summaryrefslogtreecommitdiff
path: root/fs
AgeCommit message (Collapse)Author
2022-10-14xfs: fix an inode lookup race in xchk_get_inodeDarrick J. Wong
In commit d658e, we tried to improve the robustnes of xchk_get_inode in the face of EINVAL returns from iget by calling xfs_imap to see if the inobt itself thinks that the inode is allocated. Unfortunately, that commit didn't consider the possibility that the inode gets allocated after iget but before imap. In this case, the imap call will succeed, but we turn that into a corruption error and tell userspace the inode is corrupt. Avoid this false corruption report by grabbing the AGI header and retrying the iget before calling imap. If the iget succeeds, we can proceed with the usual scrub-by-handle code. Fix all the incorrect comments too, since unreadable/corrupt inodes no longer result in EINVAL returns. Fixes: d658e72b4a09 ("xfs: distinguish between corrupt inode and invalid inum in xfs_scrub_get_inode") Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: manage inode DONTCACHE status at irele timeDarrick J. Wong
Right now, there are statements scattered all over the online fsck codebase about how we can't use XFS_IGET_DONTCACHE because of concerns about scrub's unusual practice of releasing inodes with transactions held. However, iget is the wrong place to handle this -- the DONTCACHE state doesn't matter at all until we try to *release* the inode, and here we get things wrong in multiple ways: First, if we /do/ have a transaction, we must NOT drop the inode, because the inode could have dirty pages, dropping the inode will trigger writeback, and writeback can trigger a nested transaction. Second, if the inode already had an active reference and the DONTCACHE flag set, the icache hit when scrub grabs another ref will not clear DONTCACHE. This is sort of by design, since DONTCACHE is now used to initiate cache drops so that sysadmins can change a file's access mode between pagecache and DAX. Third, if we do actually have the last active reference to the inode, we can set DONTCACHE to avoid polluting the cache. This is the /one/ case where we actually want that flag. Create an xchk_irele helper to encode all that logic and switch the online fsck code to use it. Since this now means that nearly all scrubbers use the same xfs_iget flags, we can wrap them too. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: check inode core when scrubbing metadata filesscrub-check-metadata-inode-records_2022-10-14Darrick J. Wong
Metadata files (e.g. realtime bitmaps and quota files) do not show up in the bulkstat output, which means that scrub-by-handle does not work; they can only be checked through a specific scrub type. Therefore, each scrub type calls xchk_metadata_inode_forks to check the metadata for whatever's in the file. Unfortunately, that function doesn't actually check the inode record itself. Refactor the function a bit to make that happen. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: don't warn about files that are exactly s_maxbytes longDarrick J. Wong
We can handle files that are exactly s_maxbytes bytes long; we just can't handle anything larger than that. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: ensure that single-owner file blocks are not owned by othersscrub-detect-rmapbt-gaps_2022-10-14Darrick J. Wong
For any file fork mapping that can only have a single owner, make sure that there are no other rmap owners for that mapping. This patch requires the more detailed checking provided by xfs_rmap_count_owners so that we can know how many rmap records for a given range of space had a matching owner, how many had a non-matching owner, and how many conflicted with the records that have a matching owner. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: teach scrub to check for sole ownership of metadata objectsDarrick J. Wong
Strengthen online scrub's checking even further by enabling us to check that a range of blocks are owned solely by a given owner. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: convert xfs_ialloc_has_inodes_at_extent to return keyfill scan resultsscrub-detect-inobt-gaps_2022-10-14Darrick J. Wong
Convert the xfs_ialloc_has_inodes_at_extent function to return keyfill scan results because for a given range of inode numbers, we might have no indexed inodes at all; the entire region might be allocated ondisk inodes; or there might be a mix of the two. Unfortunately, sparse inodes adds to the complexity, because each inode record can have holes, which means that we cannot use the generic btree _scan_keyfill function because we must look for holes in individual records to decide the result. On the plus side, online fsck can now detect sub-chunk discrepancies in the inobt. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: directly cross-reference the inode btrees with each otherDarrick J. Wong
