summaryrefslogtreecommitdiff
path: root/include
AgeCommit message (Collapse)Author
2021-09-15block: return ELEVATOR_DISCARD_MERGE if possibleMing Lei
[ Upstream commit 866663b7b52d2da267b28e12eed89ee781b8fed1 ] When merging one bio to request, if they are discard IO and the queue supports multi-range discard, we need to return ELEVATOR_DISCARD_MERGE because both block core and related drivers(nvme, virtio-blk) doesn't handle mixed discard io merge(traditional IO merge together with discard merge) well. Fix the issue by returning ELEVATOR_DISCARD_MERGE in this situation, so both blk-mq and drivers just need to handle multi-range discard. Reported-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Ming Lei <ming.lei@redhat.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Fixes: 2705dfb20947 ("block: fix discard request merge") Link: https://lore.kernel.org/r/20210729034226.1591070-1-ming.lei@redhat.com Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-15power: supply: max17042_battery: fix typo in MAx17042_TOFFSebastian Krzyszkowiak
[ Upstream commit ed0d0a0506025f06061325cedae1bbebd081620a ] Signed-off-by: Sebastian Krzyszkowiak <sebastian.krzyszkowiak@puri.sm> Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-15hrtimer: Ensure timerfd notification for HIGHRES=nThomas Gleixner
[ Upstream commit 8c3b5e6ec0fee18bc2ce38d1dfe913413205f908 ] If high resolution timers are disabled the timerfd notification about a clock was set event is not happening for all cases which use clock_was_set_delayed() because that's a NOP for HIGHRES=n, which is wrong. Make clock_was_set_delayed() unconditially available to fix that. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210713135158.196661266@linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-12tty: drop termiox user definitionsJiri Slaby
commit c762a2b846b619c0f92f23e2e8e16f70d20df800 upstream. As was concluded in a follow-up discussion of commit e0efb3168d34 (tty: Remove dead termiox code) [1], termiox ioctls never worked, so there is barely anyone using this interface. We can safely remove the user definitions for this never adopted interface. [1] https://lore.kernel.org/lkml/c1c9fc04-02eb-2260-195b-44c357f057c0@kernel.org/t/#u Signed-off-by: Jiri Slaby <jslaby@suse.cz> Link: https://lore.kernel.org/r/20210105120239.28031-12-jslaby@suse.cz Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-12net: linux/skbuff.h: combine SKB_EXTENSIONS + KCOV handlingRandy Dunlap
commit 97f53a08cba128a724ebbbf34778d3553d559816 upstream. The previous Kconfig patch led to some other build errors as reported by the 0day bot and my own overnight build testing. These are all in <linux/skbuff.h> when KCOV is enabled but SKB_EXTENSIONS is not enabled, so fix those by combining those conditions in the header file. Fixes: 6370cc3bbd8a ("net: add kcov handle to skb extensions") Fixes: 85ce50d337d1 ("net: kcov: don't select SKB_EXTENSIONS when there is no NET") Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: kernel test robot <lkp@intel.com> Cc: Aleksandr Nogikh <nogikh@google.com> Cc: Willem de Bruijn <willemb@google.com> Acked-by: Florian Westphal <fw@strlen.de> Link: https://lore.kernel.org/r/20201116212108.32465-1-rdunlap@infradead.org Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-08new helper: inode_wrong_type()Al Viro
commit 6e3e2c4362e41a2f18e3f7a5ad81bd2f49a47b85 upstream. inode_wrong_type(inode, mode) returns true if setting inode->i_mode to given value would've changed the inode type. We have enough of those checks open-coded to make a helper worthwhile. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-08spi: Switch to signed types for *_native_cs SPI controller fieldsAndy Shevchenko
commit 35f3f8504c3b60a1ae5576e178b27fc0ddd6157d upstream. While fixing undefined behaviour the commit f60d7270c8a3 ("spi: Avoid undefined behaviour when counting unused native CSs") missed the case when all CSs are GPIOs and thus unused_native_cs will be evaluated to -1 in unsigned representation. This will falsely trigger a condition in the spi_get_gpio_descs(). Switch to signed types for *_native_cs SPI controller fields to fix above. Fixes: f60d7270c8a3 ("spi: Avoid undefined behaviour when counting unused native CSs") Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Link: https://lore.kernel.org/r/20210510131242.49455-1-andriy.shevchenko@linux.intel.com Signed-off-by: Mark Brown <broonie@kernel.org> Signed-off-by: Nobuhiro Iwamatsu (CIP) <nobuhiro1.iwamatsu@toshiba.co.jp> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-08Revert "Add a reference to ucounts for each cred"Greg Kroah-Hartman
This reverts commit b2c4d9a33cc2dec7466f97eba2c4dd571ad798a5 which is commit 905ae01c4ae2ae3df05bb141801b1db4b7d83c61 upstream. This commit should not have been applied to the 5.10.y stable tree, so revert it. Reported-by: "Eric W. Biederman" <ebiederm@xmission.com> Link: https://lore.kernel.org/r/87v93k4bl6.fsf@disp2133 Cc: Alexey Gladkov <legion@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-08fscrypt: add fscrypt_symlink_getattr() for computing st_sizeEric Biggers
commit d18760560593e5af921f51a8c9b64b6109d634c2 upstream. Add a helper function fscrypt_symlink_getattr() which will be called from the various filesystems' ->getattr() methods to read and decrypt the target of encrypted symlinks in order to report the correct st_size. Detailed explanation: As required by POSIX and as documented in various man pages, st_size for a symlink is supposed to be the length of the symlink target. Unfortunately, st_size has always been wrong for encrypted symlinks because st_size is populated from i_size from disk, which intentionally contains the length of the encrypted symlink target. That's slightly greater than the length of the decrypted symlink target (which is the symlink target that userspace usually sees), and usually won't match the length of the no-key encoded symlink target either. This hadn't been fixed yet because reporting the correct st_size would require reading the symlink target from disk and decrypting or encoding it, which historically has been considered too heavyweight to do in ->getattr(). Also historically, the wrong st_size had only broken a test (LTP lstat03) and there were no known complaints from real users. (This is probably because the st_size of symlinks isn't used too often, and when it is, typically it's for a hint for what buffer size to pass to readlink() -- which a slightly-too-large size still works for.) However, a couple things have changed now. First, there have recently been complaints about the current behavior from real users: - Breakage in rpmbuild: https://github.com/rpm-software-management/rpm/issues/1682 https://github.com/google/fscrypt/issues/305 - Breakage in toybox cpio: https://www.mail-archive.com/toybox@lists.landley.net/msg07193.html - Breakage in libgit2: https://issuetracker.google.com/issues/189629152 (on Android public issue tracker, requires login) Second, we now cache decrypted symlink targets in ->i_link. Therefore, taking the performance hit of reading and decrypting the symlink target in ->getattr() wouldn't be as big a deal as it used to be, since usually it will just save having to do the same thing later. Also note that eCryptfs ended up having to read and decrypt symlink targets in ->getattr() as well, to fix this same issue; see commit 3a60a1686f0d ("eCryptfs: Decrypt symlink target for stat size"). So, let's just bite the bullet, and read and decrypt the symlink target in ->getattr() in order to report the correct st_size. Add a function fscrypt_symlink_getattr() which the filesystems will call to do this. (Alternatively, we could store the decrypted size of symlinks on-disk. But there isn't a great place to do so, and encryption is meant to hide the original size to some extent; that property would be lost.) Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210702065350.209646-2-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03bpf: Fix potentially incorrect results with bpf_get_local_storage()Yonghong Song
