summaryrefslogtreecommitdiff
path: root/kernel/bpf/core.c
AgeCommit message (Collapse)Author
2022-06-29bpf: minimize number of allocated lsm slots per programStanislav Fomichev
Previous patch adds 1:1 mapping between all 211 LSM hooks and bpf_cgroup program array. Instead of reserving a slot per possible hook, reserve 10 slots per cgroup for lsm programs. Those slots are dynamically allocated on demand and reclaimed. struct cgroup_bpf { struct bpf_prog_array * effective[33]; /* 0 264 */ /* --- cacheline 4 boundary (256 bytes) was 8 bytes ago --- */ struct hlist_head progs[33]; /* 264 264 */ /* --- cacheline 8 boundary (512 bytes) was 16 bytes ago --- */ u8 flags[33]; /* 528 33 */ /* XXX 7 bytes hole, try to pack */ struct list_head storages; /* 568 16 */ /* --- cacheline 9 boundary (576 bytes) was 8 bytes ago --- */ struct bpf_prog_array * inactive; /* 584 8 */ struct percpu_ref refcnt; /* 592 16 */ struct work_struct release_work; /* 608 72 */ /* size: 680, cachelines: 11, members: 7 */ /* sum members: 673, holes: 1, sum holes: 7 */ /* last cacheline: 40 bytes */ }; Reviewed-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/r/20220628174314.1216643-5-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-06-29bpf: per-cgroup lsm flavorStanislav Fomichev
Allow attaching to lsm hooks in the cgroup context. Attaching to per-cgroup LSM works exactly like attaching to other per-cgroup hooks. New BPF_LSM_CGROUP is added to trigger new mode; the actual lsm hook we attach to is signaled via existing attach_btf_id. For the hooks that have 'struct socket' or 'struct sock' as its first argument, we use the cgroup associated with that socket. For the rest, we use 'current' cgroup (this is all on default hierarchy == v2 only). Note that for some hooks that work on 'struct sock' we still take the cgroup from 'current' because some of them work on the socket that hasn't been properly initialized yet. Behind the scenes, we allocate a shim program that is attached to the trampoline and runs cgroup effective BPF programs array. This shim has some rudimentary ref counting and can be shared between several programs attaching to the same lsm hook from different cgroups. Note that this patch bloats cgroup size because we add 211 cgroup_bpf_attach_type(s) for simplicity sake. This will be addressed in the subsequent patch. Also note that we only add non-sleepable flavor for now. To enable sleepable use-cases, bpf_prog_run_array_cg has to grab trace rcu, shim programs have to be freed via trace rcu, cgroup_bpf.effective should be also trace-rcu-managed + maybe some other changes that I'm not aware of. Reviewed-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/r/20220628174314.1216643-4-sdf@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-06-21bpf, x64: Add predicate for bpf2bpf with tailcalls support in JITTony Ambardar
The BPF core/verifier is hard-coded to permit mixing bpf2bpf and tail calls for only x86-64. Change the logic to instead rely on a new weak function 'bool bpf_jit_supports_subprog_tailcalls(void)', which a capable JIT backend can override. Update the x86-64 eBPF JIT to reflect this. Signed-off-by: Tony Ambardar <Tony.Ambardar@gmail.com> [jakub: drop MIPS bits and tweak patch subject] Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220617105735.733938-2-jakub@cloudflare.com
2022-06-16bpf: implement sleepable uprobes by chaining gpsDelyan Kratunov
uprobes work by raising a trap, setting a task flag from within the interrupt handler, and processing the actual work for the uprobe on the way back to userspace. As a result, uprobe handlers already execute in a might_fault/_sleep context. The primary obstacle to sleepable bpf uprobe programs is therefore on the bpf side. Namely, the bpf_prog_array attached to the uprobe is protected by normal rcu. In order for uprobe bpf programs to become sleepable, it has to be protected by the tasks_trace rcu flavor instead (and kfree() called after a corresponding grace period). Therefore, the free path for bpf_prog_array now chains a tasks_trace and normal grace periods one after the other. Users who iterate under tasks_trace read section would be safe, as would users who iterate under normal read sections (from non-sleepable locations). The downside is that the tasks_trace latency affects all perf_event-attached bpf programs (and not just uprobe ones). This is deemed safe given the possible attach rates for kprobe/uprobe/tp programs. Separately, non-sleepable programs need access to dynamically sized rcu-protected maps, so bpf_run_prog_array_sleepables now conditionally takes an rcu read section, in addition to the overarching tasks_trace section. Signed-off-by: Delyan Kratunov <delyank@fb.com> Link: https://lore.kernel.org/r/ce844d62a2fd0443b08c5ab02e95bc7149f9aeb1.1655248076.git.delyank@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-06-02bpf: Correct the comment about insn_to_jit_offPu Lehui
The insn_to_jit_off passed to bpf_prog_fill_jited_linfo should be the first byte of the next instruction, or the byte off to the end of the current instruction. Signed-off-by: Pu Lehui <pulehui@huawei.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20220530092815.1112406-4-pulehui@huawei.com
2022-05-28bpf: Fix probe read error in ___bpf_prog_run()Menglong Dong
I think there is something wrong with BPF_PROBE_MEM in ___bpf_prog_run() in big-endian machine. Let's make a test and see what will happen if we want to load a 'u16' with BPF_PROBE_MEM. Let's make the src value '0x0001', the value of dest register will become 0x0001000000000000, as the value will be loaded to the first 2 byte of DST with following code: bpf_probe_read_kernel(&DST, SIZE, (const void *)(long) (SRC + insn->off)); Obviously, the value in DST is not correct. In fact, we can compare BPF_PROBE_MEM with LDX_MEM_H: DST = *(SIZE *)(unsigned long) (SRC + insn->off); If the memory load is done by LDX_MEM_H, the value in DST will be 0x1 now. And I think this error results in the test case 'test_bpf_sk_storage_map' failing: test_bpf_sk_storage_map:PASS:bpf_iter_bpf_sk_storage_map__open_and_load 0 nsec test_bpf_sk_storage_map:PASS:socket 0 nsec test_bpf_sk_storage_map:PASS:map_update 0 nsec test_bpf_sk_storage_map:PASS:socket 0 nsec test_bpf_sk_storage_map:PASS:map_update 0 nsec test_bpf_sk_storage_map:PASS:socket 0 nsec test_bpf_sk_storage_map:PASS:map_update 0 nsec test_bpf_sk_storage_map:PASS:attach_iter 0 nsec test_bpf_sk_storage_map:PASS:create_iter 0 nsec test_bpf_sk_storage_map:PASS:read 0 nsec test_bpf_sk_storage_map:FAIL:ipv6_sk_count got 0 expected 3 $10/26 bpf_iter/bpf_sk_storage_map:FAIL The code of the test case is simply, it will load sk->sk_family to the register with BPF_PROBE_MEM and check if it is AF_INET6. With this patch, now the test case 'bpf_iter' can pass: $10 bpf_iter:OK Fixes: 2a02759ef5f8 ("bpf: Add support for BTF pointers to interpreter") Signed-off-by: Menglong Dong <imagedong@tencent.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Jiang Biao <benbjiang@tencent.com> Reviewed-by: Hao Peng <flyingpeng@tencent.com> Cc: Ilya Leoshkevich <iii@linux.ibm.com> Link: https://lore.kernel.org/bpf/20220524021228.533216-1-imagedong@tencent.com