Improve the cross-referencing of the two inode btrees by directly checking the free and hole state of each inode with the other btree. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: clean up broken eearly-exit code in the inode btree scrubberDarrick J. Wong
Corrupt inode chunks should cause us to exit early after setting the CORRUPT flag on the scrub state. While we're at it, collapse trivial helpers. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: ensure that all metadata and data blocks are not cow staging extentsscrub-detect-refcount-gaps_2022-10-14Darrick J. Wong
Make sure that all filesystem metadata blocks and file data blocks are not also marked as CoW staging extents. The extra checking added here was inspired by an actual VM host filesystem corruption incident due to bugs in the CoW handling of 4.x kernels. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: check the reference counts of gaps in the refcount btreeDarrick J. Wong
Gaps in the reference count btree are also significant -- for these regions, there must not be any overlapping reverse mappings. We don't currently check this, so make the refcount scrubber more complete. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: mask key comparisons for keyspace fill scansDarrick J. Wong
For keyspace fullness scans, we want to be able to mask off the parts of the key that we don't care about. For most btree types we /do/ want the full keyspace, but for checking that a given space usage also has a full complement of rmapbt records (even if different/multiple owners) we need this masking so that we only track sparseness of rm_startblock, not the whole keyspace (which is extremely sparse). Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: refactor converting btree irec to btree keyDarrick J. Wong
We keep doing these conversions to support btree queries, so refactor this into a helper. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: replace xfs_btree_has_record with a general keyspace scannerDarrick J. Wong
The current implementation of xfs_btree_has_record returns true if it finds /any/ record within the given range. Unfortunately, that's not sufficient for scrub. We want to be able to tell if a range of keyspace for a btree is devoid of records, is totally mapped to records, or is somewhere in between. By forcing this to be a boolean, we were generally missing the "in between" case and returning incorrect results. Fix the API so that we can tell the caller which of those three is the current state. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: check btree keys reflect the child blockbtree-key-enhancements_2022-10-14Darrick J. Wong
When scrub is checking a non-root btree block, it should make sure that the keys in the parent btree block accurately capture the keyspace that the child block stores. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: fix rmap key comparison functionsDarrick J. Wong
Keys for extent interval records in the reverse mapping btree are supposed to be computed as follows: (physical block, owner, fork, is_btree, offset) This provides users the ability to look up a reverse mapping from a file block mapping record -- start with the physical block; then if there are multiple records for the same block, move on to the owner; then the inode fork type; and so on to the file offset. However, the key comparison functions incorrectly remove the fork/bmbt information that's encoded in the on-disk offset. This means that lookup comparisons are only done with: (physical block, owner, offset) This means that queries can return incorrect results. On consistent filesystems this isn't an issue because bmbt blocks and blocks mapped to an attr fork cannot be shared, but this prevents us from detecting incorrect fork and bmbt flag bits in the rmap btree. A previous version of this patch forgot to keep the (un)written state flag masked during the comparison and caused a major regression in 5.9.x since unwritten extent conversion can update an rmap record without requiring key updates. Note that blocks cannot go directly from data fork to attr fork without being deallocated and reallocated, nor can they be added to or removed from a bmbt without a free/alloc cycle, so this should not cause any regressions. Found by fuzzing keys[1].attrfork = ones on xfs/371. Fixes: 4b8ed67794fe ("xfs: add rmap btree operations") Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: make sure aglen never goes negative in xfs_refcount_adjust_extentsrefcount-cow-domain_2022-10-14Darrick J. Wong
Prior to calling xfs_refcount_adjust_extents, we trimmed agbno/aglen such that the end of the range would not be in the middle of the record. If this is no longer the case, something is seriously wrong with the btree. Bail out with a corruption error. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: check deferred refcount op continuation parametersDarrick J. Wong
