871 9.29% 2.96% 0.44us 57.88us 0.72us ( +- 4.02% ) Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-06-18KVM: x86: introduce is_pae_pagingPaolo Bonzini
Checking for 32-bit PAE is quite common around code that fiddles with the PDPTRs. Add a function to compress all checks into a single invocation. Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-06-04KVM: X86: Provide a capability to disable cstate msr read interceptsWanpeng Li
Allow guest reads CORE cstate when exposing host CPU power management capabilities to the guest. PKG cstate is restricted to avoid a guest to get the whole package information in multi-tenant scenario. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Liran Alon <liran.alon@oracle.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-05-17Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM updates from Paolo Bonzini: "ARM: - support for SVE and Pointer Authentication in guests - PMU improvements POWER: - support for direct access to the POWER9 XIVE interrupt controller - memory and performance optimizations x86: - support for accessing memory not backed by struct page - fixes and refactoring Generic: - dirty page tracking improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits) kvm: fix compilation on aarch64 Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU" kvm: x86: Fix L1TF mitigation for shadow MMU KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing" KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete tests: kvm: Add tests for KVM_SET_NESTED_STATE KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID tests: kvm: Add tests to .gitignore KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one KVM: Fix the bitmap range to copy during clear dirty KVM: arm64: Fix ptrauth ID register masking logic KVM: x86: use direct accessors for RIP and RSP KVM: VMX: Use accessors for GPRs outside of dedicated caching logic KVM: x86: Omit caching logic for always-available GPRs kvm, x86: Properly check whether a pfn is an MMIO or not ...
2019-04-18KVM: lapic: Track lapic timer advance per vCPUSean Christopherson
Automatically adjusting the globally-shared timer advancement could corrupt the timer, e.g. if multiple vCPUs are concurrently adjusting the advancement value. That could be partially fixed by using a local variable for the arithmetic, but it would still be susceptible to a race when setting timer_advance_adjust_done. And because virtual_tsc_khz and tsc_scaling_ratio are per-vCPU, the correct calibration for a given vCPU may not apply to all vCPUs. Furthermore, lapic_timer_advance_ns is marked __read_mostly, which is effectively violated when finding a stable advancement takes an extended amount of timer. Opportunistically change the definition of lapic_timer_advance_ns to a u32 so that it matches the style of struct kvm_timer. Explicitly pass the param to kvm_create_lapic() so that it doesn't have to be exposed to lapic.c, thus reducing the probability of unintentionally using the global value instead of the per-vCPU value. Cc: Liran Alon <liran.alon@oracle.com> Cc: Wanpeng Li <wanpengli@tencent.com> Reviewed-by: Liran Alon <liran.alon@oracle.com> Cc: stable@vger.kernel.org Fixes: 3b8a5df6c4dc6 ("KVM: LAPIC: Tune lapic_timer_advance_ns automatically") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16KVM: x86: optimize check for valid PAT valuePaolo Bonzini
This check will soon be done on every nested vmentry and vmexit, "parallelize" it using bitwise operations. Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-04-16x86/kvm: move kvm_load/put_guest_xcr0 into atomic contextWANG Chao
guest xcr0 could leak into host when MCE happens in guest mode. Because do_machine_check() could schedule out at a few places. For example: kvm_load_guest_xcr0 ... kvm_x86_ops->run(vcpu) { vmx_vcpu_run vmx_complete_atomic_exit kvm_machine_check do_machine_check do_memory_failure memory_failure lock_page In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule out, host cpu has guest xcr0 loaded (0xff). In __switch_to { switch_fpu_finish copy_kernel_to_fpregs XRSTORS If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in and tries to reinitialize fpu by restoring init fpu state. Same story as last #GP, except we get DOUBLE FAULT this time. Cc: stable@vger.kernel.org Signed-off-by: WANG Chao <chao.wang@ucloud.cn> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20KVM: Explicitly define the "memslot update in-progress" bitSean Christopherson