2022-05-23bpf: Introduce bpf_arch_text_invalidate for bpf_prog_packSong Liu
Introduce bpf_arch_text_invalidate and use it to fill unused part of the bpf_prog_pack with illegal instructions when a BPF program is freed. Fixes: 57631054fae6 ("bpf: Introduce bpf_prog_pack allocator") Fixes: 33c9805860e5 ("bpf: Introduce bpf_jit_binary_pack_[alloc|finalize|free]") Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220520235758.1858153-4-song@kernel.org
2022-05-23bpf: Fill new bpf_prog_pack with illegal instructionsSong Liu
bpf_prog_pack enables sharing huge pages among multiple BPF programs. These pages are marked as executable before the JIT engine fill it with BPF programs. To make these pages safe, fill the hole bpf_prog_pack with illegal instructions before making it executable. Fixes: 57631054fae6 ("bpf: Introduce bpf_prog_pack allocator") Fixes: 33c9805860e5 ("bpf: Introduce bpf_jit_binary_pack_[alloc|finalize|free]") Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220520235758.1858153-2-song@kernel.org
2022-05-13bpf: Fix combination of jit blinding and pointers to bpf subprogs.Alexei Starovoitov
The combination of jit blinding and pointers to bpf subprogs causes: [ 36.989548] BUG: unable to handle page fault for address: 0000000100000001 [ 36.990342] #PF: supervisor instruction fetch in kernel mode [ 36.990968] #PF: error_code(0x0010) - not-present page [ 36.994859] RIP: 0010:0x100000001 [ 36.995209] Code: Unable to access opcode bytes at RIP 0xffffffd7. [ 37.004091] Call Trace: [ 37.004351] <TASK> [ 37.004576] ? bpf_loop+0x4d/0x70 [ 37.004932] ? bpf_prog_3899083f75e4c5de_F+0xe3/0x13b The jit blinding logic didn't recognize that ld_imm64 with an address of bpf subprogram is a special instruction and proceeded to randomize it. By itself it wouldn't have been an issue, but jit_subprogs() logic relies on two step process to JIT all subprogs and then JIT them again when addresses of all subprogs are known. Blinding process in the first JIT phase caused second JIT to miss adjustment of special ld_imm64. Fix this issue by ignoring special ld_imm64 instructions that don't have user controlled constants and shouldn't be blinded. Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper") Reported-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20220513011025.13344-1-alexei.starovoitov@gmail.com
2022-05-11bpf: add bpf_map_lookup_percpu_elem for percpu mapFeng Zhou
Add new ebpf helpers bpf_map_lookup_percpu_elem. The implementation method is relatively simple, refer to the implementation method of map_lookup_elem of percpu map, increase the parameters of cpu, and obtain it according to the specified cpu. Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com> Link: https://lore.kernel.org/r/20220511093854.411-2-zhoufeng.zf@bytedance.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-03-21bpf: Fix bpf_prog_pack when PMU_SIZE is not definedSong Liu
PMD_SIZE is not available in some special config, e.g. ARCH=arm with CONFIG_MMU=n. Use bpf_prog_pack of PAGE_SIZE in these cases. Fixes: ef078600eec2 ("bpf: Select proper size for bpf_prog_pack") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220321180009.1944482-3-song@kernel.org
2022-03-21bpf: Fix bpf_prog_pack for multi-node setupSong Liu
module_alloc requires num_online_nodes * PMD_SIZE to allocate huge pages. bpf_prog_pack uses pack of size num_online_nodes * PMD_SIZE. OTOH, module_alloc returns addresses that are PMD_SIZE aligned (instead of num_online_nodes * PMD_SIZE aligned). Therefore, PMD_MASK should be used to calculate pack_ptr in bpf_prog_pack_free(). Fixes: ef078600eec2 ("bpf: Select proper size for bpf_prog_pack") Reported-by: syzbot+c946805b5ce6ab87df0b@syzkaller.appspotmail.com Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220321180009.1944482-2-song@kernel.org
2022-03-20bpf: Select proper size for bpf_prog_packSong Liu
Using HPAGE_PMD_SIZE as the size for bpf_prog_pack is not ideal in some cases. Specifically, for NUMA systems, __vmalloc_node_range requires PMD_SIZE * num_online_nodes() to allocate huge pages. Also, if the system does not support huge pages (i.e., with cmdline option nohugevmalloc), it is better to use PAGE_SIZE packs. Add logic to select proper size for bpf_prog_pack. This solution is not ideal, as it makes assumption about the behavior of module_alloc and __vmalloc_node_range. However, it appears to be the easiest solution as it doesn't require changes in module_alloc and vmalloc code. Fixes: 57631054fae6 ("bpf: Introduce bpf_prog_pack allocator") Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220311201135.3573610-1-song@kernel.org
2022-03-16bpf: Fix net.core.bpf_jit_harden raceHou Tao
It is the bpf_jit_harden counterpart to commit 60b58afc96c9 ("bpf: fix net.core.bpf_jit_enable race"). bpf_jit_harden will be tested twice for each subprog if there are subprogs in bpf program and constant blinding may increase the length of program, so when running "./test_progs -t subprogs" and toggling bpf_jit_harden between 0 and 2, jit_subprogs may fail because constant blinding increases the length of subprog instructions during extra passs. So cache the value of bpf_jit_blinding_enabled() during program allocation, and use the cached value during constant blinding, subprog JITing and args tracking of tail call. Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220309123321.2400262-4-houtao1@huawei.com
2022-03-02bpf, x86: Set header->size properly before freeing itSong Liu
On do_jit failure path, the header is freed by bpf_jit_binary_pack_free. While bpf_jit_binary_pack_free doesn't require proper ro_header->size, bpf_prog_pack_free still uses it. Set header->size in bpf_int_jit_compile before calling bpf_jit_binary_pack_free. Fixes: 1022a5498f6f ("bpf, x86_64: Use bpf_jit_binary_pack_alloc") Fixes: 33c9805860e5 ("bpf: Introduce bpf_jit_binary_pack_[alloc|finalize|free]") Reported-by: Kui-Feng Lee <kuifeng@fb.com> Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20220302175126.247459-3-song@kernel.org
