summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)Author
2013-09-10mm/Kconfig: add MMU dependency for MIGRATION.Chen Gang
MIGRATION must depend on MMU, or allmodconfig for the nommu sh architecture fails to build: CC mm/migrate.o mm/migrate.c: In function 'remove_migration_pte': mm/migrate.c:134:3: error: implicit declaration of function 'pmd_trans_huge' [-Werror=implicit-function-declaration] if (pmd_trans_huge(*pmd)) ^ mm/migrate.c:149:2: error: implicit declaration of function 'is_swap_pte' [-Werror=implicit-function-declaration] if (!is_swap_pte(pte)) ^ ... Also let CMA depend on MMU, or when NOMMU, if we select CMA, it will select MIGRATION by force. Signed-off-by: Chen Gang <gang.chen@asianux.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10list_lru: dynamically adjust node arraysGlauber Costa
We currently use a compile-time constant to size the node array for the list_lru structure. Due to this, we don't need to allocate any memory at initialization time. But as a consequence, the structures that contain embedded list_lru lists can become way too big (the superblock for instance contains two of them). This patch aims at ameliorating this situation by dynamically allocating the node arrays with the firmware provided nr_node_ids. Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: Dave Chinner <dchinner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10shrinker-kill-old-shrink-api-fixAndrew Morton
fix whitespace Cc: Glauber Costa <glommer@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10shrinker: Kill old ->shrink API.Dave Chinner
There are no more users of this API, so kill it dead, dead, dead and quietly bury the corpse in a shallow, unmarked grave in a dark forest deep in the hills... [glommer@openvz.org: added flowers to the grave] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10hugepage-convert-huge-zero-page-shrinker-to-new-shrinker-api-fixAndrew Morton
fix warnings Cc: Dave Chinner <dchinner@redhat.com> Cc: Glauber Costa <glommer@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10hugepage: convert huge zero page shrinker to new shrinker APIGlauber Costa
It consists of: * returning long instead of int * separating count from scan * returning the number of freed entities in scan Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <dchinner@redhat.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10vmscan: per-node deferred workGlauber Costa
The list_lru infrastructure already keeps per-node LRU lists in its node-specific list_lru_node arrays and provide us with a per-node API, and the shrinkers are properly equiped with node information. This means that we can now focus our shrinking effort in a single node, but the work that is deferred from one run to another is kept global at nr_in_batch. Work can be deferred, for instance, during direct reclaim under a GFP_NOFS allocation, where situation, all the filesystem shrinkers will be prevented from running and accumulate in nr_in_batch the amount of work they should have done, but could not. This creates an impedance problem, where upon node pressure, work deferred will accumulate and end up being flushed in other nodes. The problem we describe is particularly harmful in big machines, where many nodes can accumulate at the same time, all adding to the global counter nr_in_batch. As we accumulate more and more, we start to ask for the caches to flush even bigger numbers. The result is that the caches are depleted and do not stabilize. To achieve stable steady state behavior, we need to tackle it differently. In this patch we keep the deferred count per-node, in the new array nr_deferred[] (the name is also a bit more descriptive) and will never accumulate that to other nodes. Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: Dave Chinner <dchinner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10shrinker: add node awarenessDave Chinner
Pass the node of the current zone being reclaimed to shrink_slab(), allowing the shrinker control nodemask to be set appropriately for node aware shrinkers. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10list_lru: remove special case function list_lru_dispose_all.Glauber Costa
The list_lru implementation has one function, list_lru_dispose_all, with only one user (the dentry code). At first, such function appears to make sense because we are really not interested in the result of isolating each dentry separately - all of them are going away anyway. However, it's implementation is buggy in the following way: When we call list_lru_dispose_all in fs/dcache.c, we scan all dentries marking them with DCACHE_SHRINK_LIST. However, this is done without the nlru->lock taken. The imediate result of that is that someone else may add or remove the dentry from the LRU at the same time. When list_lru_del happens in that scenario we will see an element that is not yet marked with DCACHE_SHRINK_LIST (even though it will be in the future) and obviously remove it from an lru where the element no longer is. Since list_lru_dispose_all will in effect count down nlru's nr_items and list_lru_del will do the same, this will lead to an imbalance. The solution for this would not be so simple: we can obviously just keep the lru_lock taken, but then we have no guarantees that we will be able to acquire the dentry lock (dentry->d_lock). To properly solve this, we need a communication mechanism between the lru and dentry code, so they can coordinate this with each other. Such mechanism already exists in the form of the list_lru_walk_cb callback. So it is possible to construct a dcache-side prune function that does the right thing only by calling list_lru_walk in a loop until no more dentries are available. With only one user, plus the fact that a sane solution for the problem would involve boucing between dcache and list_lru anyway, I see little justification to keep the special case list_lru_dispose_all in tree. Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10list_lru: per-node APIGlauber Costa