commit a2baf4e8bb0f306fbed7b5e6197c02896a638ab5 upstream. Commit b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") fixed a bug for bpf_get_local_storage() helper so different tasks won't mess up with each other's percpu local storage. The percpu data contains 8 slots so it can hold up to 8 contexts (same or different tasks), for 8 different program runs, at the same time. This in general is sufficient. But our internal testing showed the following warning multiple times: [...] warning: WARNING: CPU: 13 PID: 41661 at include/linux/bpf-cgroup.h:193 __cgroup_bpf_run_filter_sock_ops+0x13e/0x180 RIP: 0010:__cgroup_bpf_run_filter_sock_ops+0x13e/0x180 <IRQ> tcp_call_bpf.constprop.99+0x93/0xc0 tcp_conn_request+0x41e/0xa50 ? tcp_rcv_state_process+0x203/0xe00 tcp_rcv_state_process+0x203/0xe00 ? sk_filter_trim_cap+0xbc/0x210 ? tcp_v6_inbound_md5_hash.constprop.41+0x44/0x160 tcp_v6_do_rcv+0x181/0x3e0 tcp_v6_rcv+0xc65/0xcb0 ip6_protocol_deliver_rcu+0xbd/0x450 ip6_input_finish+0x11/0x20 ip6_input+0xb5/0xc0 ip6_sublist_rcv_finish+0x37/0x50 ip6_sublist_rcv+0x1dc/0x270 ipv6_list_rcv+0x113/0x140 __netif_receive_skb_list_core+0x1a0/0x210 netif_receive_skb_list_internal+0x186/0x2a0 gro_normal_list.part.170+0x19/0x40 napi_complete_done+0x65/0x150 mlx5e_napi_poll+0x1ae/0x680 __napi_poll+0x25/0x120 net_rx_action+0x11e/0x280 __do_softirq+0xbb/0x271 irq_exit_rcu+0x97/0xa0 common_interrupt+0x7f/0xa0 </IRQ> asm_common_interrupt+0x1e/0x40 RIP: 0010:bpf_prog_1835a9241238291a_tw_egress+0x5/0xbac ? __cgroup_bpf_run_filter_skb+0x378/0x4e0 ? do_softirq+0x34/0x70 ? ip6_finish_output2+0x266/0x590 ? ip6_finish_output+0x66/0xa0 ? ip6_output+0x6c/0x130 ? ip6_xmit+0x279/0x550 ? ip6_dst_check+0x61/0xd0 [...] Using drgn [0] to dump the percpu buffer contents showed that on this CPU slot 0 is still available, but slots 1-7 are occupied and those tasks in slots 1-7 mostly don't exist any more. So we might have issues in bpf_cgroup_storage_unset(). Further debugging confirmed that there is a bug in bpf_cgroup_storage_unset(). Currently, it tries to unset "current" slot with searching from the start. So the following sequence is possible: 1. A task is running and claims slot 0 2. Running BPF program is done, and it checked slot 0 has the "task" and ready to reset it to NULL (not yet). 3. An interrupt happens, another BPF program runs and it claims slot 1 with the *same* task. 4. The unset() in interrupt context releases slot 0 since it matches "task". 5. Interrupt is done, the task in process context reset slot 0. At the end, slot 1 is not reset and the same process can continue to occupy slots 2-7 and finally, when the above step 1-5 is repeated again, step 3 BPF program won't be able to claim an empty slot and a warning will be issued. To fix the issue, for unset() function, we should traverse from the last slot to the first. This way, the above issue can be avoided. The same reverse traversal should also be done in bpf_get_local_storage() helper itself. Otherwise, incorrect local storage may be returned to BPF program. [0] https://github.com/osandov/drgn Fixes: b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210810010413.1976277-1-yhs@fb.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03net: don't unconditionally copy_from_user a struct ifreq for socket ioctlsPeter Collingbourne
commit d0efb16294d145d157432feda83877ae9d7cdf37 upstream. A common implementation of isatty(3) involves calling a ioctl passing a dummy struct argument and checking whether the syscall failed -- bionic and glibc use TCGETS (passing a struct termios), and musl uses TIOCGWINSZ (passing a struct winsize). If the FD is a socket, we will copy sizeof(struct ifreq) bytes of data from the argument and return -EFAULT if that fails. The result is that the isatty implementations may return a non-POSIX-compliant value in errno in the case where part of the dummy struct argument is inaccessible, as both struct termios and struct winsize are smaller than struct ifreq (at least on arm64). Although there is usually enough stack space following the argument on the stack that this did not present a practical problem up to now, with MTE stack instrumentation it's more likely for the copy to fail, as the memory following the struct may have a different tag. Fix the problem by adding an early check for whether the ioctl is a valid socket ioctl, and return -ENOTTY if it isn't. Fixes: 44c02a2c3dc5 ("dev_ioctl(): move copyin/copyout to callers") Link: https://linux-review.googlesource.com/id/I869da6cf6daabc3e4b7b82ac979683ba05e27d4d Signed-off-by: Peter Collingbourne <pcc@google.com> Cc: <stable@vger.kernel.org> # 4.19 Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03srcu: Provide polling interfaces for Tiny SRCU grace periodsPaul E. McKenney
commit 8b5bd67cf6422b63ee100d76d8de8960ca2df7f0 upstream. There is a need for a polling interface for SRCU grace periods, so this commit supplies get_state_synchronize_srcu(), start_poll_synchronize_srcu(), and poll_state_synchronize_srcu() for this purpose. The first can be used if future grace periods are inevitable (perhaps due to a later call_srcu() invocation), the second if future grace periods might not otherwise happen, and the third to check if a grace period has elapsed since the corresponding call to either of the first two. As with get_state_synchronize_rcu() and cond_synchronize_rcu(), the return value from either get_state_synchronize_srcu() or start_poll_synchronize_srcu() must be passed in to a later call to poll_state_synchronize_srcu(). Link: https://lore.kernel.org/rcu/20201112201547.GF3365678@moria.home.lan/ Reported-by: Kent Overstreet <kent.overstreet@gmail.com> [ paulmck: Add EXPORT_SYMBOL_GPL() per kernel test robot feedback. ] [ paulmck: Apply feedback from Neeraj Upadhyay. ] Link: https://lore.kernel.org/lkml/20201117004017.GA7444@paulmck-ThinkPad-P72/ Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03srcu: Make Tiny SRCU use multi-bit grace-period counterPaul E. McKenney
commit 74612a07b83fc46c2b2e6f71a541d55b024ebefc upstream. There is a need for a polling interface for SRCU grace periods. This polling needs to distinguish between an SRCU instance being idle on the one hand or in the middle of a grace period on the other. This commit therefore converts the Tiny SRCU srcu_struct structure's srcu_idx from a defacto boolean to a free-running counter, using the bottom bit to indicate that a grace period is in progress. The second-from-bottom bit is thus used as the index returned by srcu_read_lock(). Link: https://lore.kernel.org/rcu/20201112201547.GF3365678@moria.home.lan/ Reported-by: Kent Overstreet <kent.overstreet@gmail.com> [ paulmck: Fix ->srcu_lock_nesting[] indexing per Neeraj Upadhyay. ] Reviewed-by: Neeraj Upadhyay <neeraju@codeaurora.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03pipe: avoid unnecessary EPOLLET wakeups under normal loadsLinus Torvalds
commit 3b844826b6c6affa80755254da322b017358a2f4 upstream. I had forgotten just how sensitive hackbench is to extra pipe wakeups, and commit 3a34b13a88ca ("pipe: make pipe writes always wake up readers") ended up causing a quite noticeable regression on larger machines. Now, hackbench isn't necessarily a hugely meaningful benchmark, and it's not clear that this matters in real life all that much, but as Mel points out, it's used often enough when comparing kernels and so the performance regression shows up like a sore thumb. It's easy enough to fix at least for the common cases where pipes are used purely for data transfer, and you never have any exciting poll usage at all. So set a special 'poll_usage' flag when there is polling activity, and make the ugly "EPOLLET has crazy legacy expectations" semantics explicit to only that case. I would love to limit it to just the broken EPOLLET case, but the pipe code can't see the difference between epoll and regular select/poll, so any non-read/write waiting will trigger the extra wakeup behavior. That is sufficient for at least the hackbench case. Apart from making the odd extra wakeup cases more explicitly about EPOLLET, this also makes the extra wakeup be at the _end_ of the pipe write, not at the first write chunk. That is actually much saner semantics (as much as you can call any of the legacy edge-triggered expectations for EPOLLET "sane") since it means that you know the wakeup will happen once the write is done, rather than possibly in the middle of one. [ For stable people: I'm putting a "Fixes" tag on this, but I leave it up to you to decide whether you actually want to backport it or not. It likely has no impact outside of synthetic benchmarks - Linus ] Link: https://lore.kernel.org/lkml/20210802024945.GA8372@xsang-OptiPlex-9020/ Fixes: 3a34b13a88ca ("pipe: make pipe writes always wake up readers") Reported-by: kernel test robot <oliver.sang@intel.com> Tested-by: Sandeep Patil <sspatil@android.com> Tested-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03net: stmmac: add mutex lock to protect est parametersXiaoliang Yang
[ Upstream commit b2aae654a4794ef898ad33a179f341eb610f6b85 ] Add a mutex lock to protect est structure parameters so that the EST parameters can be updated by other threads. Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Pavel Machek (CIP) <pavel@denx.de> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-03once: Fix panic when module unloadKefeng Wang
[ Upstream commit 1027b96ec9d34f9abab69bc1a4dc5b1ad8ab1349 ] DO_ONCE DEFINE_STATIC_KEY_TRUE(___once_key); __do_once_done once_disable_jump(once_key); INIT_WORK(&w->work, once_deferred); struct once_work *w; w->key = key; schedule_work(&w->work); module unload //*the key is destroy* process_one_work once_deferred BUG_ON(!static_key_enabled(work->key)); static_key_count((struct static_key *)x) //*access key, crash* When module uses DO_ONCE mechanism, it could crash due to the above concurrency problem, we could reproduce it with link[1]. Fix it by add/put module refcount in the once work process. [1] https://lore.kernel.org/netdev/eaa6c371-465e-57eb-6be9-f4b16b9d7cbf@huawei.com/ Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Reported-by: Minmin chen <chenmingmin@huawei.com> Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-03bpf: Fix NULL pointer dereference in bpf_get_local_storage() helperYonghong Song