KVM uses bit 0 of the memslots generation as an "update in-progress" flag, which is used by x86 to prevent caching MMIO access while the memslots are changing. Although the intended behavior is flag-like, e.g. MMIO sptes intentionally drop the in-progress bit so as to avoid caching data from in-flux memslots, the implementation oftentimes treats the bit as part of the generation number itself, e.g. incrementing the generation increments twice, once to set the flag and once to clear it. Prior to commit 4bd518f1598d ("KVM: use separate generations for each address space"), incorporating the "update in-progress" bit into the generation number largely made sense, e.g. "real" generations are even, "bogus" generations are odd, most code doesn't need to be aware of the bit, etc... Now that unique memslots generation numbers are assigned to each address space, stealthing the in-progress status into the generation number results in a wide variety of subtle code, e.g. kvm_create_vm() jumps over bit 0 when initializing the memslots generation without any hint as to why. Explicitly define the flag and convert as much code as possible (which isn't much) to actually treat it like a flag. This paves the way for eventually using a different bit for "update in-progress" so that it can be a flag in truth instead of a awkward extension to the generation number. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-20KVM: x86/mmu: Do not cache MMIO accesses while memslots are in fluxSean Christopherson
When installing new memslots, KVM sets bit 0 of the generation number to indicate that an update is in-progress. Until the update is complete, there are no guarantees as to whether a vCPU will see the old or the new memslots. Explicity prevent caching MMIO accesses so as to avoid using an access cached from the old memslots after the new memslots have been installed. Note that it is unclear whether or not disabling caching during the update window is strictly necessary as there is no definitive documentation as to what ordering guarantees KVM provides with respect to updating memslots. That being said, the MMIO spte code does not allow reusing sptes created while an update is in-progress, and the associated documentation explicitly states: We do not want to use an MMIO sptes created with an odd generation number, ... If KVM is unlucky and creates an MMIO spte while the low bit is 1, the next access to the spte will always be a cache miss. At the very least, disabling the per-vCPU MMIO cache during updates will make its behavior consistent with the MMIO spte behavior and documentation. Fixes: 56f17dd3fbc4 ("kvm: x86: fix stale mmio cache bug") Cc: <stable@vger.kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-17kvm: x86: Defer setting of CR2 until #PF deliveryJim Mattson
When exception payloads are enabled by userspace (which is not yet possible) and a #PF is raised in L2, defer the setting of CR2 until the #PF is delivered. This allows the L1 hypervisor to intercept the fault before CR2 is modified. For backwards compatibility, when exception payloads are not enabled by userspace, kvm_multiple_exception modifies CR2 when the #PF exception is raised. Reported-by: Jim Mattson <jmattson@google.com> Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-30KVM: x86: Unexport x86_emulate_instruction()Sean Christopherson
Allowing x86_emulate_instruction() to be called directly has led to subtle bugs being introduced, e.g. not setting EMULTYPE_NO_REEXECUTE in the emulation type. While most of the blame lies on re-execute being opt-out, exporting x86_emulate_instruction() also exposes its cr2 parameter, which may have contributed to commit d391f1207067 ("x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested") using x86_emulate_instruction() instead of emulate_instruction() because "hey, I have a cr2!", which in turn introduced its EMULTYPE_NO_REEXECUTE bug. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-06-22kvm: vmx: Nested VM-entry prereqs for event inj.Marc Orr
This patch extends the checks done prior to a nested VM entry. Specifically, it extends the check_vmentry_prereqs function with checks for fields relevant to the VM-entry event injection information, as described in the Intel SDM, volume 3. This patch is motivated by a syzkaller bug, where a bad VM-entry interruption information field is generated in the VMCS02, which causes the nested VM launch to fail. Then, KVM fails to resume L1. While KVM should be improved to correctly resume L1 execution after a failed nested launch, this change is justified because the existing code to resume L1 is flaky/ad-hoc and the test coverage for resuming L1 is sparse. Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Marc Orr <marcorr@google.com> [Removed comment whose parts were describing previous revisions and the rest was obvious from function/variable naming. - Radim] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-06-12KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_systemPaolo Bonzini