2022-02-17bpf: bpf_prog_pack: Set proper size before freeing ro_headerSong Liu
bpf_prog_pack_free() uses header->size to decide whether the header should be freed with module_memfree() or the bpf_prog_pack logic. However, in kvmalloc() failure path of bpf_jit_binary_pack_alloc(), header->size is not set yet. As a result, bpf_prog_pack_free() may treat a slice of a pack as a standalone kvmalloc'd header and call module_memfree() on the whole pack. This in turn causes use-after-free by other users of the pack. Fix this by setting ro_header->size before freeing ro_header. Fixes: 33c9805860e5 ("bpf: Introduce bpf_jit_binary_pack_[alloc|finalize|free]") Reported-by: syzbot+2f649ec6d2eea1495a8f@syzkaller.appspotmail.com Reported-by: syzbot+ecb1e7e51c52f68f7481@syzkaller.appspotmail.com Reported-by: syzbot+87f65c75f4a72db05445@syzkaller.appspotmail.com Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220217183001.1876034-1-song@kernel.org
2022-02-10bpf: Fix bpf_prog_pack build for ppc64_defconfigSong Liu
bpf_prog_pack causes build error with powerpc ppc64_defconfig: kernel/bpf/core.c:830:23: error: variably modified 'bitmap' at file scope 830 | unsigned long bitmap[BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)]; | ^~~~~~ This is because the marco expands as: unsigned long bitmap[((((((1UL) << (16 + __pte_index_size)) / (1 << 6))) \ + ((sizeof(long) * 8)) - 1) / ((sizeof(long) * 8)))]; where __pte_index_size is a global variable. Fix it by turning bitmap into a 0-length array. Fixes: 57631054fae6 ("bpf: Introduce bpf_prog_pack allocator") Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220211024939.2962537-1-song@kernel.org
2022-02-08bpf: Fix bpf_prog_pack build HPAGE_PMD_SIZESong Liu
Fix build with CONFIG_TRANSPARENT_HUGEPAGE=n with BPF_PROG_PACK_SIZE as PAGE_SIZE. Fixes: 57631054fae6 ("bpf: Introduce bpf_prog_pack allocator") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220208220509.4180389-3-song@kernel.org
2022-02-07bpf: Introduce bpf_jit_binary_pack_[alloc|finalize|free]Song Liu
This is the jit binary allocator built on top of bpf_prog_pack. bpf_prog_pack allocates RO memory, which cannot be used directly by the JIT engine. Therefore, a temporary rw buffer is allocated for the JIT engine. Once JIT is done, bpf_jit_binary_pack_finalize is used to copy the program to the RO memory. bpf_jit_binary_pack_alloc reserves 16 bytes of extra space for illegal instructions, which is small than the 128 bytes space reserved by bpf_jit_binary_alloc. This change is necessary for bpf_jit_binary_hdr to find the correct header. Also, flag use_bpf_prog_pack is added to differentiate a program allocated by bpf_jit_binary_pack_alloc. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220204185742.271030-9-song@kernel.org
2022-02-07bpf: Introduce bpf_prog_pack allocatorSong Liu
Most BPF programs are small, but they consume a page each. For systems with busy traffic and many BPF programs, this could add significant pressure to instruction TLB. High iTLB pressure usually causes slow down for the whole system, which includes visible performance degradation for production workloads. Introduce bpf_prog_pack allocator to pack multiple BPF programs in a huge page. The memory is then allocated in 64 byte chunks. Memory allocated by bpf_prog_pack allocator is RO protected after initial allocation. To write to it, the user (jit engine) need to use text poke API. Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220204185742.271030-8-song@kernel.org
2022-02-07bpf: Introduce bpf_arch_text_copySong Liu
This will be used to copy JITed text to RO protected module memory. On x86, bpf_arch_text_copy is implemented with text_poke_copy. bpf_arch_text_copy returns pointer to dst on success, and ERR_PTR(errno) on errors. Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220204185742.271030-7-song@kernel.org
2022-02-07bpf: Use prog->jited_len in bpf_prog_ksym_set_addr()Song Liu
Using prog->jited_len is simpler and more accurate than current estimation (header + header->size). Also, fix missing prog->jited_len with multi function program. This hasn't been a real issue before this. Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220204185742.271030-5-song@kernel.org
2022-02-07bpf: Use size instead of pages in bpf_binary_headerSong Liu
This is necessary to charge sub page memory for the BPF program. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220204185742.271030-4-song@kernel.org
2022-02-07bpf: Use bytes instead of pages for bpf_jit_[charge|uncharge]_modmemSong Liu
This enables sub-page memory charge and allocation. Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220204185742.271030-3-song@kernel.org
2022-01-27cgroup/bpf: fast path skb BPF filteringPavel Begunkov
Even though there is a static key protecting from overhead from cgroup-bpf skb filtering when there is nothing attached, in many cases it's not enough as registering a filter for one type will ruin the fast path for all others. It's observed in production servers I've looked at but also in laptops, where registration is done during init by systemd or something else. Add a per-socket fast path check guarding from such overhead. This affects both receive and transmit paths of TCP, UDP and other protocols. It showed ~1% tx/s improvement in small payload UDP send benchmarks using a real NIC and in a server environment and the number jumps to 2-3% for preemtible kernels. Reviewed-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/r/d8c58857113185a764927a46f4b5a058d36d3ec3.1643292455.git.asml.silence@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-01-21bpf: generalise tail call map compatibility checkToke Hoiland-Jorgensen
The check for tail call map compatibility ensures that tail calls only happen between maps of the same type. To ensure backwards compatibility for XDP frags we need a similar type of check for cpumap and devmap programs, so move the state from bpf_array_aux into bpf_map, add xdp_has_frags to the check, and apply the same check to cpumap and devmap. Acked-by: John Fastabend <john.fastabend@gmail.com> Co-developed-by: Lorenzo Bianconi <lorenzo@kernel.org> Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org> Signed-off-by: Toke Hoiland-Jorgensen <toke@redhat.com> Link: https://lore.kernel.org/r/f19fd97c0328a39927f3ad03e1ca6b43fd53cdfd.1642758637.git.lorenzo@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2021-11-30bpf, docs: Prune all references to "internal BPF"Christoph Hellwig