commit b910eaaaa4b89976ef02e5d6448f3f73dc671d91 upstream. Jiri Olsa reported a bug ([1]) in kernel where cgroup local storage pointer may be NULL in bpf_get_local_storage() helper. There are two issues uncovered by this bug: (1). kprobe or tracepoint prog incorrectly sets cgroup local storage before prog run, (2). due to change from preempt_disable to migrate_disable, preemption is possible and percpu storage might be overwritten by other tasks. This issue (1) is fixed in [2]. This patch tried to address issue (2). The following shows how things can go wrong: task 1: bpf_cgroup_storage_set() for percpu local storage preemption happens task 2: bpf_cgroup_storage_set() for percpu local storage preemption happens task 1: run bpf program task 1 will effectively use the percpu local storage setting by task 2 which will be either NULL or incorrect ones. Instead of just one common local storage per cpu, this patch fixed the issue by permitting 8 local storages per cpu and each local storage is identified by a task_struct pointer. This way, we allow at most 8 nested preemption between bpf_cgroup_storage_set() and bpf_cgroup_storage_unset(). The percpu local storage slot is released (calling bpf_cgroup_storage_unset()) by the same task after bpf program finished running. bpf_test_run() is also fixed to use the new bpf_cgroup_storage_set() interface. The patch is tested on top of [2] with reproducer in [1]. Without this patch, kernel will emit error in 2-3 minutes. With this patch, after one hour, still no error. [1] https://lore.kernel.org/bpf/CAKH8qBuXCfUz=w8L+Fj74OaUpbosO29niYwTki7e3Ag044_aww@mail.gmail.com/T [2] https://lore.kernel.org/bpf/20210309185028.3763817-1-yhs@fb.com Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Link: https://lore.kernel.org/bpf/20210323055146.3334476-1-yhs@fb.com Cc: <stable@vger.kernel.org> # 5.10.x Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-26mm: memcontrol: fix occasional OOMs due to proportional memory.low reclaimJohannes Weiner
[ Upstream commit f56ce412a59d7d938b81de8878faef128812482c ] We've noticed occasional OOM killing when memory.low settings are in effect for cgroups. This is unexpected and undesirable as memory.low is supposed to express non-OOMing memory priorities between cgroups. The reason for this is proportional memory.low reclaim. When cgroups are below their memory.low threshold, reclaim passes them over in the first round, and then retries if it couldn't find pages anywhere else. But when cgroups are slightly above their memory.low setting, page scan force is scaled down and diminished in proportion to the overage, to the point where it can cause reclaim to fail as well - only in that case we currently don't retry, and instead trigger OOM. To fix this, hook proportional reclaim into the same retry logic we have in place for when cgroups are skipped entirely. This way if reclaim fails and some cgroups were scanned with diminished pressure, we'll try another full-force cycle before giving up and OOMing. [akpm@linux-foundation.org: coding-style fixes] Link: https://lkml.kernel.org/r/20210817180506.220056-1-hannes@cmpxchg.org Fixes: 9783aa9917f8 ("mm, memcg: proportional memory.{low,min} reclaim") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Leon Yang <lnyng@fb.com> Reviewed-by: Rik van Riel <riel@surriel.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> [5.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-26Revert "flow_offload: action should not be NULL when it is referenced"Ido Schimmel
[ Upstream commit fa05bdb89b01b098aad19ec0ebc4d1cc7b11177e ] This reverts commit 9ea3e52c5bc8bb4a084938dc1e3160643438927a. Cited commit added a check to make sure 'action' is not NULL, but 'action' is already dereferenced before the check, when calling flow_offload_has_one_action(). Therefore, the check does not make any sense and results in a smatch warning: include/net/flow_offload.h:322 flow_action_mixed_hw_stats_check() warn: variable dereferenced before check 'action' (see line 319) Fix by reverting this commit. Cc: gushengxian <gushengxian@yulong.com> Fixes: 9ea3e52c5bc8 ("flow_offload: action should not be NULL when it is referenced") Signed-off-by: Ido Schimmel <idosch@nvidia.com> Acked-by: Jamal Hadi Salim <jhs@mojatatu.com> Link: https://lore.kernel.org/r/20210819105842.1315705-1-idosch@idosch.org Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-26soc / drm: mediatek: Move DDP component defines into mtk-mmsys.hYongqiang Niu
[ Upstream commit 51c0e618b219c025ddaaf14baea8942cb7e2105b ] MMSYS is the driver which controls the routing of these DDP components, so the definition of the mtk_ddp_comp_id enum should be placed in mtk-mmsys.h Signed-off-by: Yongqiang Niu <yongqiang.niu@mediatek.com> Signed-off-by: Enric Balletbo i Serra <enric.balletbo@collabora.com> Reviewed-by: Chun-Kuang Hu <chunkuang.hu@kernel.org> Link: https://lore.kernel.org/r/20201006193320.405529-2-enric.balletbo@collabora.com Signed-off-by: Matthias Brugger <matthias.bgg@gmail.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-26virtio: Protect vqs list accessParav Pandit
[ Upstream commit 0e566c8f0f2e8325e35f6f97e13cde5356b41814 ] VQs may be accessed to mark the device broken while they are created/destroyed. Hence protect the access to the vqs list. Fixes: e2dcdfe95c0b ("virtio: virtio_break_device() to mark all virtqueues broken.") Signed-off-by: Parav Pandit <parav@nvidia.com> Link: https://lore.kernel.org/r/20210721142648.1525924-4-parav@nvidia.com Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-18vmlinux.lds.h: Handle clang's module.{c,d}tor sectionsNathan Chancellor
commit 848378812e40152abe9b9baf58ce2004f76fb988 upstream. A recent change in LLVM causes module_{c,d}tor sections to appear when CONFIG_K{A,C}SAN are enabled, which results in orphan section warnings because these are not handled anywhere: ld.lld: warning: arch/x86/pci/built-in.a(legacy.o):(.text.asan.module_ctor) is being placed in '.text.asan.module_ctor' ld.lld: warning: arch/x86/pci/built-in.a(legacy.o):(.text.asan.module_dtor) is being placed in '.text.asan.module_dtor' ld.lld: warning: arch/x86/pci/built-in.a(legacy.o):(.text.tsan.module_ctor) is being placed in '.text.tsan.module_ctor' Fangrui explains: "the function asan.module_ctor has the SHF_GNU_RETAIN flag, so it is in a separate section even with -fno-function-sections (default)". Place them in the TEXT_TEXT section so that these technologies continue to work with the newer compiler versions. All of the KASAN and KCSAN KUnit tests continue to pass after this change. Cc: stable@vger.kernel.org Link: https://github.com/ClangBuiltLinux/linux/issues/1432 Link: https://github.com/llvm/llvm-project/commit/7b789562244ee941b7bf2cefeb3fc08a59a01865 Signed-off-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Fangrui Song <maskray@google.com> Acked-by: Marco Elver <elver@google.com> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20210731023107.1932981-1-nathan@kernel.org [nc: Resolve conflict due to lack of cf68fffb66d60] Signed-off-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-18PCI/MSI: Protect msi_desc::masked for multi-MSIThomas Gleixner
commit 77e89afc25f30abd56e76a809ee2884d7c1b63ce upstream. Multi-MSI uses a single MSI descriptor and there is a single mask register when the device supports per vector masking. To avoid reading back the mask register the value is cached in the MSI descriptor and updates are done by clearing and setting bits in the cache and writing it to the device. But nothing protects msi_desc::masked and the mask register from being modified concurrently on two different CPUs for two different Linux interrupts which belong to the same multi-MSI descriptor. Add a lock to struct device and protect any operation on the mask and the mask register with it. This makes the update of msi_desc::masked unconditional, but there is no place which requires a modification of the hardware register without updating the masked cache. msi_mask_irq() is now an empty wrapper which will be cleaned up in follow up changes. The problem goes way back to the initial support of multi-MSI, but picking the commit which introduced the mask cache is a valid cut off point (2.6.30). Fixes: f2440d9acbe8 ("PCI MSI: Refactor interrupt masking code") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210729222542.726833414@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-18genirq: Provide IRQCHIP_AFFINITY_PRE_STARTUPThomas Gleixner