Int the next patch the emulator's .read_std and .write_std callbacks will grow another argument, which is not needed in kvm_read_guest_virt and kvm_write_guest_virt_system's callers. Since we have to make separate functions, let's give the currently existing names a nicer interface, too. Fixes: 129a72a0d3c8 ("KVM: x86: Introduce segmented_write_std", 2017-01-12) Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-04-27x86/headers/UAPI: Move DISABLE_EXITS KVM capability bits to the UAPIKarimAllah Ahmed
Move DISABLE_EXITS KVM capability bits to the UAPI just like the rest of capabilities. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: x86@kernel.org Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-04-04KVM: X86: Introduce handle_ud()Wanpeng Li
Introduce handle_ud() to handle invalid opcode, this function will be used by later patches. Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Reviewed-by: Liran Alon <liran.alon@oracle.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim KrÄmář <rkrcmar@redhat.com> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Liran Alon <liran.alon@oracle.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-28KVM: x86: Rename interrupt.pending to interrupt.injectedLiran Alon
For exceptions & NMIs events, KVM code use the following coding convention: *) "pending" represents an event that should be injected to guest at some point but it's side-effects have not yet occurred. *) "injected" represents an event that it's side-effects have already occurred. However, interrupts don't conform to this coding convention. All current code flows mark interrupt.pending when it's side-effects have already taken place (For example, bit moved from LAPIC IRR to ISR). Therefore, it makes sense to just rename interrupt.pending to interrupt.injected. This change follows logic of previous commit 664f8e26b00c ("KVM: X86: Fix loss of exception which has not yet been injected") which changed exception to follow this coding convention as well. It is important to note that in case !lapic_in_kernel(vcpu), interrupt.pending usage was and still incorrect. In this case, interrrupt.pending can only be set using one of the following ioctls: KVM_INTERRUPT, KVM_SET_VCPU_EVENTS and KVM_SET_SREGS. Looking at how QEMU uses these ioctls, one can see that QEMU uses them either to re-set an "interrupt.pending" state it has received from KVM (via KVM_GET_VCPU_EVENTS interrupt.pending or via KVM_GET_SREGS interrupt_bitmap) or by dispatching a new interrupt from QEMU's emulated LAPIC which reset bit in IRR and set bit in ISR before sending ioctl to KVM. So it seems that indeed "interrupt.pending" in this case is also suppose to represent "interrupt.injected". However, kvm_cpu_has_interrupt() & kvm_cpu_has_injectable_intr() is misusing (now named) interrupt.injected in order to return if there is a pending interrupt. This leads to nVMX/nSVM not be able to distinguish if it should exit from L2 to L1 on EXTERNAL_INTERRUPT on pending interrupt or should re-inject an injected interrupt. Therefore, add a FIXME at these functions for handling this issue. This patch introduce no semantics change. Signed-off-by: Liran Alon <liran.alon@oracle.com> Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28KVM: SVM: Implement pause loop exit logic in SVMBabu Moger
Bring the PLE(pause loop exit) logic to AMD svm driver. While testing, we found this helping in situations where numerous pauses are generated. Without these patches we could see continuos VMEXITS due to pause interceptions. Tested it on AMD EPYC server with boot parameter idle=poll on a VM with 32 vcpus to simulate extensive pause behaviour. Here are VMEXITS in 10 seconds interval. Pauses 810199 504 Total 882184 325415 Signed-off-by: Babu Moger <babu.moger@amd.com> [Prevented the window from dropping below the initial value. - Radim] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28KVM: VMX: Bring the common code to header fileBabu Moger
This patch brings some of the code from vmx to x86.h header file. Now, we can share this code between vmx and svm. Modified couple functions to make it common. Signed-off-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-28KVM: x86: Fix perf timer mode IP reportingAndi Kleen
KVM and perf have a special backdoor mechanism to report the IP for interrupts re-executed after vm exit. This works for the NMIs that perf normally uses. However when perf is in timer mode it doesn't work because the timer interrupt doesn't get this special treatment. This is common when KVM is running nested in another hypervisor which may not implement the PMU, so only timer mode is available. Call the functions to set up the backdoor IP also for non NMI interrupts. I renamed the functions to set up the backdoor IP reporting to be more appropiate for their new use. The SVM change is only compile tested. v2: Moved the functions inline. For the normal interrupt case the before/after functions are now called from x86.c, not arch specific code. For the NMI case we still need to call it in the architecture specific code, because it's already needed in the low level *_run functions. Signed-off-by: Andi Kleen <ak@linux.intel.com> [Removed unnecessary calls from arch handle_external_intr. - Radim] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2018-03-16KVM: X86: Provide a capability to disable PAUSE interceptsWanpeng Li