The eBPF name has completely taken over from eBPF in general usage for the actual eBPF representation, or BPF for any general in-kernel use. Prune all remaining references to "internal BPF". Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20211119163215.971383-4-hch@lst.de
2021-11-30bpf: Remove a redundant comment on bpf_prog_freeChristoph Hellwig
The comment telling that the prog_free helper is freeing the program is not exactly useful, so just remove it. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20211119163215.971383-3-hch@lst.de
2021-11-16bpf: Change value of MAX_TAIL_CALL_CNT from 32 to 33Tiezhu Yang
In the current code, the actual max tail call count is 33 which is greater than MAX_TAIL_CALL_CNT (defined as 32). The actual limit is not consistent with the meaning of MAX_TAIL_CALL_CNT and thus confusing at first glance. We can see the historical evolution from commit 04fd61ab36ec ("bpf: allow bpf programs to tail-call other bpf programs") and commit f9dabe016b63 ("bpf: Undo off-by-one in interpreter tail call count limit"). In order to avoid changing existing behavior, the actual limit is 33 now, this is reasonable. After commit 874be05f525e ("bpf, tests: Add tail call test suite"), we can see there exists failed testcase. On all archs when CONFIG_BPF_JIT_ALWAYS_ON is not set: # echo 0 > /proc/sys/net/core/bpf_jit_enable # modprobe test_bpf # dmesg | grep -w FAIL Tail call error path, max count reached jited:0 ret 34 != 33 FAIL On some archs: # echo 1 > /proc/sys/net/core/bpf_jit_enable # modprobe test_bpf # dmesg | grep -w FAIL Tail call error path, max count reached jited:1 ret 34 != 33 FAIL Although the above failed testcase has been fixed in commit 18935a72eb25 ("bpf/tests: Fix error in tail call limit tests"), it would still be good to change the value of MAX_TAIL_CALL_CNT from 32 to 33 to make the code more readable. The 32-bit x86 JIT was using a limit of 32, just fix the wrong comments and limit to 33 tail calls as the constant MAX_TAIL_CALL_CNT updated. For the mips64 JIT, use "ori" instead of "addiu" as suggested by Johan Almbladh. For the riscv JIT, use RV_REG_TCC directly to save one register move as suggested by Björn Töpel. For the other implementations, no function changes, it does not change the current limit 33, the new value of MAX_TAIL_CALL_CNT can reflect the actual max tail call count, the related tail call testcases in test_bpf module and selftests can work well for the interpreter and the JIT. Here are the test results on x86_64: # uname -m x86_64 # echo 0 > /proc/sys/net/core/bpf_jit_enable # modprobe test_bpf test_suite=test_tail_calls # dmesg | tail -1 test_bpf: test_tail_calls: Summary: 8 PASSED, 0 FAILED, [0/8 JIT'ed] # rmmod test_bpf # echo 1 > /proc/sys/net/core/bpf_jit_enable # modprobe test_bpf test_suite=test_tail_calls # dmesg | tail -1 test_bpf: test_tail_calls: Summary: 8 PASSED, 0 FAILED, [8/8 JIT'ed] # rmmod test_bpf # ./test_progs -t tailcalls #142 tailcalls:OK Summary: 1/11 PASSED, 0 SKIPPED, 0 FAILED Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Johan Almbladh <johan.almbladh@anyfinetworks.com> Tested-by: Ilya Leoshkevich <iii@linux.ibm.com> Acked-by: Björn Töpel <bjorn@kernel.org> Acked-by: Johan Almbladh <johan.almbladh@anyfinetworks.com> Acked-by: Ilya Leoshkevich <iii@linux.ibm.com> Link: https://lore.kernel.org/bpf/1636075800-3264-1-git-send-email-yangtiezhu@loongson.cn
2021-11-06bpf: Stop caching subprog index in the bpf_pseudo_func insnMartin KaFai Lau
This patch is to fix an out-of-bound access issue when jit-ing the bpf_pseudo_func insn (i.e. ld_imm64 with src_reg == BPF_PSEUDO_FUNC) In jit_subprog(), it currently reuses the subprog index cached in insn[1].imm. This subprog index is an index into a few array related to subprogs. For example, in jit_subprog(), it is an index to the newly allocated 'struct bpf_prog **func' array. The subprog index was cached in insn[1].imm after add_subprog(). However, this could become outdated (and too big in this case) if some subprogs are completely removed during dead code elimination (in adjust_subprog_starts_after_remove). The cached index in insn[1].imm is not updated accordingly and causing out-of-bound issue in the later jit_subprog(). Unlike bpf_pseudo_'func' insn, the current bpf_pseudo_'call' insn is handling the DCE properly by calling find_subprog(insn->imm) to figure out the index instead of caching the subprog index. The existing bpf_adj_branches() will adjust the insn->imm whenever insn is added or removed. Instead of having two ways handling subprog index, this patch is to make bpf_pseudo_func works more like bpf_pseudo_call. First change is to stop caching the subprog index result in insn[1].imm after add_subprog(). The verification process will use find_subprog(insn->imm) to figure out the subprog index. Second change is in bpf_adj_branches() and have it to adjust the insn->imm for the bpf_pseudo_func insn also whenever insn is added or removed. Third change is in jit_subprog(). Like the bpf_pseudo_call handling, bpf_pseudo_func temporarily stores the find_subprog() result in insn->off. It is fine because the prog's insn has been finalized at this point. insn->off will be reset back to 0 later to avoid confusing the userspace prog dump tool. Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20211106014014.651018-1-kafai@fb.com
2021-11-01Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextJakub Kicinski