commit 826da771291fc25a428e871f9e7fb465e390f852 upstream. X86 IO/APIC and MSI interrupts (when used without interrupts remapping) require that the affinity setup on startup is done before the interrupt is enabled for the first time as the non-remapped operation mode cannot safely migrate enabled interrupts from arbitrary contexts. Provide a new irq chip flag which allows affected hardware to request this. This has to be opt-in because there have been reports in the past that some interrupt chips cannot handle affinity setting before startup. Fixes: 18404756765c ("genirq: Expose default irq affinity mask (take 3)") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210729222542.779791738@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-18net: igmp: increase size of mr_ifc_countEric Dumazet
[ Upstream commit b69dd5b3780a7298bd893816a09da751bc0636f7 ] Some arches support cmpxchg() on 4-byte and 8-byte only. Increase mr_ifc_count width to 32bit to fix this problem. Fixes: 4a2b285e7e10 ("net: igmp: fix data-race in igmp_ifc_timer_expire()") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Guenter Roeck <linux@roeck-us.net> Link: https://lore.kernel.org/r/20210811195715.3684218-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-18net: bridge: fix flags interpretation for extern learn fdb entriesNikolay Aleksandrov
[ Upstream commit 45a687879b31caae4032abd1c2402e289d2b8083 ] Ignore fdb flags when adding port extern learn entries and always set BR_FDB_LOCAL flag when adding bridge extern learn entries. This is closest to the behaviour we had before and avoids breaking any use cases which were allowed. This patch fixes iproute2 calls which assume NUD_PERMANENT and were allowed before, example: $ bridge fdb add 00:11:22:33:44:55 dev swp1 extern_learn Extern learn entries are allowed to roam, but do not expire, so static or dynamic flags make no sense for them. Also add a comment for future reference. Fixes: eb100e0e24a2 ("net: bridge: allow to add externally learned entries from user-space") Fixes: 0541a6293298 ("net: bridge: validate the NUD_PERMANENT bit when adding an extern_learn FDB entry") Reviewed-by: Ido Schimmel <idosch@nvidia.com> Tested-by: Ido Schimmel <idosch@nvidia.com> Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com> Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com> Link: https://lore.kernel.org/r/20210810110010.43859-1-razor@blackwall.org Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-18net/mlx5: Synchronize correct IRQ when destroying CQShay Drory
[ Upstream commit 563476ae0c5e48a028cbfa38fa9d2fc0418eb88f ] The CQ destroy is performed based on the IRQ number that is stored in cq->irqn. That number wasn't set explicitly during CQ creation and as expected some of the API users of mlx5_core_create_cq() forgot to update it. This caused to wrong synchronization call of the wrong IRQ with a number 0 instead of the real one. As a fix, set the IRQ number directly in the mlx5_core_create_cq() and update all users accordingly. Fixes: 1a86b377aa21 ("vdpa/mlx5: Add VDPA driver for supported mlx5 devices") Fixes: ef1659ade359 ("IB/mlx5: Add DEVX support for CQ events") Signed-off-by: Shay Drory <shayd@nvidia.com> Reviewed-by: Tariq Toukan <tariqt@nvidia.com> Signed-off-by: Saeed Mahameed <saeedm@nvidia.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-18psample: Add a fwd declaration for skbuffRoi Dayan
[ Upstream commit beb7f2de5728b0bd2140a652fa51f6ad85d159f7 ] Without this there is a warning if source files include psample.h before skbuff.h or doesn't include it at all. Fixes: 6ae0a6286171 ("net: Introduce psample, a new genetlink channel for packet sampling") Signed-off-by: Roi Dayan <roid@nvidia.com> Link: https://lore.kernel.org/r/20210808065242.1522535-1-roid@nvidia.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-15mm: make zone_to_nid() and zone_set_nid() available for DISCONTIGMEMMike Rapoport
Since the commit ce6ee46e0f39 ("mm/page_alloc: fix memory map initialization for descending nodes") initialization of the memory map relies on availability of zone_to_nid() and zone_set_nid methods to link struct page to a node. But in 5.10 zone_to_nid() is only defined for NUMA, but not for DISCONTIGMEM which causes crashes on m68k systems with two memory banks. For instance on ARAnyM with both ST-RAM and FastRAM atari_defconfig build produces the following crash: Unable to handle kernel access at virtual address (ptrval) Oops: 00000000 Modules linked in: PC: [<0005fbbc>] bpf_prog_alloc_no_stats+0x5c/0xba SR: 2200 SP: (ptrval) a2: 016daa90 d0: 0000000c d1: 00000200 d2: 00000001 d3: 00000cc0 d4: 016d1f80 d5: 00034da6 a0: 305c2800 a1: 305c2a00 Process swapper (pid: 1, task=(ptrval)) Frame format=7 eff addr=31800000 ssw=0445 faddr=31800000 wb 1 stat/addr/data: 0000 00000000 00000000 wb 2 stat/addr/data: 0000 00000000 00000000 wb 3 stat/addr/data: 00c5 31800000 00000001 push data: 00000000 00000000 00000000 00000000 Stack from 3058fec8: 00000dc0 00000000 004addc2 3058ff16 0005fc34 00000238 00000000 00000210 004addc2 3058ff16 00281ae0 00000238 00000000 00000000 004addc2 004bc7ec 004aea9e 0048b0c0 3058ff16 00460042 004ba4d2 3058ff8c 004ade6a 0000007e 0000210e 0000007e 00000002 016d1f80 00034da6 000020b4 00000000 004b4764 004bc7ec 00000000 004b4760 004bc7c0 004b4744 001e4cb2 00010001 016d1fe5 016d1ff0 004994d2 003e1589 016d1f80 00412b8c 0000007e 00000001 00000001 Call Trace: [<004addc2>] sock_init+0x0/0xaa [<0005fc34>] bpf_prog_alloc+0x1a/0x66 [<004addc2>] sock_init+0x0/0xaa [<00281ae0>] bpf_prog_create+0x2e/0x7c [<004addc2>] sock_init+0x0/0xaa [<004aea9e>] ptp_classifier_init+0x22/0x44 [<004ade6a>] sock_init+0xa8/0xaa [<0000210e>] do_one_initcall+0x5a/0x150 [<00034da6>] parse_args+0x0/0x208 [<000020b4>] do_one_initcall+0x0/0x150 [<001e4cb2>] strcpy+0x0/0x1c [<00010001>] stwotoxd+0x5/0x1c [<004994d2>] kernel_init_freeable+0x154/0x1a6 [<001e4cb2>] strcpy+0x0/0x1c [<0049951a>] kernel_init_freeable+0x19c/0x1a6 [<004addc2>] sock_init+0x0/0xaa [<00321510>] kernel_init+0x0/0xd8 [<00321518>] kernel_init+0x8/0xd8 [<00321510>] kernel_init+0x0/0xd8 [<00002890>] ret_from_kernel_thread+0xc/0x14 Code: 204b 200b 4cdf 180c 4e75 700c e0aa 3682 <2748> 001c 214b 0140 022b ffbf 0002 206b 001c 2008 0680 0000 0108 2140 0108 2140 Disabling lock debugging due to kernel taint Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b Using CONFIG_NEED_MULTIPLE_NODES rather than CONFIG_NUMA to guard definitions of zone_to_nid() and zone_set_nid() fixes the issue. Reported-by: Mikael Pettersson <mikpelinux@gmail.com> Fixes: ce6ee46e0f39 ("mm/page_alloc: fix memory map initialization for descending nodes") Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Mikael Pettersson <mikpelinux@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15bpf: Add lockdown check for probe_write_user helperDaniel Borkmann
commit 51e1bb9eeaf7868db56e58f47848e364ab4c4129 upstream. Back then, commit 96ae52279594 ("bpf: Add bpf_probe_write_user BPF helper to be called in tracers") added the bpf_probe_write_user() helper in order to allow to override user space memory. Its original goal was to have a facility to "debug, divert, and manipulate execution of semi-cooperative processes" under CAP_SYS_ADMIN. Write to kernel was explicitly disallowed since it would otherwise tamper with its integrity. One use case was shown in cf9b1199de27 ("samples/bpf: Add test/example of using bpf_probe_write_user bpf helper") where the program DNATs traffic at the time of connect(2) syscall, meaning, it rewrites the arguments to a syscall while they're still in userspace, and before the syscall has a chance to copy the argument into kernel space. These days we have better mechanisms in BPF for achieving the same (e.g. for load-balancers), but without having to write to userspace memory. Of course the bpf_probe_write_user() helper can also be used to abuse many other things for both good or bad purpose. Outside of BPF, there is a similar mechanism for ptrace(2) such as PTRACE_PEEK{TEXT,DATA} and PTRACE_POKE{TEXT,DATA}, but would likely require some more effort. Commit 96ae52279594 explicitly dedicated the helper for experimentation purpose only. Thus, move the helper's availability behind a newly added LOCKDOWN_BPF_WRITE_USER lockdown knob so that the helper is disabled under the "integrity" mode. More fine-grained control can be implemented also from LSM side with this change. Fixes: 96ae52279594 ("bpf: Add bpf_probe_write_user BPF helper to be called in tracers") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-15tee: Correct inappropriate usage of TEE_SHM_DMA_BUF flagSumit Garg
[ Upstream commit 376e4199e327a5cf29b8ec8fb0f64f3d8b429819 ] Currently TEE_SHM_DMA_BUF flag has been inappropriately used to not register shared memory allocated for private usage by underlying TEE driver: OP-TEE in this case. So rather add a new flag as TEE_SHM_PRIV that can be utilized by underlying TEE drivers for private allocation and usage of shared memory. With this corrected, allow tee_shm_alloc_kernel_buf() to allocate a shared memory region without the backing of dma-buf. Cc: stable@vger.kernel.org Signed-off-by: Sumit Garg <sumit.garg@linaro.org> Co-developed-by: Tyler Hicks <tyhicks@linux.microsoft.com> Signed-off-by: Tyler Hicks <tyhicks@linux.microsoft.com> Reviewed-by: Jens Wiklander <jens.wiklander@linaro.org> Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-12xfrm: Fix RCU vs hash_resize_mutex lock inversionFrederic Weisbecker