If we're in the middle of a deferred refcount operation and decide to roll the transaction to avoid overflowing the transaction space, we need to check the new agbno/aglen parameters that we're about to record in the new intent. Specifically, we need to check that the new extent is completely within the filesystem, and that continuation does not put us into a different AG. This should never happen, but if the keys of a node block are wrong, the refcount btree lookups performed during the adjust operation (and resumptions therein) can point us to the wrong record blocks. The refcount domain should prevent most of this, but this is a convenient place to double-check that everything is still ok. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: rename XFS_REFC_COW_START to _COWFLAGDarrick J. Wong
We've been (ab)using XFS_REFC_COW_START as both an integer quantity and a bit flag, even though it's *only* a bit flag. Rename the variable to reflect its nature and update the cast target since we're not supposed to be comparing it to xfs_agblock_t now. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: track cow/shared record domains explicitly in xfs_refcount_irecDarrick J. Wong
Just prior to committing the reflink code into upstream, the xfs maintainer at the time requested that I find a way to shard the refcount records into two domains -- one for records tracking shared extents, and a second for tracking CoW staging extents. The idea here was to minimize mount time CoW reclamation by pushing all the CoW records to the right edge of the keyspace, and it was accomplished by setting the upper bit in rc_startblock. We don't allow AGs to have more than 2^31 blocks, so the bit was free. Unfortunately, this was a very late addition to the codebase, so most of the refcount record processing code still treats rc_startblock as a u32 and pays no attention to whether or not the upper bit (the cow flag) is set. This is a weakness is theoretically exploitable, since we're not fully validating the incoming metadata records. Fuzzing demonstrates practical exploits of this weakness. If the cow flag of a node block key record is corrupted, a lookup operation can go to the wrong record block and start returning records from the wrong cow/shared domain. This causes the math to go all wrong (since cow domain is still implicit in the upper bit of rc_startblock) and we can crash the kernel by tricking xfs into jumping into a nonexistent AG and tripping over xfs_perag_get(mp, <nonexistent AG>) returning NULL. To fix this, start tracking the domain as an explicit part of struct xfs_refcount_irec, adjust all refcount functions to check the domain of a returned record, and alter the function definitions to accept them where necessary. Found by fuzzing keys[2].cowflag = add in xfs/464. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: refactor refcount record usage in xchk_refcountbt_recDarrick J. Wong
Consolidate the open-coded xfs_refcount_irec fields into an actual struct and use the existing _btrec_to_irec to decode the ondisk record. This will reduce code churn in the next patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: move _irec structs to xfs_types.hDarrick J. Wong
Structure definitions for incore objects do not belong in the ondisk format header. Move them to the incore types header where they belong. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: teach scrub to flag non-extents format cow forksscrub-bmap-enhancements_2022-10-14Darrick J. Wong
CoW forks only exist in memory, which means that they can only ever have an incore extent tree. Hence they must always be FMT_EXTENTS, so check this when we're scrubbing them. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: check that CoW fork extents are not sharedDarrick J. Wong
Ensure that extents in an inode's CoW fork are not marked as shared in the refcount btree. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: check quota files for unwritten extentsDarrick J. Wong
Teach scrub to flag quota files containing unwritten extents. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: block map scrub should handle incore delalloc reservationsDarrick J. Wong
Enhance the block map scrubber to check delayed allocation reservations. Though there are no physical space allocations to check, we do need to make sure that the range of file offsets being mapped are correct, and to bump the lastoff cursor so that key order checking works correctly. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: teach scrub to check for adjacent bmaps when rmap larger than bmapDarrick J. Wong
When scrub is checking file fork mappings against rmap records and the rmap record starts before or ends after the bmap record, check the adjacent bmap records to make sure that they're adjacent to the one we're checking. This helps us to detect cases where the rmaps cover territory that the bmaps do not. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: fix perag loop in xchk_bmap_check_rmapsDarrick J. Wong