Alexei Starovoitov says: ==================== pull-request: bpf-next 2021-11-01 We've added 181 non-merge commits during the last 28 day(s) which contain a total of 280 files changed, 11791 insertions(+), 5879 deletions(-). The main changes are: 1) Fix bpf verifier propagation of 64-bit bounds, from Alexei. 2) Parallelize bpf test_progs, from Yucong and Andrii. 3) Deprecate various libbpf apis including af_xdp, from Andrii, Hengqi, Magnus. 4) Improve bpf selftests on s390, from Ilya. 5) bloomfilter bpf map type, from Joanne. 6) Big improvements to JIT tests especially on Mips, from Johan. 7) Support kernel module function calls from bpf, from Kumar. 8) Support typeless and weak ksym in light skeleton, from Kumar. 9) Disallow unprivileged bpf by default, from Pawan. 10) BTF_KIND_DECL_TAG support, from Yonghong. 11) Various bpftool cleanups, from Quentin. * https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (181 commits) libbpf: Deprecate AF_XDP support kbuild: Unify options for BTF generation for vmlinux and modules selftests/bpf: Add a testcase for 64-bit bounds propagation issue. bpf: Fix propagation of signed bounds from 64-bit min/max into 32-bit. bpf: Fix propagation of bounds from 64-bit min/max into 32-bit and var_off. selftests/bpf: Fix also no-alu32 strobemeta selftest bpf: Add missing map_delete_elem method to bloom filter map selftests/bpf: Add bloom map success test for userspace calls bpf: Add alignment padding for "map_extra" + consolidate holes bpf: Bloom filter map naming fixups selftests/bpf: Add test cases for struct_ops prog bpf: Add dummy BPF STRUCT_OPS for test purpose bpf: Factor out helpers for ctx access checking bpf: Factor out a helper to prepare trampoline for struct_ops prog selftests, bpf: Fix broken riscv build riscv, libbpf: Add RISC-V (RV64) support to bpf_tracing.h tools, build: Add RISC-V to HOSTARCH parsing riscv, bpf: Increase the maximum number of iterations selftests, bpf: Add one test for sockmap with strparser selftests, bpf: Fix test_txmsg_ingress_parser error ... ==================== Link: https://lore.kernel.org/r/20211102013123.9005-1-alexei.starovoitov@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-28Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
include/net/sock.h 7b50ecfcc6cd ("net: Rename ->stream_memory_read to ->sock_is_readable") 4c1e34c0dbff ("vsock: Enable y2038 safe timeval for timeout") drivers/net/ethernet/marvell/octeontx2/af/rvu_debugfs.c 0daa55d033b0 ("octeontx2-af: cn10k: debugfs for dumping LMTST map table") e77bcdd1f639 ("octeontx2-af: Display all enabled PF VF rsrc_alloc entries.") Adjacent code addition in both cases, keep both. Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-10-26bpf: Fix potential race in tail call compatibility checkToke Høiland-Jørgensen
Lorenzo noticed that the code testing for program type compatibility of tail call maps is potentially racy in that two threads could encounter a map with an unset type simultaneously and both return true even though they are inserting incompatible programs. The race window is quite small, but artificially enlarging it by adding a usleep_range() inside the check in bpf_prog_array_compatible() makes it trivial to trigger from userspace with a program that does, essentially: map_fd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, 4, 4, 2, 0); pid = fork(); if (pid) { key = 0; value = xdp_fd; } else { key = 1; value = tc_fd; } err = bpf_map_update_elem(map_fd, &key, &value, 0); While the race window is small, it has potentially serious ramifications in that triggering it would allow a BPF program to tail call to a program of a different type. So let's get rid of it by protecting the update with a spinlock. The commit in the Fixes tag is the last commit that touches the code in question. v2: - Use a spinlock instead of an atomic variable and cmpxchg() (Alexei) v3: - Put lock and the members it protects into an embedded 'owner' struct (Daniel) Fixes: 3324b584b6f6 ("ebpf: misc core cleanup") Reported-by: Lorenzo Bianconi <lorenzo.bianconi@redhat.com> Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20211026110019.363464-1-toke@redhat.com
2021-10-22bpf: Prevent increasing bpf_jit_limit above maxLorenz Bauer
Restrict bpf_jit_limit to the maximum supported by the arch's JIT. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20211014142554.53120-4-lmb@cloudflare.com
2021-10-05bpf: Introduce BPF support for kernel module function callsKumar Kartikeya Dwivedi
This change adds support on the kernel side to allow for BPF programs to call kernel module functions. Userspace will prepare an array of module BTF fds that is passed in during BPF_PROG_LOAD using fd_array parameter. In the kernel, the module BTFs are placed in the auxilliary struct for bpf_prog, and loaded as needed. The verifier then uses insn->off to index into the fd_array. insn->off 0 is reserved for vmlinux BTF (for backwards compat), so userspace must use an fd_array index > 0 for module kfunc support. kfunc_btf_tab is sorted based on offset in an array, and each offset corresponds to one descriptor, with a max limit up to 256 such module BTFs. We also change existing kfunc_tab to distinguish each element based on imm, off pair as each such call will now be distinct. Another change is to check_kfunc_call callback, which now include a struct module * pointer, this is to be used in later patch such that the kfunc_id and module pointer are matched for dynamically registered BTF sets from loadable modules, so that same kfunc_id in two modules doesn't lead to check_kfunc_call succeeding. For the duration of the check_kfunc_call, the reference to struct module exists, as it returns the pointer stored in kfunc_btf_tab. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20211002011757.311265-2-memxor@gmail.com
2021-10-01Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextJakub Kicinski
Daniel Borkmann says: ==================== bpf-next 2021-10-02 We've added 85 non-merge commits during the last 15 day(s) which contain a total of 132 files changed, 13779 insertions(+), 6724 deletions(-). The main changes are: 1) Massive update on test_bpf.ko coverage for JITs as preparatory work for an upcoming MIPS eBPF JIT, from Johan Almbladh. 2) Add a batched interface for RX buffer allocation in AF_XDP buffer pool, with driver support for i40e and ice from Magnus Karlsson. 3) Add legacy uprobe support to libbpf to complement recently merged legacy kprobe support, from Andrii Nakryiko. 4) Add bpf_trace_vprintk() as variadic printk helper, from Dave Marchevsky. 5) Support saving the register state in verifier when spilling <8byte bounded scalar to the stack, from Martin Lau. 6) Add libbpf opt-in for stricter BPF program section name handling as part of libbpf 1.0 effort, from Andrii Nakryiko. 7) Add a document to help clarifying BPF licensing, from Alexei Starovoitov. 8) Fix skel_internal.h to propagate errno if the loader indicates an internal error, from Kumar Kartikeya Dwivedi. 9) Fix build warnings with -Wcast-function-type so that the option can later be enabled by default for the kernel, from Kees Cook. 10) Fix libbpf to ignore STT_SECTION symbols in legacy map definitions as it otherwise errors out when encountering them, from Toke Høiland-Jørgensen. 11) Teach libbpf to recognize specialized maps (such as for perf RB) and internally remove BTF type IDs when creating them, from Hengqi Chen. 12) Various fixes and improvements to BPF selftests. ==================== Link: https://lore.kernel.org/r/20211002001327.15169-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-09-28bpf: Exempt CAP_BPF from checks against bpf_jit_limitLorenz Bauer