commit 2580d3f40022642452dd8422bfb8c22e54cf84bb upstream. xfrm_bydst_resize() calls synchronize_rcu() while holding hash_resize_mutex. But then on PREEMPT_RT configurations, xfrm_policy_lookup_bytype() may acquire that mutex while running in an RCU read side critical section. This results in a deadlock. In fact the scope of hash_resize_mutex is way beyond the purpose of xfrm_policy_lookup_bytype() to just fetch a coherent and stable policy for a given destination/direction, along with other details. The lower level net->xfrm.xfrm_policy_lock, which among other things protects per destination/direction references to policy entries, is enough to serialize and benefit from priority inheritance against the write side. As a bonus, it makes it officially a per network namespace synchronization business where a policy table resize on namespace A shouldn't block a policy lookup on namespace B. Fixes: 77cc278f7b20 (xfrm: policy: Use sequence counters with associated lock) Cc: stable@vger.kernel.org Cc: Ahmed S. Darwish <a.darwish@linutronix.de> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Varad Gautam <varad.gautam@suse.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-12tee: add tee_shm_alloc_kernel_buf()Jens Wiklander
commit dc7019b7d0e188d4093b34bd0747ed0d668c63bf upstream. Adds a new function tee_shm_alloc_kernel_buf() to allocate shared memory from a kernel driver. This function can later be made more lightweight by unnecessary dma-buf export. Cc: stable@vger.kernel.org Reviewed-by: Tyler Hicks <tyhicks@linux.microsoft.com> Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-12usb: otg-fsm: Fix hrtimer list corruptionDmitry Osipenko
commit bf88fef0b6f1488abeca594d377991171c00e52a upstream. The HNP work can be re-scheduled while it's still in-fly. This results in re-initialization of the busy work, resetting the hrtimer's list node of the work and crashing kernel with null dereference within kernel/timer once work's timer is expired. It's very easy to trigger this problem by re-plugging USB cable quickly. Initialize HNP work only once to fix this trouble. Unable to handle kernel NULL pointer dereference at virtual address 00000126) ... PC is at __run_timers.part.0+0x150/0x228 LR is at __next_timer_interrupt+0x51/0x9c ... (__run_timers.part.0) from [<c0187a2b>] (run_timer_softirq+0x2f/0x50) (run_timer_softirq) from [<c01013ad>] (__do_softirq+0xd5/0x2f0) (__do_softirq) from [<c012589b>] (irq_exit+0xab/0xb8) (irq_exit) from [<c0170341>] (handle_domain_irq+0x45/0x60) (handle_domain_irq) from [<c04c4a43>] (gic_handle_irq+0x6b/0x7c) (gic_handle_irq) from [<c0100b65>] (__irq_svc+0x65/0xac) Cc: stable@vger.kernel.org Acked-by: Peter Chen <peter.chen@kernel.org> Signed-off-by: Dmitry Osipenko <digetx@gmail.com> Link: https://lore.kernel.org/r/20210717182134.30262-6-digetx@gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-12Bluetooth: defer cleanup of resources in hci_unregister_dev()Tetsuo Handa
[ Upstream commit e04480920d1eec9c061841399aa6f35b6f987d8b ] syzbot is hitting might_sleep() warning at hci_sock_dev_event() due to calling lock_sock() with rw spinlock held [1]. It seems that history of this locking problem is a trial and error. Commit b40df5743ee8 ("[PATCH] bluetooth: fix socket locking in hci_sock_dev_event()") in 2.6.21-rc4 changed bh_lock_sock() to lock_sock() as an attempt to fix lockdep warning. Then, commit 4ce61d1c7a8e ("[BLUETOOTH]: Fix locking in hci_sock_dev_event().") in 2.6.22-rc2 changed lock_sock() to local_bh_disable() + bh_lock_sock_nested() as an attempt to fix the sleep in atomic context warning. Then, commit 4b5dd696f81b ("Bluetooth: Remove local_bh_disable() from hci_sock.c") in 3.3-rc1 removed local_bh_disable(). Then, commit e305509e678b ("Bluetooth: use correct lock to prevent UAF of hdev object") in 5.13-rc5 again changed bh_lock_sock_nested() to lock_sock() as an attempt to fix CVE-2021-3573. This difficulty comes from current implementation that hci_sock_dev_event(HCI_DEV_UNREG) is responsible for dropping all references from sockets because hci_unregister_dev() immediately reclaims resources as soon as returning from hci_sock_dev_event(HCI_DEV_UNREG). But the history suggests that hci_sock_dev_event(HCI_DEV_UNREG) was not doing what it should do. Therefore, instead of trying to detach sockets from device, let's accept not detaching sockets from device at hci_sock_dev_event(HCI_DEV_UNREG), by moving actual cleanup of resources from hci_unregister_dev() to hci_cleanup_dev() which is called by bt_host_release() when all references to this unregistered device (which is a kobject) are gone. Since hci_sock_dev_event(HCI_DEV_UNREG) no longer resets hci_pi(sk)->hdev, we need to check whether this device was unregistered and return an error based on HCI_UNREGISTER flag. There might be subtle behavioral difference in "monitor the hdev" functionality; please report if you found something went wrong due to this patch. Link: https://syzkaller.appspot.com/bug?extid=a5df189917e79d5e59c9 [1] Reported-by: syzbot <syzbot+a5df189917e79d5e59c9@syzkaller.appspotmail.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Fixes: e305509e678b ("Bluetooth: use correct lock to prevent UAF of hdev object") Acked-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-12net: ipv6: fix returned variable type in ip6_skb_dst_mtuAntoine Tenart
[ Upstream commit 4039146777a91e1576da2bf38e0d8a1061a1ae47 ] The patch fixing the returned value of ip6_skb_dst_mtu (int -> unsigned int) was rebased between its initial review and the version applied. In the meantime fade56410c22 was applied, which added a new variable (int) used as the returned value. This lead to a mismatch between the function prototype and the variable used as the return value. Fixes: 40fc3054b458 ("net: ipv6: fix return value of ip6_skb_dst_mtu") Cc: Vadim Fedorenko <vfedorenko@novek.ru> Signed-off-by: Antoine Tenart <atenart@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-08ACPI: fix NULL pointer dereferenceLinus Torvalds
[ Upstream commit fc68f42aa737dc15e7665a4101d4168aadb8e4c4 ] Commit 71f642833284 ("ACPI: utils: Fix reference counting in for_each_acpi_dev_match()") started doing "acpi_dev_put()" on a pointer that was possibly NULL. That fails miserably, because that helper inline function is not set up to handle that case. Just make acpi_dev_put() silently accept a NULL pointer, rather than calling down to put_device() with an invalid offset off that NULL pointer. Link: https://lore.kernel.org/lkml/a607c149-6bf6-0fd0-0e31-100378504da2@kernel.dk/ Reported-and-tested-by: Jens Axboe <axboe@kernel.dk> Tested-by: Daniel Scally <djrscally@gmail.com> Cc: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-08regulator: rt5033: Fix n_voltages settings for BUCK and LDOAxel Lin
[ Upstream commit 6549c46af8551b346bcc0b9043f93848319acd5c ] For linear regulators, the n_voltages should be (max - min) / step + 1. Buck voltage from 1v to 3V, per step 100mV, and vout mask is 0x1f. If value is from 20 to 31, the voltage will all be fixed to 3V. And LDO also, just vout range is different from 1.2v to 3v, step is the same. If value is from 18 to 31, the voltage will also be fixed to 3v. Signed-off-by: Axel Lin <axel.lin@ingics.com> Reviewed-by: ChiYuan Huang <cy_huang@richtek.com> Link: https://lore.kernel.org/r/20210627080418.1718127-1-axel.lin@ingics.com Signed-off-by: Mark Brown <broonie@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-04bpf: Fix pointer arithmetic mask tightening under state pruningDaniel Borkmann
commit e042aa532c84d18ff13291d00620502ce7a38dda upstream. In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space. The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a8307. One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-04bpf: verifier: Allocate idmap scratch in verifier envLorenz Bauer
commit c9e73e3d2b1eb1ea7ff068e05007eec3bd8ef1c9 upstream. func_states_equal makes a very short lived allocation for idmap, probably because it's too large to fit on the stack. However the function is called quite often, leading to a lot of alloc / free churn. Replace the temporary allocation with dedicated scratch space in struct bpf_verifier_env. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-04bpf: Fix leakage due to insufficient speculative store bypass mitigationDaniel Borkmann