Allow to disable pause loop exit/pause filtering on a per VM basis. If some VMs have dedicated host CPUs, they won't be negatively affected due to needlessly intercepted PAUSE instructions. Thanks to Jan H. Schönherr's initial patch. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Jan H. Schönherr <jschoenh@amazon.de> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16KVM: X86: Provide a capability to disable HLT interceptsWanpeng Li
If host CPUs are dedicated to a VM, we can avoid VM exits on HLT. This patch adds the per-VM capability to disable them. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Jan H. Schönherr <jschoenh@amazon.de> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16KVM: X86: Provide a capability to disable MWAIT interceptsWanpeng Li
Allowing a guest to execute MWAIT without interception enables a guest to put a (physical) CPU into a power saving state, where it takes longer to return from than what may be desired by the host. Don't give a guest that power over a host by default. (Especially, since nothing prevents a guest from using MWAIT even when it is not advertised via CPUID.) Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Jan H. Schönherr <jschoenh@amazon.de> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-16KVM: x86: Add module parameter for supporting VMware backdoorLiran Alon
Support access to VMware backdoor requires KVM to intercept #GP exceptions from guest which introduce slight performance hit. Therefore, control this support by module parameter. Note that module parameter is exported as it should be consumed by kvm_intel & kvm_amd to determine if they should intercept #GP or not. This commit doesn't change semantics. It is done as a preparation for future commits. Signed-off-by: Liran Alon <liran.alon@oracle.com> Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com> Reviewed-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-01-16KVM: nVMX: Fix bug of injecting L2 exception into L1Liran Alon
kvm_clear_exception_queue() should clear pending exception. This also includes exceptions which were only marked pending but not yet injected. This is because exception.pending is used for both L1 and L2 to determine if an exception should be raised to guest. Note that an exception which is pending but not yet injected will be raised again once the guest will be resumed. Consider the following scenario: 1) L0 KVM with ignore_msrs=false. 2) L1 prepare vmcs12 with the following: a) No intercepts on MSR (MSR_BITMAP exist and is filled with 0). b) No intercept for #GP. c) vmx-preemption-timer is configured. 3) L1 enters into L2. 4) L2 reads an unhandled MSR that exists in MSR_BITMAP (such as 0x1fff). L2 RDMSR could be handled as described below: 1) L2 exits to L0 on RDMSR and calls handle_rdmsr(). 2) handle_rdmsr() calls kvm_inject_gp() which sets KVM_REQ_EVENT, exception.pending=true and exception.injected=false. 3) vcpu_enter_guest() consumes KVM_REQ_EVENT and calls inject_pending_event() which calls vmx_check_nested_events() which sees that exception.pending=true but nested_vmx_check_exception() returns 0 and therefore does nothing at this point. However let's assume it later sees vmx-preemption-timer expired and therefore exits from L2 to L1 by calling nested_vmx_vmexit(). 4) nested_vmx_vmexit() calls prepare_vmcs12() which calls vmcs12_save_pending_event() but it does nothing as exception.injected is false. Also prepare_vmcs12() calls kvm_clear_exception_queue() which does nothing as exception.injected is already false. 5) We now return from vmx_check_nested_events() with 0 while still having exception.pending=true! 6) Therefore inject_pending_event() continues and we inject L2 exception to L1!... This commit will fix above issue by changing step (4) to clear exception.pending in kvm_clear_exception_queue(). Fixes: 664f8e26b00c ("KVM: X86: Fix loss of exception which has not yet been injected") Signed-off-by: Liran Alon <liran.alon@oracle.com> Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com> Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
2017-12-14KVM: x86: simplify kvm_mwait_in_guest()Radim Krčmář