When introducing CAP_BPF, bpf_jit_charge_modmem() was not changed to treat programs with CAP_BPF as privileged for the purpose of JIT memory allocation. This means that a program without CAP_BPF can block a program with CAP_BPF from loading a program. Fix this by checking bpf_capable() in bpf_jit_charge_modmem(). Fixes: 2c78ee898d8f ("bpf: Implement CAP_BPF") Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210922111153.19843-1-lmb@cloudflare.com
2021-09-17bpf: Add bpf_trace_vprintk helperDave Marchevsky
This helper is meant to be "bpf_trace_printk, but with proper vararg support". Follow bpf_snprintf's example and take a u64 pseudo-vararg array. Write to /sys/kernel/debug/tracing/trace_pipe using the same mechanism as bpf_trace_printk. The functionality of this helper was requested in the libbpf issue tracker [0]. [0] Closes: https://github.com/libbpf/libbpf/issues/315 Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210917182911.2426606-4-davemarchevsky@fb.com
2021-08-19bpf: Undo off-by-one in interpreter tail call count limitDaniel Borkmann
The BPF interpreter as well as x86-64 BPF JIT were both in line by allowing up to 33 tail calls (however odd that number may be!). Recently, this was changed for the interpreter to reduce it down to 32 with the assumption that this should have been the actual limit "which is in line with the behavior of the x86 JITs" according to b61a28cf11d61 ("bpf: Fix off-by-one in tail call count limiting"). Paul recently reported: I'm a bit surprised by this because I had previously tested the tail call limit of several JIT compilers and found it to be 33 (i.e., allowing chains of up to 34 programs). I've just extended a test program I had to validate this again on the x86-64 JIT, and found a limit of 33 tail calls again [1]. Also note we had previously changed the RISC-V and MIPS JITs to allow up to 33 tail calls [2, 3], for consistency with other JITs and with the interpreter. We had decided to increase these two to 33 rather than decrease the other JITs to 32 for backward compatibility, though that probably doesn't matter much as I'd expect few people to actually use 33 tail calls. [1] https://github.com/pchaigno/tail-call-bench/commit/ae7887482985b4b1745c9b2ef7ff9ae506c82886 [2] 96bc4432f5ad ("bpf, riscv: Limit to 33 tail calls") [3] e49e6f6db04e ("bpf, mips: Limit to 33 tail calls") Therefore, revert b61a28cf11d61 to re-align interpreter to limit a maximum of 33 tail calls. While it is unlikely to hit the limit for the vast majority, programs in the wild could one way or another depend on this, so lets rather be a bit more conservative, and lets align the small remainder of JITs to 33. If needed in future, this limit could be slightly increased, but not decreased. Fixes: b61a28cf11d61 ("bpf: Fix off-by-one in tail call count limiting") Reported-by: Paul Chaignon <paul@cilium.io> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Johan Almbladh <johan.almbladh@anyfinetworks.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/CAO5pjwTWrC0_dzTbTHFPSqDwA56aVH+4KFGVqdq8=ASs0MqZGQ@mail.gmail.com
2021-08-17bpf: Allow to specify user-provided bpf_cookie for BPF perf linksAndrii Nakryiko
Add ability for users to specify custom u64 value (bpf_cookie) when creating BPF link for perf_event-backed BPF programs (kprobe/uprobe, perf_event, tracepoints). This is useful for cases when the same BPF program is used for attaching and processing invocation of different tracepoints/kprobes/uprobes in a generic fashion, but such that each invocation is distinguished from each other (e.g., BPF program can look up additional information associated with a specific kernel function without having to rely on function IP lookups). This enables new use cases to be implemented simply and efficiently that previously were possible only through code generation (and thus multiple instances of almost identical BPF program) or compilation at runtime (BCC-style) on target hosts (even more expensive resource-wise). For uprobes it is not even possible in some cases to know function IP before hand (e.g., when attaching to shared library without PID filtering, in which case base load address is not known for a library). This is done by storing u64 bpf_cookie in struct bpf_prog_array_item, corresponding to each attached and run BPF program. Given cgroup BPF programs already use two 8-byte pointers for their needs and cgroup BPF programs don't have (yet?) support for bpf_cookie, reuse that space through union of cgroup_storage and new bpf_cookie field. Make it available to kprobe/tracepoint BPF programs through bpf_trace_run_ctx. This is set by BPF_PROG_RUN_ARRAY, used by kprobe/uprobe/tracepoint BPF program execution code, which luckily is now also split from BPF_PROG_RUN_ARRAY_CG. This run context will be utilized by a new BPF helper giving access to this user-provided cookie value from inside a BPF program. Generic perf_event BPF programs will access this value from perf_event itself through passed in BPF program context. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/bpf/20210815070609.987780-6-andrii@kernel.org
2021-08-17bpf: Refactor BPF_PROG_RUN into a functionAndrii Nakryiko
Turn BPF_PROG_RUN into a proper always inlined function. No functional and performance changes are intended, but it makes it much easier to understand what's going on with how BPF programs are actually get executed. It's more obvious what types and callbacks are expected. Also extra () around input parameters can be dropped, as well as `__` variable prefixes intended to avoid naming collisions, which makes the code simpler to read and write. This refactoring also highlighted one extra issue. BPF_PROG_RUN is both a macro and an enum value (BPF_PROG_RUN == BPF_PROG_TEST_RUN). Turning BPF_PROG_RUN into a function causes naming conflict compilation error. So rename BPF_PROG_RUN into lower-case bpf_prog_run(), similar to bpf_prog_run_xdp(), bpf_prog_run_pin_on_cpu(), etc. All existing callers of BPF_PROG_RUN, the macro, are switched to bpf_prog_run() explicitly. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210815070609.987780-2-andrii@kernel.org