[ Upstream commit 2039f26f3aca5b0e419b98f65dd36481337b86ee ] Spectre v4 gadgets make use of memory disambiguation, which is a set of techniques that execute memory access instructions, that is, loads and stores, out of program order; Intel's optimization manual, section 2.4.4.5: A load instruction micro-op may depend on a preceding store. Many microarchitectures block loads until all preceding store addresses are known. The memory disambiguator predicts which loads will not depend on any previous stores. When the disambiguator predicts that a load does not have such a dependency, the load takes its data from the L1 data cache. Eventually, the prediction is verified. If an actual conflict is detected, the load and all succeeding instructions are re-executed. af86ca4e3088 ("bpf: Prevent memory disambiguation attack") tried to mitigate this attack by sanitizing the memory locations through preemptive "fast" (low latency) stores of zero prior to the actual "slow" (high latency) store of a pointer value such that upon dependency misprediction the CPU then speculatively executes the load of the pointer value and retrieves the zero value instead of the attacker controlled scalar value previously stored at that location, meaning, subsequent access in the speculative domain is then redirected to the "zero page". The sanitized preemptive store of zero prior to the actual "slow" store is done through a simple ST instruction based on r10 (frame pointer) with relative offset to the stack location that the verifier has been tracking on the original used register for STX, which does not have to be r10. Thus, there are no memory dependencies for this store, since it's only using r10 and immediate constant of zero; hence af86ca4e3088 /assumed/ a low latency operation. However, a recent attack demonstrated that this mitigation is not sufficient since the preemptive store of zero could also be turned into a "slow" store and is thus bypassed as well: [...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value 31: (7b) *(u64 *)(r10 -16) = r2 // r9 will remain "fast" register, r10 will become "slow" register below 32: (bf) r9 = r10 // JIT maps BPF reg to x86 reg: // r9 -> r15 (callee saved) // r10 -> rbp // train store forward prediction to break dependency link between both r9 // and r10 by evicting them from the predictor's LRU table. 33: (61) r0 = *(u32 *)(r7 +24576) 34: (63) *(u32 *)(r7 +29696) = r0 35: (61) r0 = *(u32 *)(r7 +24580) 36: (63) *(u32 *)(r7 +29700) = r0 37: (61) r0 = *(u32 *)(r7 +24584) 38: (63) *(u32 *)(r7 +29704) = r0 39: (61) r0 = *(u32 *)(r7 +24588) 40: (63) *(u32 *)(r7 +29708) = r0 [...] 543: (61) r0 = *(u32 *)(r7 +25596) 544: (63) *(u32 *)(r7 +30716) = r0 // prepare call to bpf_ringbuf_output() helper. the latter will cause rbp // to spill to stack memory while r13/r14/r15 (all callee saved regs) remain // in hardware registers. rbp becomes slow due to push/pop latency. below is // disasm of bpf_ringbuf_output() helper for better visual context: // // ffffffff8117ee20: 41 54 push r12 // ffffffff8117ee22: 55 push rbp // ffffffff8117ee23: 53 push rbx // ffffffff8117ee24: 48 f7 c1 fc ff ff ff test rcx,0xfffffffffffffffc // ffffffff8117ee2b: 0f 85 af 00 00 00 jne ffffffff8117eee0 <-- jump taken // [...] // ffffffff8117eee0: 49 c7 c4 ea ff ff ff mov r12,0xffffffffffffffea // ffffffff8117eee7: 5b pop rbx // ffffffff8117eee8: 5d pop rbp // ffffffff8117eee9: 4c 89 e0 mov rax,r12 // ffffffff8117eeec: 41 5c pop r12 // ffffffff8117eeee: c3 ret 545: (18) r1 = map[id:4] 547: (bf) r2 = r7 548: (b7) r3 = 0 549: (b7) r4 = 4 550: (85) call bpf_ringbuf_output#194288 // instruction 551 inserted by verifier \ 551: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here // storing map value pointer r7 at fp-16 | since value of r10 is "slow". 552: (7b) *(u64 *)(r10 -16) = r7 / // following "fast" read to the same memory location, but due to dependency // misprediction it will speculatively execute before insn 551/552 completes. 553: (79) r2 = *(u64 *)(r9 -16) // in speculative domain contains attacker controlled r2. in non-speculative // domain this contains r7, and thus accesses r7 +0 below. 554: (71) r3 = *(u8 *)(r2 +0) // leak r3 As can be seen, the current speculative store bypass mitigation which the verifier inserts at line 551 is insufficient since /both/, the write of the zero sanitation as well as the map value pointer are a high latency instruction due to prior memory access via push/pop of r10 (rbp) in contrast to the low latency read in line 553 as r9 (r15) which stays in hardware registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally, fp-16 can still be r2. Initial thoughts to address this issue was to track spilled pointer loads from stack and enforce their load via LDX through r10 as well so that /both/ the preemptive store of zero /as well as/ the load use the /same/ register such that a dependency is created between the store and load. However, this option is not sufficient either since it can be bypassed as well under speculation. An updated attack with pointer spill/fills now _all_ based on r10 would look as follows: [...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value [...] // longer store forward prediction training sequence than before. 2062: (61) r0 = *(u32 *)(r7 +25588) 2063: (63) *(u32 *)(r7 +30708) = r0 2064: (61) r0 = *(u32 *)(r7 +25592) 2065: (63) *(u32 *)(r7 +30712) = r0 2066: (61) r0 = *(u32 *)(r7 +25596) 2067: (63) *(u32 *)(r7 +30716) = r0 // store the speculative load address (scalar) this time after the store // forward prediction training. 2068: (7b) *(u64 *)(r10 -16) = r2 // preoccupy the CPU store port by running sequence of dummy stores. 2069: (63) *(u32 *)(r7 +29696) = r0 2070: (63) *(u32 *)(r7 +29700) = r0 2071: (63) *(u32 *)(r7 +29704) = r0 2072: (63) *(u32 *)(r7 +29708) = r0 2073: (63) *(u32 *)(r7 +29712) = r0 2074: (63) *(u32 *)(r7 +29716) = r0 2075: (63) *(u32 *)(r7 +29720) = r0 2076: (63) *(u32 *)(r7 +29724) = r0 2077: (63) *(u32 *)(r7 +29728) = r0 2078: (63) *(u32 *)(r7 +29732) = r0 2079: (63) *(u32 *)(r7 +29736) = r0 2080: (63) *(u32 *)(r7 +29740) = r0 2081: (63) *(u32 *)(r7 +29744) = r0 2082: (63) *(u32 *)(r7 +29748) = r0 2083: (63) *(u32 *)(r7 +29752) = r0 2084: (63) *(u32 *)(r7 +29756) = r0 2085: (63) *(u32 *)(r7 +29760) = r0 2086: (63) *(u32 *)(r7 +29764) = r0 2087: (63) *(u32 *)(r7 +29768) = r0 2088: (63) *(u32 *)(r7 +29772) = r0 2089: (63) *(u32 *)(r7 +29776) = r0 2090: (63) *(u32 *)(r7 +29780) = r0 2091: (63) *(u32 *)(r7 +29784) = r0 2092: (63) *(u32 *)(r7 +29788) = r0 2093: (63) *(u32 *)(r7 +29792) = r0 2094: (63) *(u32 *)(r7 +29796) = r0 2095: (63) *(u32 *)(r7 +29800) = r0 2096: (63) *(u32 *)(r7 +29804) = r0 2097: (63) *(u32 *)(r7 +29808) = r0 2098: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; same as before, also including the // sanitation store with 0 from the current mitigation by the verifier. 2099: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here 2100: (7b) *(u64 *)(r10 -16) = r7 | since store unit is still busy. // load from stack intended to bypass stores. 2101: (79) r2 = *(u64 *)(r10 -16) 2102: (71) r3 = *(u8 *)(r2 +0) // leak r3 [...] Looking at the CPU microarchitecture, the scheduler might issue loads (such as seen in line 2101) before stores (line 2099,2100) because the load execution units become available while the store execution unit is still busy with the sequence of dummy stores (line 2069-2098). And so the load may use the prior stored scalar from r2 at address r10 -16 for speculation. The updated attack may work less reliable on CPU microarchitectures where loads and stores share execution resources. This concludes that the sanitizing with zero stores from af86ca4e3088 ("bpf: Prevent memory disambiguation attack") is insufficient. Moreover, the detection of stack reuse from af86ca4e3088 where previously data (STACK_MISC) has been written to a given stack slot where a pointer value is now to be stored does not have sufficient coverage as precondition for the mitigation either; for several reasons outlined as follows: 1) Stack content from prior program runs could still be preserved and is therefore not "random", best example is to split a speculative store bypass attack between tail calls, program A would prepare and store the oob address at a given stack slot and then tail call into program B which does the "slow" store of a pointer to the stack with subsequent "fast" read. From program B PoV such stack slot type is STACK_INVALID, and therefore also must be subject to mitigation. 2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr) condition, for example, the previous content of that memory location could also be a pointer to map or map value. Without the fix, a speculative store bypass is not mitigated in such precondition and can then lead to a type confusion in the speculative domain leaking kernel memory near these pointer types. While brainstorming on various alternative mitigation possibilities, we also stumbled upon a retrospective from Chrome developers [0]: [...] For variant 4, we implemented a mitigation to zero the unused memory of the heap prior to allocation, which cost about 1% when done concurrently and 4% for scavenging. Variant 4 defeats everything we could think of. We explored more mitigations for variant 4 but the threat proved to be more pervasive and dangerous than we anticipated. For example, stack slots used by the register allocator in the optimizing compiler could be subject to type confusion, leading to pointer crafting. Mitigating type confusion for stack slots alone would have required a complete redesign of the backend of the optimizing compiler, perhaps man years of work, without a guarantee of completeness. [...] From BPF side, the problem space is reduced, however, options are rather limited. One idea that has been explored was to xor-obfuscate pointer spills to the BPF stack: [...] // preoccupy the CPU store port by running sequence of dummy stores. [...] 