sparse complains that we can return an uninitialized error from this function and that pag could be uninitialized. We know that there are no zero-AG filesystems and hence we had to call xchk_bmap_check_ag_rmaps at least once, so this is not actually possible, but I'm too worn out from automated complaints from unsophisticated AIs so let's just fix this and move on to more interesting problems, eh? Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: online checking of the free rt extent countscrub-fscounters-enhancements_2022-10-14Darrick J. Wong
Teach the summary count checker to count the number of free realtime extents and compare that to the superblock copy. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: skip fscounters comparisons when the scan is incompleteDarrick J. Wong
If any part of the per-AG summary counter scan loop aborts without collecting all of the data we need, the scrubber's observation data will be invalid. Set the incomplete flag so that we abort the scrub without reporting false corruptions. Document the data dependency here too. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: make rtbitmap ILOCKing consistent when scanning the rt bitmap filescrub-fix-rtmeta-ilocking_2022-10-14Darrick J. Wong
xfs_rtalloc_query_range scans the realtime bitmap file in order of increasing file offset, so this caller can take ILOCK_SHARED on the rt bitmap inode instead of ILOCK_EXCL. This isn't going to yield any practical benefits at mount time, but we'd like to make the locking usage consistent around xfs_rtalloc_query_all calls. Make all the places we do this use the same xfs_ilock lockflags for consistency. Fixes: 4c934c7dd60c ("xfs: report realtime space information via the rtbitmap") Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: load rtbitmap and rtsummary extent mapping btrees at mount timeDarrick J. Wong
It turns out that GETFSMAP and online fsck have had a bug for years due to their use of ILOCK_SHARED to coordinate their linear scans of the realtime bitmap. If the bitmap file's data fork happens to be in BTREE format and the scan occurs immediately after mounting, the incore bmbt will not be populated, leading to ASSERTs tripping over the incorrect inode state. Because the bitmap scans always lock bitmap buffers in increasing order of file offset, it is appropriate for these two callers to take a shared ILOCK to improve scalability. To fix this problem, load both data and attr fork state into memory when mounting the realtime inodes. Realtime metadata files aren't supposed to have an attr fork so the second step is likely a nop. On most filesystems this is unlikely since the rtbitmap data fork is usually in extents format, but it's possible to craft a filesystem that will by fragmenting the free space in the data section and growfsing the rt section. Fixes: 4c934c7dd60c ("xfs: report realtime space information via the rtbitmap") Also-Fixes: 46d9bfb5e706 ("xfs: cross-reference the realtime bitmap") Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: scrub should use ECHRNG to signal that the drain is neededscrub-drain-intents_2022-10-14Darrick J. Wong
In the previous patch, we added jump labels to the intent drain code so that regular filesystem operations need not pay the price of checking for someone (scrub) waiting on intents to drain from some part of the filesystem when that someone isn't running. However, I observed that xfs/285 now spends a lot more time pushing the AIL from the inode btree scrubber than it used to. This is because the inobt scrubber will try push the AIL to try to get logged inode cores written to the filesystem when it sees a weird discrepancy between the ondisk inode and the inobt records. This AIL push is triggered when the setup function sees TRY_HARDER is set; and the requisite EDEADLOCK return is initiated when the discrepancy is seen. The solution to this performance slow down is to use a different result code (ECHRNG) for scrub code to signal that it needs to wait for deferred intent work items to drain out of some part of the filesystem. When this happens, set a new scrub state flag (XCHK_NEED_DRAIN) so that setup functions will activate the jump label. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: minimize overhead of drain wakeups by using jump labelsDarrick J. Wong
To reduce the runtime overhead even further when online fsck isn't running, use a static branch key to decide if we call wake_up on the drain. For compilers that support jump labels, the call to wake_up is replaced by a nop sled when nobody is waiting for intents to drain. From my initial microbenchmarking, every transition of the static key between the on and off states takes about 22000ns to complete; this is paid entirely by the xfs_scrub process. When the static key is off (which it should be when fsck isn't running), the nop sled adds an overhead of approximately 0.36ns to runtime code. For the few compilers that don't support jump labels, runtime code pays the cost of calling wake_up on an empty waitqueue, which was observed to be about 30ns. However, most architectures that have sufficient memory and CPU capacity to run XFS also support jump labels, so this is not much of a worry. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: clean up scrub context if scrub setup returns -EDEADLOCKDarrick J. Wong