2021-08-13Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski
Conflicts: drivers/net/ethernet/broadcom/bnxt/bnxt_ptp.h 9e26680733d5 ("bnxt_en: Update firmware call to retrieve TX PTP timestamp") 9e518f25802c ("bnxt_en: 1PPS functions to configure TSIO pins") 099fdeda659d ("bnxt_en: Event handler for PPS events") kernel/bpf/helpers.c include/linux/bpf-cgroup.h a2baf4e8bb0f ("bpf: Fix potentially incorrect results with bpf_get_local_storage()") c7603cfa04e7 ("bpf: Add ambient BPF runtime context stored in current") drivers/net/ethernet/mellanox/mlx5/core/pci_irq.c 5957cc557dc5 ("net/mlx5: Set all field of mlx5_irq before inserting it to the xarray") 2d0b41a37679 ("net/mlx5: Refcount mlx5_irq with integer") MAINTAINERS 7b637cd52f02 ("MAINTAINERS: fix Microchip CAN BUS Analyzer Tool entry typo") 7d901a1e878a ("net: phy: add Maxlinear GPY115/21x/24x driver") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-10bpf, core: Fix kernel-doc notationRandy Dunlap
Fix kernel-doc warnings in kernel/bpf/core.c (found by scripts/kernel-doc and W=1 builds). That is, correct a function name in a comment and add return descriptions for 2 functions. Fixes these kernel-doc warnings: kernel/bpf/core.c:1372: warning: expecting prototype for __bpf_prog_run(). Prototype was for ___bpf_prog_run() instead kernel/bpf/core.c:1372: warning: No description found for return value of '___bpf_prog_run' kernel/bpf/core.c:1883: warning: No description found for return value of 'bpf_prog_select_runtime' Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210809215229.7556-1-rdunlap@infradead.org
2021-08-02bpf: Fix off-by-one in tail call count limitingJohan Almbladh
Before, the interpreter allowed up to MAX_TAIL_CALL_CNT + 1 tail calls. Now precisely MAX_TAIL_CALL_CNT is allowed, which is in line with the behavior of the x86 JITs. Signed-off-by: Johan Almbladh <johan.almbladh@anyfinetworks.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210728164741.350370-1-johan.almbladh@anyfinetworks.com
2021-07-29bpf: Introduce BPF nospec instruction for mitigating Spectre v4Daniel Borkmann
In case of JITs, each of the JIT backends compiles the BPF nospec instruction /either/ to a machine instruction which emits a speculation barrier /or/ to /no/ machine instruction in case the underlying architecture is not affected by Speculative Store Bypass or has different mitigations in place already. This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence' instruction for mitigation. In case of arm64, we rely on the firmware mitigation as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled, it works for all of the kernel code with no need to provide any additional instructions here (hence only comment in arm64 JIT). Other archs can follow as needed. The BPF nospec instruction is specifically targeting Spectre v4 since i) we don't use a serialization barrier for the Spectre v1 case, and ii) mitigation instructions for v1 and v4 might be different on some archs. The BPF nospec is required for a future commit, where the BPF verifier does annotate intermediate BPF programs with speculation barriers. Co-developed-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-09bpf: Track subprog poke descriptors correctly and fix use-after-freeJohn Fastabend
Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, a748c6975dea3 ("bpf: propagate poke descriptors to subprograms") had an off-by-one on the subprogram instruction index range check as it was testing 'insn_idx >= subprog_start && insn_idx <= subprog_end'. However, subprog_end is the next subprogram's start instruction. Fixes: a748c6975dea3 ("bpf: propagate poke descriptors to subprograms") Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210707223848.14580-2-john.fastabend@gmail.com
2021-06-17bpf: Fix up register-based shifts in interpreter to silence KUBSANDaniel Borkmann
syzbot reported a shift-out-of-bounds that KUBSAN observed in the interpreter: [...] UBSAN: shift-out-of-bounds in kernel/bpf/core.c:1420:2 shift exponent 255 is too large for 64-bit type 'long long unsigned int' CPU: 1 PID: 11097 Comm: syz-executor.4 Not tainted 5.12.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x141/0x1d7 lib/dump_stack.c:120 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327 ___bpf_prog_run.cold+0x19/0x56c kernel/bpf/core.c:1420 __bpf_prog_run32+0x8f/0xd0 kernel/bpf/core.c:1735 bpf_dispatcher_nop_func include/linux/bpf.h:644 [inline] bpf_prog_run_pin_on_cpu include/linux/filter.h:624 [inline] bpf_prog_run_clear_cb include/linux/filter.h:755 [inline] run_filter+0x1a1/0x470 net/packet/af_packet.c:2031 packet_rcv+0x313/0x13e0 net/packet/af_packet.c:2104 dev_queue_xmit_nit+0x7c2/0xa90 net/core/dev.c:2387 xmit_one net/core/dev.c:3588 [inline] dev_hard_start_xmit+0xad/0x920 net/core/dev.c:3609 __dev_queue_xmit+0x2121/0x2e00 net/core/dev.c:4182 __bpf_tx_skb net/core/filter.c:2116 [inline] __bpf_redirect_no_mac net/core/filter.c:2141 [inline] __bpf_redirect+0x548/0xc80 net/core/filter.c:2164 ____bpf_clone_redirect net/core/filter.c:2448 [inline] bpf_clone_redirect+0x2ae/0x420 net/core/filter.c:2420 ___bpf_prog_run+0x34e1/0x77d0 kernel/bpf/core.c:1523 __bpf_prog_run512+0x99/0xe0 kernel/bpf/core.c:1737 bpf_dispatcher_nop_func include/linux/bpf.h:644 [inline] bpf_test_run+0x3ed/0xc50 net/bpf/test_run.c:50 bpf_prog_test_run_skb+0xabc/0x1c50 net/bpf/test_run.c:582 bpf_prog_test_run kernel/bpf/syscall.c:3127 [inline] __do_sys_bpf+0x1ea9/0x4f00 kernel/bpf/syscall.c:4406 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Generally speaking, KUBSAN reports from the kernel should be fixed. However, in case of BPF, this particular report caused concerns since the large shift is not wrong from BPF point of view, just undefined. In the verifier, K-based shifts that are >= {64,32} (depending on the bitwidth of the instruction) are already rejected. The register-based cases were not given their content might not be known at verification time. Ideas such as verifier instruction rewrite with an additional AND instruction for the source register were brought up, but regularly rejected due to the additional runtime overhead they incur. As Edward Cree rightly put it: Shifts by more than insn bitness are legal in the BPF ISA; they are implementation-defined behaviour [of the underlying architecture], rather than UB, and have been made legal for performance reasons. Each of the JIT backends compiles the BPF shift operations to machine instructions which produce implementation-defined