2106: (63) *(u32 *)(r7 +29796) = r0 2107: (63) *(u32 *)(r7 +29800) = r0 2108: (63) *(u32 *)(r7 +29804) = r0 2109: (63) *(u32 *)(r7 +29808) = r0 2110: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; xored with random 'secret' value // of 943576462 before store ... 2111: (b4) w11 = 943576462 2112: (af) r11 ^= r7 2113: (7b) *(u64 *)(r10 -16) = r11 2114: (79) r11 = *(u64 *)(r10 -16) 2115: (b4) w2 = 943576462 2116: (af) r2 ^= r11 // ... and restored with the same 'secret' value with the help of AX reg. 2117: (71) r3 = *(u8 *)(r2 +0) [...] While the above would not prevent speculation, it would make data leakage infeasible by directing it to random locations. In order to be effective and prevent type confusion under speculation, such random secret would have to be regenerated for each store. The additional complexity involved for a tracking mechanism that prevents jumps such that restoring spilled pointers would not get corrupted is not worth the gain for unprivileged. Hence, the fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC instruction which the x86 JIT translates into a lfence opcode. Inserting the latter in between the store and load instruction is one of the mitigations options [1]. The x86 instruction manual notes: [...] An LFENCE that follows an instruction that stores to memory might complete before the data being stored have become globally visible. [...] The latter meaning that the preceding store instruction finished execution and the store is at minimum guaranteed to be in the CPU's store queue, but it's not guaranteed to be in that CPU's L1 cache at that point (globally visible). The latter would only be guaranteed via sfence. So the load which is guaranteed to execute after the lfence for that local CPU would have to rely on store-to-load forwarding. [2], in section 2.3 on store buffers says: [...] For every store operation that is added to the ROB, an entry is allocated in the store buffer. This entry requires both the virtual and physical address of the target. Only if there is no free entry in the store buffer, the frontend stalls until there is an empty slot available in the store buffer again. Otherwise, the CPU can immediately continue adding subsequent instructions to the ROB and execute them out of order. On Intel CPUs, the store buffer has up to 56 entries. [...] One small upside on the fix is that it lifts constraints from af86ca4e3088 where the sanitize_stack_off relative to r10 must be the same when coming from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX or BPF_ST instruction. This happens either when we store a pointer or data value to the BPF stack for the first time, or upon later pointer spills. The former needs to be enforced since otherwise stale stack data could be leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST | BPF_NOSPEC mapping is currently optimized away, but others could emit a speculation barrier as well if necessary. For real-world unprivileged programs e.g. generated by LLVM, pointer spill/fill is only generated upon register pressure and LLVM only tries to do that for pointers which are not used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC sanitation for the STACK_INVALID case when the first write to a stack slot occurs e.g. upon map lookup. In future we might refine ways to mitigate the latter cost. [0] https://arxiv.org/pdf/1902.05178.pdf [1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/ [2] https://arxiv.org/pdf/1905.05725.pdf Fixes: af86ca4e3088 ("bpf: Prevent memory disambiguation attack") Fixes: f7cf25b2026d ("bpf: track spill/fill of constants") Co-developed-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-04bpf: Introduce BPF nospec instruction for mitigating Spectre v4Daniel Borkmann
[ Upstream commit f5e81d1117501546b7be050c5fbafa6efd2c722c ] In case of JITs, each of the JIT backends compiles the BPF nospec instruction /either/ to a machine instruction which emits a speculation barrier /or/ to /no/ machine instruction in case the underlying architecture is not affected by Speculative Store Bypass or has different mitigations in place already. This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence' instruction for mitigation. In case of arm64, we rely on the firmware mitigation as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled, it works for all of the kernel code with no need to provide any additional instructions here (hence only comment in arm64 JIT). Other archs can follow as needed. The BPF nospec instruction is specifically targeting Spectre v4 since i) we don't use a serialization barrier for the Spectre v1 case, and ii) mitigation instructions for v1 and v4 might be different on some archs. The BPF nospec is required for a future commit, where the BPF verifier does annotate intermediate BPF programs with speculation barriers. Co-developed-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-04skmsg: Make sk_psock_destroy() staticCong Wang
[ Upstream commit 8063e184e49011f6f3f34f6c358dc8a83890bb5b ] sk_psock_destroy() is a RCU callback, I can't see any reason why it could be used outside. Signed-off-by: Cong Wang <cong.wang@bytedance.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: John Fastabend <john.fastabend@gmail.com> Cc: Jakub Sitnicki <jakub@cloudflare.com> Cc: Lorenz Bauer <lmb@cloudflare.com> Link: https://lore.kernel.org/bpf/20210127221501.46866-1-xiyou.wangcong@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-04net: llc: fix skb_over_panicPavel Skripkin
[ Upstream commit c7c9d2102c9c098916ab9e0ab248006107d00d6c ] Syzbot reported skb_over_panic() in llc_pdu_init_as_xid_cmd(). The problem was in wrong LCC header manipulations. Syzbot's reproducer tries to send XID packet. llc_ui_sendmsg() is doing following steps: 1. skb allocation with size = len + header size len is passed from userpace and header size is 3 since addr->sllc_xid is set. 2. skb_reserve() for header_len = 3 3. filling all other space with memcpy_from_msg() Ok, at this moment we have fully loaded skb, only headers needs to be filled. Then code comes to llc_sap_action_send_xid_c(). This function pushes 3 bytes for LLC PDU header and initializes it. Then comes llc_pdu_init_as_xid_cmd(). It initalizes next 3 bytes *AFTER* LLC PDU header and call skb_push(skb, 3). This looks wrong for 2 reasons: 1. Bytes rigth after LLC header are user data, so this function was overwriting payload. 2. skb_push(skb, 3) call can cause skb_over_panic() since all free space was filled in llc_ui_sendmsg(). (This can happen is user passed 686 len: 686 + 14 (eth header) + 3 (LLC header) = 703. SKB_DATA_ALIGN(703) = 704) So, in this patch I added 2 new private constansts: LLC_PDU_TYPE_U_XID and LLC_PDU_LEN_U_XID. LLC_PDU_LEN_U_XID is used to correctly reserve header size to handle LLC + XID case. LLC_PDU_TYPE_U_XID is used by llc_pdu_header_init() function to push 6 bytes instead of 3. And finally I removed skb_push() call from llc_pdu_init_as_xid_cmd(). This changes should not affect other parts of LLC, since after all steps we just transmit buffer. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Reported-and-tested-by: syzbot+5e5a981ad7cc54c4b2b4@syzkaller.appspotmail.com Signed-off-by: Pavel Skripkin <paskripkin@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-04bpf: Fix OOB read when printing XDP link fdinfoLorenz Bauer
[ Upstream commit d6371c76e20d7d3f61b05fd67b596af4d14a8886 ] We got the following UBSAN report on one of our testing machines: ================================================================================ UBSAN: array-index-out-of-bounds in kernel/bpf/syscall.c:2389:24 index 6 is out of range for type 'char *[6]' CPU: 43 PID: 930921 Comm: systemd-coredum Tainted: G O 5.10.48-cloudflare-kasan-2021.7.0 #1 Hardware name: <snip> Call Trace: dump_stack+0x7d/0xa3 ubsan_epilogue+0x5/0x40 __ubsan_handle_out_of_bounds.cold+0x43/0x48 ? seq_printf+0x17d/0x250 bpf_link_show_fdinfo+0x329/0x380 ? bpf_map_value_size+0xe0/0xe0 ? put_files_struct+0x20/0x2d0 ? __kasan_kmalloc.constprop.0+0xc2/0xd0 seq_show+0x3f7/0x540 seq_read_iter+0x3f8/0x1040 seq_read+0x329/0x500 ? seq_read_iter+0x1040/0x1040 ? __fsnotify_parent+0x80/0x820 ? __fsnotify_update_child_dentry_flags+0x380/0x380 vfs_read+0x123/0x460 ksys_read+0xed/0x1c0 ? __x64_sys_pwrite64+0x1f0/0x1f0 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 <snip> ================================================================================ ================================================================================ UBSAN: object-size-mismatch in kernel/bpf/syscall.c:2384:2 From the report, we can infer that some array access in bpf_link_show_fdinfo at index 6 is out of bounds. The obvious candidate is bpf_link_type_strs[BPF_LINK_TYPE_XDP] with BPF_LINK_TYPE_XDP == 6. It turns out that BPF_LINK_TYPE_XDP is missing from bpf_types.h and therefore doesn't have an entry in bpf_link_type_strs: pos: 0 flags: 02000000 mnt_id: 13 link_type: (null) link_id: 4 prog_tag: bcf7977d3b93787c prog_id: 4 ifindex: 1 Fixes: aa8d3a716b59 ("bpf, xdp: Add bpf_link-based XDP attachment API") Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210719085134.43325-2-lmb@cloudflare.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-31sctp: move 198 addresses from unusable to private scopeXin Long