It has been a longstanding convention that online scrub and repair functions can return -EDEADLOCK to signal that they weren't able to obtain some necessary resource. When this happens, the scrub framework is supposed to release all resources attached to the scrub context, set the TRY_HARDER flag in the scrub context flags, and try again. In this context, individual scrub functions are supposed to take all the resources they (incorrectly) speculated were not necessary. We're about to make it so that the functions that lock and wait for a filesystem AG can also return EDEADLOCK to signal that we need to try again with the drain waiters enabled. Therefore, refactor xfs_scrub_metadata to support this behavior for ->setup() functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: use per-cpu counters to implement intent drainingDarrick J. Wong
Currently, the intent draining code uses a per-AG atomic counter to keep track of how many writer threads are currently or going to start processing log intent items for that AG. This isn't particularly efficient, since every counter update will dirty the cacheline, and the only code that cares about precise counter values is online scrub, which shouldn't be running all that often. Therefore, substitute the atomic_t for a per-cpu counter with a high batch limit to avoid pingponging cache lines as long as possible. While updates to per-cpu counters are slower in the single-thread case (on the author's system, 12ns vs. 8ns), this quickly reverses itself if there are a lot of CPUs queuing intent items. Because percpu counter summation is slow, this change shifts most of the performance impact to code that calls xfs_drain_wait, which means that online fsck runs a little bit slower to minimize the overhead of regular runtime code. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: allow queued AG intents to drain before scrubbingDarrick J. Wong
When a writer thread executes a chain of log intent items, the AG header buffer locks will cycle during a transaction roll to get from one intent item to the next in a chain. Although scrub takes all AG header buffer locks, this isn't sufficient to guard against scrub checking an AG while that writer thread is in the middle of finishing a chain because there's no higher level locking primitive guarding allocation groups. When there's a collision, cross-referencing between data structures (e.g. rmapbt and refcountbt) yields false corruption events; if repair is running, this results in incorrect repairs, which is catastrophic. Fix this by adding to the perag structure the count of active intents and make scrub wait until it has both AG header buffer locks and the intent counter reaches zero. This is a little stupid since transactions can queue intents without taking buffer locks, but it's not the end of the world for scrub to wait (in KILLABLE state) for those transactions. In the next patch we'll improve on this facility, but this patch provides the basic functionality. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: don't return -EFSCORRUPTED from repair when resources cannot be grabbedscrub-fix-return-value_2022-10-14Darrick J. Wong
If we tried to repair something but the repair failed with -EDEADLOCK or -EAGAIN, that means that the repair function couldn't grab some resource it needed and wants us to try again. If we try again (with TRY_HARDER) but still can't do it, exit back to userspace, since xfs_scrub_metadata requires xrep_attempt to return -EAGAIN. This makes the return value diagnostics look less weird, and fixes a wart that remains from very early in the repair implementation. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: don't retry repairs harder when EAGAIN is returnedDarrick J. Wong
Repair functions will not return EAGAIN -- if they were not able to obtain resources, they should return EDEADLOCK (like the rest of online fsck) to signal that we need to grab all the resources and try again. Hence we don't need to deal with this case except as a debugging assertion. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: fix return code when fatal signal encountered during dquot scrubDarrick J. Wong
If the scrub process is sent a fatal signal while we're checking dquots, the predicate for this will set the error code to -EINTR. Don't then squash that into -ECANCELED, because the wrong errno turns up in the trace output. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: return EINTR when a fatal signal terminates scrubDarrick J. Wong