results in such a case; the resulting contents of the register may be arbitrary but program behaviour as a whole remains defined. Guard checks in the fast path (i.e. affecting JITted code) will thus not be accepted. The case of division by zero is not truly analogous here, as division instructions on many of the JIT-targeted architectures will raise a machine exception / fault on division by zero, whereas (to the best of my knowledge) none will do so on an out-of-bounds shift. Given the KUBSAN report only affects the BPF interpreter, but not JITs, one solution is to add the ANDs with 63 or 31 into ___bpf_prog_run(). That would make the shifts defined, and thus shuts up KUBSAN, and the compiler would optimize out the AND on any CPU that interprets the shift amounts modulo the width anyway (e.g., confirmed from disassembly that on x86-64 and arm64 the generated interpreter code is the same before and after this fix). The BPF interpreter is slow path, and most likely compiled out anyway as distros select BPF_JIT_ALWAYS_ON to avoid speculative execution of BPF instructions by the interpreter. Given the main argument was to avoid sacrificing performance, the fact that the AND is optimized away from compiler for mainstream archs helps as well as a solution moving forward. Also add a comment on LSH/RSH/ARSH translation for JIT authors to provide guidance when they see the ___bpf_prog_run() interpreter code and use it as a model for a new JIT backend. Reported-by: syzbot+bed360704c521841c85d@syzkaller.appspotmail.com Reported-by: Kurt Manucredo <fuzzybritches0@gmail.com> Signed-off-by: Eric Biggers <ebiggers@kernel.org> Co-developed-by: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Tested-by: syzbot+bed360704c521841c85d@syzkaller.appspotmail.com Cc: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/0000000000008f912605bd30d5d7@google.com Link: https://lore.kernel.org/bpf/bac16d8d-c174-bdc4-91bd-bfa62b410190@gmail.com
2021-04-03bpf: Remove unused parameter from ___bpf_prog_runHe Fengqing
'stack' parameter is not used in ___bpf_prog_run() after f696b8f471ec ("bpf: split bpf core interpreter"), the base address have been set to FP reg. So consequently remove it. Signed-off-by: He Fengqing <hefengqing@huawei.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210331075135.3850782-1-hefengqing@huawei.com
2021-03-26bpf: Support bpf program calling kernel functionMartin KaFai Lau
This patch adds support to BPF verifier to allow bpf program calling kernel function directly. The use case included in this set is to allow bpf-tcp-cc to directly call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those functions have already been used by some kernel tcp-cc implementations. This set will also allow the bpf-tcp-cc program to directly call the kernel tcp-cc implementation, For example, a bpf_dctcp may only want to implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly from the kernel tcp_dctcp.c instead of reimplementing (or copy-and-pasting) them. The tcp-cc kernel functions mentioned above will be white listed for the struct_ops bpf-tcp-cc programs to use in a later patch. The white listed functions are not bounded to a fixed ABI contract. Those functions have already been used by the existing kernel tcp-cc. If any of them has changed, both in-tree and out-of-tree kernel tcp-cc implementations have to be changed. The same goes for the struct_ops bpf-tcp-cc programs which have to be adjusted accordingly. This patch is to make the required changes in the bpf verifier. First change is in btf.c, it adds a case in "btf_check_func_arg_match()". When the passed in "btf->kernel_btf == true", it means matching the verifier regs' states with a kernel function. This will handle the PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET, and PTR_TO_TCP_SOCK to its kernel's btf_id. In the later libbpf patch, the insn calling a kernel function will look like: insn->code == (BPF_JMP | BPF_CALL) insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */ insn->imm == func_btf_id /* btf_id of the running kernel */ [ For the future calling function-in-kernel-module support, an array of module btf_fds can be passed at the load time and insn->off can be used to index into this array. ] At the early stage of verifier, the verifier will collect all kernel function calls into "struct bpf_kfunc_desc". Those descriptors are stored in "prog->aux->kfunc_tab" and will be available to the JIT. Since this "add" operation is similar to the current "add_subprog()" and looking for the same insn->code, they are done together in the new "add_subprog_and_kfunc()". In the "do_check()" stage, the new "check_kfunc_call()" is added to verify the kernel function call instruction: 1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE. A new bpf_verifier_ops "check_kfunc_call" is added to do that. The bpf-tcp-cc struct_ops program will implement this function in a later patch. 2. Call "btf_check_kfunc_args_match()" to ensure the regs can be used as the args of a kernel function. 3. Mark the regs' type, subreg_def, and zext_dst. At the later do_misc_fixups() stage, the new fixup_kfunc_call() will replace the insn->imm with the function address (relative to __bpf_call_base). If needed, the jit can find the btf_func_model by calling the new bpf_jit_find_kfunc_model(prog, insn). With the imm set to the function address, "bpftool prog dump xlated" will be able to display the kernel function calls the same way as it displays other bpf helper calls. gpl_compatible program is required to call kernel function. This feature currently requires JIT. The verifier selftests are adjusted because of the changes in the verbose log in add_subprog_and_kfunc(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com
2021-03-26bpf: Simplify freeing logic in linfo and jited_linfoMartin KaFai Lau
This patch simplifies the linfo freeing logic by combining "bpf_prog_free_jited_linfo()" and "bpf_prog_free_unused_jited_linfo()" into the new "bpf_prog_jit_attempt_done()". It is a prep work for the kernel function call support. In a later patch, freeing the kernel function call descriptors will also be done in the "bpf_prog_jit_attempt_done()". "bpf_prog_free_linfo()" is removed since it is only called by "__bpf_prog_put_noref()". The kvfree() are directly called instead. It also takes this chance to s/kcalloc/kvcalloc/ for the jited_linfo allocation. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210325015130.1544323-1-kafai@fb.com