[ Upstream commit 1d11fa231cabeae09a95cb3e4cf1d9dd34e00f08 ] The doc draft-stewart-tsvwg-sctp-ipv4-00 that restricts 198 addresses was never published. These addresses as private addresses should be allowed to use in SCTP. As Michael Tuexen suggested, this patch is to move 198 addresses from unusable to private scope. Reported-by: Sérgio <surkamp@gmail.com> Signed-off-by: Xin Long <lucien.xin@gmail.com> Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-31net: annotate data race around sk_ll_usecEric Dumazet
[ Upstream commit 0dbffbb5335a1e3aa6855e4ee317e25e669dd302 ] sk_ll_usec is read locklessly from sk_can_busy_loop() while another thread can change its value in sock_setsockopt() This is correct but needs annotations. BUG: KCSAN: data-race in __skb_try_recv_datagram / sock_setsockopt write to 0xffff88814eb5f904 of 4 bytes by task 14011 on cpu 0: sock_setsockopt+0x1287/0x2090 net/core/sock.c:1175 __sys_setsockopt+0x14f/0x200 net/socket.c:2100 __do_sys_setsockopt net/socket.c:2115 [inline] __se_sys_setsockopt net/socket.c:2112 [inline] __x64_sys_setsockopt+0x62/0x70 net/socket.c:2112 do_syscall_64+0x4a/0x90 arch/x86/entry/common.c:47 entry_SYSCALL_64_after_hwframe+0x44/0xae read to 0xffff88814eb5f904 of 4 bytes by task 14001 on cpu 1: sk_can_busy_loop include/net/busy_poll.h:41 [inline] __skb_try_recv_datagram+0x14f/0x320 net/core/datagram.c:273 unix_dgram_recvmsg+0x14c/0x870 net/unix/af_unix.c:2101 unix_seqpacket_recvmsg+0x5a/0x70 net/unix/af_unix.c:2067 ____sys_recvmsg+0x15d/0x310 include/linux/uio.h:244 ___sys_recvmsg net/socket.c:2598 [inline] do_recvmmsg+0x35c/0x9f0 net/socket.c:2692 __sys_recvmmsg net/socket.c:2771 [inline] __do_sys_recvmmsg net/socket.c:2794 [inline] __se_sys_recvmmsg net/socket.c:2787 [inline] __x64_sys_recvmmsg+0xcf/0x150 net/socket.c:2787 do_syscall_64+0x4a/0x90 arch/x86/entry/common.c:47 entry_SYSCALL_64_after_hwframe+0x44/0xae value changed: 0x00000000 -> 0x00000101 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 14001 Comm: syz-executor.3 Not tainted 5.13.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-31cgroup1: fix leaked context root causing sporadic NULL deref in LTPPaul Gortmaker
commit 1e7107c5ef44431bc1ebbd4c353f1d7c22e5f2ec upstream. Richard reported sporadic (roughly one in 10 or so) null dereferences and other strange behaviour for a set of automated LTP tests. Things like: BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1516 Comm: umount Not tainted 5.10.0-yocto-standard #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-48-gd9c812dda519-prebuilt.qemu.org 04/01/2014 RIP: 0010:kernfs_sop_show_path+0x1b/0x60 ...or these others: RIP: 0010:do_mkdirat+0x6a/0xf0 RIP: 0010:d_alloc_parallel+0x98/0x510 RIP: 0010:do_readlinkat+0x86/0x120 There were other less common instances of some kind of a general scribble but the common theme was mount and cgroup and a dubious dentry triggering the NULL dereference. I was only able to reproduce it under qemu by replicating Richard's setup as closely as possible - I never did get it to happen on bare metal, even while keeping everything else the same. In commit 71d883c37e8d ("cgroup_do_mount(): massage calling conventions") we see this as a part of the overall change: -------------- struct cgroup_subsys *ss; - struct dentry *dentry; [...] - dentry = cgroup_do_mount(&cgroup_fs_type, fc->sb_flags, root, - CGROUP_SUPER_MAGIC, ns); [...] - if (percpu_ref_is_dying(&root->cgrp.self.refcnt)) { - struct super_block *sb = dentry->d_sb; - dput(dentry); + ret = cgroup_do_mount(fc, CGROUP_SUPER_MAGIC, ns); + if (!ret && percpu_ref_is_dying(&root->cgrp.self.refcnt)) { + struct super_block *sb = fc->root->d_sb; + dput(fc->root); deactivate_locked_super(sb); msleep(10); return restart_syscall(); } -------------- In changing from the local "*dentry" variable to using fc->root, we now export/leave that dentry pointer in the file context after doing the dput() in the unlikely "is_dying" case. With LTP doing a crazy amount of back to back mount/unmount [testcases/bin/cgroup_regression_5_1.sh] the unlikely becomes slightly likely and then bad things happen. A fix would be to not leave the stale reference in fc->root as follows: --------------                 dput(fc->root); + fc->root = NULL;                 deactivate_locked_super(sb); -------------- ...but then we are just open-coding a duplicate of fc_drop_locked() so we simply use that instead. Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: stable@vger.kernel.org # v5.1+ Reported-by: Richard Purdie <richard.purdie@linuxfoundation.org> Fixes: 71d883c37e8d ("cgroup_do_mount(): massage calling conventions") Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-28drm: Return -ENOTTY for non-drm ioctlsCharles Baylis
commit 3abab27c322e0f2acf981595aa8040c9164dc9fb upstream. drm: Return -ENOTTY for non-drm ioctls Return -ENOTTY from drm_ioctl() when userspace passes in a cmd number which doesn't relate to the drm subsystem. Glibc uses the TCGETS ioctl to implement isatty(), and without this change isatty() returns it incorrectly returns true for drm devices. To test run this command: $ if [ -t 0 ]; then echo is a tty; fi < /dev/dri/card0 which shows "is a tty" without this patch. This may also modify memory which the userspace application is not expecting. Signed-off-by: Charles Baylis <cb-kernel@fishzet.co.uk> Cc: stable@vger.kernel.org Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/YPG3IBlzaMhfPqCr@stando.fishzet.co.uk Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-28memblock: make for_each_mem_range() traverse MEMBLOCK_HOTPLUG regionsMike Rapoport
commit 79e482e9c3ae86e849c701c846592e72baddda5a upstream. Commit b10d6bca8720 ("arch, drivers: replace for_each_membock() with for_each_mem_range()") didn't take into account that when there is movable_node parameter in the kernel command line, for_each_mem_range() would skip ranges marked with MEMBLOCK_HOTPLUG. The page table setup code in POWER uses for_each_mem_range() to create the linear mapping of the physical memory and since the regions marked as MEMORY_HOTPLUG are skipped, they never make it to the linear map. A later access to the memory in those ranges will fail: BUG: Unable to handle kernel data access on write at 0xc000000400000000 Faulting instruction address: 0xc00000000008a3c0 Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries Modules linked in: CPU: 0 PID: 53 Comm: kworker/u2:0 Not tainted 5.13.0 #7 NIP: c00000000008a3c0 LR: c0000000003c1ed8 CTR: 0000000000000040 REGS: c000000008a57770 TRAP: 0300 Not tainted (5.13.0) MSR: 8000000002009033 <SF,VEC,EE,ME,IR,DR,RI,LE> CR: 84222202 XER: 20040000 CFAR: c0000000003c1ed4 DAR: c000000400000000 DSISR: 42000000 IRQMASK: 0 GPR00: c0000000003c1ed8 c000000008a57a10 c0000000019da700 c000000400000000 GPR04: 0000000000000280 0000000000000180 0000000000000400 0000000000000200 GPR08: 0000000000000100 0000000000000080 0000000000000040 0000000000000300 GPR12: 0000000000000380 c000000001bc0000 c0000000001660c8 c000000006337e00 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000040000000 0000000020000000 c000000001a81990 c000000008c30000 GPR24: c000000008c20000 c000000001a81998 000fffffffff0000 c000000001a819a0 GPR28: c000000001a81908 c00c000001000000 c000000008c40000 c000000008a64680 NIP clear_user_page+0x50/0x80 LR __handle_mm_fault+0xc88/0x1910 Call Trace: __handle_mm_fault+0xc44/0x1910 (unreliable) handle_mm_fault+0x130/0x2a0 __get_user_pages+0x248/0x610 __get_user_pages_remote+0x12c/0x3e0 get_arg_page+0x54/0xf0 copy_string_kernel+0x11c/0x210 kernel_execve+0x16c/0x220 call_usermodehelper_exec_async+0x1b0/0x2f0 ret_from_kernel_thread+0x5c/0x70 Instruction dump: 79280fa4 79271764 79261f24 794ae8e2 7ca94214 7d683a14 7c893a14 7d893050 7d4903a6 60000000 60000000 60000000 <7c001fec> 7c091fec 7c081fec 7c051fec ---[ end trace 490b8c67e6075e09 ]--- Making for_each_mem_range() include MEMBLOCK_HOTPLUG regions in the traversal fixes this issue. Link: https://bugzilla.redhat.com/show_bug.cgi?id=1976100 Link: https://lkml.kernel.org/r/20210712071132.20902-1-rppt@kernel.org Fixes: b10d6bca8720 ("arch, drivers: replace for_each_membock() with for_each_mem_range()") Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Greg Kurz <groug@kaod.org> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: <stable@vger.kernel.org> [5.10+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>