If the program calling online fsck is terminated with a fatal signal, bail out to userspace by returning EINTR, not EAGAIN. EAGAIN is used by scrubbers to indicate that we should try again with more resources locked, and not to indicate that the operation was cancelled. The miswiring is mostly harmless, but it shows up in the trace data. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: pivot online scrub away from kmem.[ch]scrub-cleanup-malloc_2022-10-14Darrick J. Wong
Convert all the online scrub code to use the Linux slab allocator functions directly instead of going through the kmem wrappers. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: standardize GFP flags usage in online scrubDarrick J. Wong
Memory allocation usage is the same throughout online fsck -- we want kernel memory, we have to be able to back out if we can't allocate memory, and we don't want to spray dmesg with memory allocation failure reports. Standardize the GFP flag usage and document these requirements. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: make AGFL repair function avoid crosslinked blocksscrub-fix-ag-header-handling_2022-10-14Darrick J. Wong
Teach the AGFL repair function to check each block of the proposed AGFL against the rmap btree. If the rmapbt finds any mappings that are not OWN_AG, strike that block from the list. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: set the buffer type after holding the AG[IF] across trans_rollDarrick J. Wong
Currently, the only way to lock an allocation group is to hold the AGI and AGF buffers. If repair needs to roll the transaction while repairing some AG metadata, it maintains that lock by holding the two buffers across the transaction roll and joins them afterwards. However, repair is not the same as the other parts of XFS that employ this bhold/bjoin sequence, because it's possible that the AGI or AGF buffers are not actually dirty before the roll. In this case, the buffer log item can detach from the buffer, which means that we have to re-set the buffer type in the bli after joining the buffer to the new transaction so that log recovery will know what to do if the fs fails. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: don't track the AGFL buffer in the scrub AG contextDarrick J. Wong
While scrubbing an allocation group, we don't need to hold the AGFL buffer as part of the scrub context. All that is necessary to lock an AG is to hold the AGI and AGF buffers, so fix all the existing users of the AGFL buffer to grab them only when necessary. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: fully initialize xfs_da_args in xchk_directory_blocksDarrick J. Wong
While running the online fsck test suite, I noticed the following assertion in the kernel log (edited for brevity): XFS: Assertion failed: 0, file: fs/xfs/xfs_health.c, line: 571 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 11667 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs] CPU: 3 PID: 11667 Comm: xfs_scrub Tainted: G W 5.19.0-rc7-xfsx #rc7 6e6475eb29fd9dda3181f81b7ca7ff961d277a40 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 RIP: 0010:assfail+0x46/0x4a [xfs] Call Trace: <TASK> xfs_dir2_isblock+0xcc/0xe0 xchk_directory_blocks+0xc7/0x420 xchk_directory+0x53/0xb0 xfs_scrub_metadata+0x2b6/0x6b0 xfs_scrubv_metadata+0x35e/0x4d0 xfs_ioc_scrubv_metadata+0x111/0x160 xfs_file_ioctl+0x4ec/0xef0 __x64_sys_ioctl+0x82/0xa0 do_syscall_64+0x2b/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 This assertion triggers in xfs_dirattr_mark_sick when the caller passes in a whichfork value that is neither of XFS_{DATA,ATTR}_FORK. The cause of this is that xchk_directory_blocks only partially initializes the xfs_da_args structure that is passed to xfs_dir2_isblock. If the data fork is not correct, the XFS_IS_CORRUPT clause will trigger. My development branch reports this failure to the health monitoring subsystem, which accesses the uninitialized args->whichfork field, leading the the assertion tripping. We really shouldn't be passing random stack contents around, so the solution here is to force the compiler to zero-initialize the struct. Found by fuzzing u3.bmx[0].blockcount = middlebit on xfs/1554. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14xfs: avoid a UAF when log intent item recovery failsxfs-6.1-fixes_2022-10-14Darrick J. Wong