If Intel/AMD implements MWAIT, we expect that it works well and only reject known bugs; no reason to do it the other way around for minor vendors. (Not that they are relevant ATM.) This allows further simplification of kvm_mwait_in_guest(). And use boot_cpu_has() instead of "cpu_has(&boot_cpu_data," while at it. Reviewed-by: Alexander Graf <agraf@suse.de> Acked-by: Borislav Petkov <bp@suse.de> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14KVM: x86: drop bogus MWAIT checkRadim Krčmář
The check was added in some iteration while trying to fix a reported OS X on Core 2 bug, but that bug is elsewhere. The comment is misleading because the guest can call MWAIT with ECX = 0 even if we enforce CPUID5_ECX_INTERRUPT_BREAK; the call would have the exactly the same effect as if the host didn't have the feature. A problem is that a QEMU feature exposes CPUID5_ECX_INTERRUPT_BREAK on CPUs that do not support it. Removing the check changes behavior on last Pentium 4 lines (Presler, Dempsey, and Tulsa, which had VMX and MONITOR while missing INTERRUPT_BREAK) when running a guest OS that uses MWAIT without checking for its presence (QEMU doesn't expose MONITOR). The only known OS that ignores the MONITOR flag is old Mac OS X and we allowed it to bug on Core 2 (MWAIT used to throw #UD and only that OS noticed), so we can save another 20 lines letting it bug on even older CPUs. Alternatively, we can return MWAIT exiting by default and let userspace toggle it. Reviewed-by: Alexander Graf <agraf@suse.de> Acked-by: Borislav Petkov <bp@suse.de> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-14KVM: x86: prevent MWAIT in guest with buggy MONITORRadim Krčmář
The bug prevents MWAIT from waking up after a write to the monitored cache line. KVM might emulate a CPU model that shouldn't have the bug, so the guest would not employ a workaround and possibly miss wakeups. Better to avoid the situation. Reviewed-by: Alexander Graf <agraf@suse.de> Acked-by: Borislav Petkov <bp@suse.de> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-24KVM: X86: Fix loss of exception which has not yet been injectedWanpeng Li
vmx_complete_interrupts() assumes that the exception is always injected, so it can be dropped by kvm_clear_exception_queue(). However, an exception cannot be injected immediately if it is: 1) originally destined to a nested guest; 2) trapped to cause a vmexit; 3) happening right after VMLAUNCH/VMRESUME, i.e. when nested_run_pending is true. This patch applies to exceptions the same algorithm that is used for NMIs, replacing exception.reinject with "exception.injected" (equivalent to nmi_injected). exception.pending now represents an exception that is queued and whose side effects (e.g., update RFLAGS.RF or DR7) have not been applied yet. If exception.pending is true, the exception might result in a nested vmexit instead, too (in which case the side effects must not be applied). exception.injected instead represents an exception that is going to be injected into the guest at the next vmentry. Reported-by: Radim Krčmář <rkrcmar@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-24KVM: MMU: Expose the LA57 feature to VM.Yu Zhang
This patch exposes 5 level page table feature to the VM. At the same time, the canonical virtual address checking is extended to support both 48-bits and 57-bits address width. Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-24KVM: MMU: Add 5 level EPT & Shadow page table support.Yu Zhang
Extends the shadow paging code, so that 5 level shadow page table can be constructed if VM is running in 5 level paging mode. Also extends the ept code, so that 5 level ept table can be constructed if maxphysaddr of VM exceeds 48 bits. Unlike the shadow logic, KVM should still use 4 level ept table for a VM whose physical address width is less than 48 bits, even when the VM is running in 5 level paging mode. Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> [Unconditionally reset the MMU context in kvm_cpuid_update. Changing MAXPHYADDR invalidates the reserved bit bitmasks. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-08-18KVM: x86: fix use of L1 MMIO areas in nested guestsPaolo Bonzini
There is currently some confusion between nested and L1 GPAs. The assignment to "direct" in kvm_mmu_page_fault tries to fix that, but it is not enough. What this patch does is fence off the MMIO cache completely when using shadow nested page tables, since we have neither a GVA nor an L1 GPA to put in the cache. This also allows some simplifications in kvm_mmu_page_fault and FNAME(page_fault). The EPT misconfig likewise does not have an L1 GPA to pass to kvm_io_bus_write, so that must be skipped for guest mode. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> [Changed comment to say "GPAs" instead of "L1's physical addresses", as per David's review. - Radim] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>