KASAN reported a UAF bug when I was running xfs/235: BUG: KASAN: use-after-free in xlog_recover_process_intents+0xa77/0xae0 [xfs] Read of size 8 at addr ffff88804391b360 by task mount/5680 CPU: 2 PID: 5680 Comm: mount Not tainted 6.0.0-xfsx #6.0.0 77e7b52a4943a975441e5ac90a5ad7748b7867f6 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x34/0x44 print_report.cold+0x2cc/0x682 kasan_report+0xa3/0x120 xlog_recover_process_intents+0xa77/0xae0 [xfs fb841c7180aad3f8359438576e27867f5795667e] xlog_recover_finish+0x7d/0x970 [xfs fb841c7180aad3f8359438576e27867f5795667e] xfs_log_mount_finish+0x2d7/0x5d0 [xfs fb841c7180aad3f8359438576e27867f5795667e] xfs_mountfs+0x11d4/0x1d10 [xfs fb841c7180aad3f8359438576e27867f5795667e] xfs_fs_fill_super+0x13d5/0x1a80 [xfs fb841c7180aad3f8359438576e27867f5795667e] get_tree_bdev+0x3da/0x6e0 vfs_get_tree+0x7d/0x240 path_mount+0xdd3/0x17d0 __x64_sys_mount+0x1fa/0x270 do_syscall_64+0x2b/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7ff5bc069eae Code: 48 8b 0d 85 1f 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 52 1f 0f 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe433fd448 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ff5bc069eae RDX: 00005575d7213290 RSI: 00005575d72132d0 RDI: 00005575d72132b0 RBP: 00005575d7212fd0 R08: 00005575d7213230 R09: 00005575d7213fe0 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00005575d7213290 R14: 00005575d72132b0 R15: 00005575d7212fd0 </TASK> Allocated by task 5680: kasan_save_stack+0x1e/0x40 __kasan_slab_alloc+0x66/0x80 kmem_cache_alloc+0x152/0x320 xfs_rui_init+0x17a/0x1b0 [xfs] xlog_recover_rui_commit_pass2+0xb9/0x2e0 [xfs] xlog_recover_items_pass2+0xe9/0x220 [xfs] xlog_recover_commit_trans+0x673/0x900 [xfs] xlog_recovery_process_trans+0xbe/0x130 [xfs] xlog_recover_process_data+0x103/0x2a0 [xfs] xlog_do_recovery_pass+0x548/0xc60 [xfs] xlog_do_log_recovery+0x62/0xc0 [xfs] xlog_do_recover+0x73/0x480 [xfs] xlog_recover+0x229/0x460 [xfs] xfs_log_mount+0x284/0x640 [xfs] xfs_mountfs+0xf8b/0x1d10 [xfs] xfs_fs_fill_super+0x13d5/0x1a80 [xfs] get_tree_bdev+0x3da/0x6e0 vfs_get_tree+0x7d/0x240 path_mount+0xdd3/0x17d0 __x64_sys_mount+0x1fa/0x270 do_syscall_64+0x2b/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 5680: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_set_free_info+0x20/0x30 ____kasan_slab_free+0x144/0x1b0 slab_free_freelist_hook+0xab/0x180 kmem_cache_free+0x1f1/0x410 xfs_rud_item_release+0x33/0x80 [xfs] xfs_trans_free_items+0xc3/0x220 [xfs] xfs_trans_cancel+0x1fa/0x590 [xfs] xfs_rui_item_recover+0x913/0xd60 [xfs] xlog_recover_process_intents+0x24e/0xae0 [xfs] xlog_recover_finish+0x7d/0x970 [xfs] xfs_log_mount_finish+0x2d7/0x5d0 [xfs] xfs_mountfs+0x11d4/0x1d10 [xfs] xfs_fs_fill_super+0x13d5/0x1a80 [xfs] get_tree_bdev+0x3da/0x6e0 vfs_get_tree+0x7d/0x240 path_mount+0xdd3/0x17d0 __x64_sys_mount+0x1fa/0x270 do_syscall_64+0x2b/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 The buggy address belongs to the object at ffff88804391b300 which belongs to the cache xfs_rui_item of size 688 The buggy address is located 96 bytes inside of 688-byte region [ffff88804391b300, ffff88804391b5b0) The buggy address belongs to the physical page: page:ffffea00010e4600 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888043919320 pfn:0x43918 head:ffffea00010e4600 order:2 compound_mapcount:0 compound_pincount:0 flags: 0x4fff80000010200(slab|head|node=1|zone=1|lastcpupid=0xfff) raw: 04fff80000010200 0000000000000000 dead000000000122 ffff88807f0eadc0 raw: ffff888043919320 0000000080140010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88804391b200: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff88804391b280: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff88804391b300: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88804391b380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88804391b400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== The test fuzzes an rmap btree block and starts writer threads to induce a filesystem shutdown on the corrupt block. When the filesystem is remounted, recovery will try to replay the committed rmap intent item, but the corruption problem causes the recovery transaction to fail. Cancelling the transaction frees the RUD, which frees the RUI that we recovered. When we return to xlog_recover_process_intents, @lip is now a dangling pointer, and we cannot use it to find the iop_recover method for the tracepoint. Hence we must store the item ops before calling ->iop_recover if we want to give it to the tracepoint so that the trace data will tell us exactly which intent item failed. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-10-14fix coredump breakageAl Viro
Let me count the ways in which I'd screwed up: * when emitting a page, handling of gaps in coredump should happen before fetching the current file position. * fix for a problem that occurs on rather uncommon setups (and hadn't been observed in the wild) had been sent very late in the cycle. * ... with badly insufficient testing, introducing an easily reproducible breakage. Without giving it time to soak in -next. Fucked-up-by: Al Viro <viro@zeniv.linux.org.uk> Reported-by: "J. R. Okajima" <hooanon05g@gmail.com> Tested-by: "J. R. Okajima" <hooanon05g@gmail.com> Fixes: 06bbaa6dc53c "[coredump] don't use __kernel_write() on kmap_local_page()" Cc: stable@kernel.org # v6.0-only Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-14iomap: add a tracepoint for mappings returned by map_blocksiomap-6.1-merge_2022-10-14Darrick J. Wong
Add a new tracepoint so we can see what mapping the filesystem returns to writeback a dirty page. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>