This patch adapts the list_lru API to accept an optional node argument, to be used by NUMA aware shrinking functions. Code that does not care about the NUMA placement of objects can still call into the very same functions as before. They will simply iterate over all nodes. Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: Dave Chinner <dchinner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10list_lru: fix broken LRU_RETRY behaviourDave Chinner
The LRU_RETRY code assumes that the list traversal status after we have dropped and regained the list lock. Unfortunately, this is not a valid assumption, and that can lead to racing traversals isolating objects that the other traversal expects to be the next item on the list. This is causing problems with the inode cache shrinker isolation, with races resulting in an inode on a dispose list being "isolated" because a racing traversal still thinks it is on the LRU. The inode is then never reclaimed and that causes hangs if a subsequent lookup on that inode occurs. Fix it by always restarting the list walk on a LRU_RETRY return from the isolate callback. Avoid the possibility of livelocks the current code was trying to aavoid by always decrementing the nr_to_walk counter on retries so that even if we keep hitting the same item on the list we'll eventually stop trying to walk and exit out of the situation causing the problem. Reported-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Dave Chinner <dchinner@redhat.com> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10list_lru: per-node list infrastructure fixGlauber Costa
After a while investigating, it seems to us that the imbalance we are seeing are due to a multi-node race already in tree (our guess). Although the WARN is useful to show us the race, BUG_ON is too much, since it seems the kernel should be fine going on after that. Signed-off-by: Glauber Costa <glommer@openvz.org> Cc: Dave Chinner <dchinner@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10list_lru: per-node list infrastructureDave Chinner
Now that we have an LRU list API, we can start to enhance the implementation. This splits the single LRU list into per-node lists and locks to enhance scalability. Items are placed on lists according to the node the memory belongs to. To make scanning the lists efficient, also track whether the per-node lists have entries in them in a active nodemask. Note: We use a fixed-size array for the node LRU, this struct can be very big if MAX_NUMNODES is big. If this becomes a problem this is fixable by turning this into a pointer and dynamically allocating this to nr_node_ids. This quantity is firwmare-provided, and still would provide room for all nodes at the cost of a pointer lookup and an extra allocation. Because that allocation will most likely come from a may very well fail. [glommer@openvz.org: fix warnings, added note about node lru] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10list: add a new LRU list typeDave Chinner
Several subsystems use the same construct for LRU lists - a list head, a spin lock and and item count. They also use exactly the same code for adding and removing items from the LRU. Create a generic type for these LRU lists. This is the beginning of generic, node aware LRUs for shrinkers to work with. [glommer@openvz.org: enum defined constants for lru. Suggested by gthelen, don't relock over retry] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10mm: new shrinker APIDave Chinner
The current shrinker callout API uses an a single shrinker call for multiple functions. To determine the function, a special magical value is passed in a parameter to change the behaviour. This complicates the implementation and return value specification for the different behaviours. Separate the two different behaviours into separate operations, one to return a count of freeable objects in the cache, and another to scan a certain number of objects in the cache for freeing. In defining these new operations, ensure the return values and resultant behaviours are clearly defined and documented. Modify shrink_slab() to use the new API and implement the callouts for all the existing shrinkers. Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@parallels.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10mm, thp: count thp_fault_fallback anytime thp fault failsDavid Rientjes
Currently, thp_fault_fallback in vmstat only gets incremented if a hugepage allocation fails. If current's memcg hits its limit or the page fault handler returns an error, it is incorrectly accounted as a successful thp_fault_alloc. Count thp_fault_fallback anytime the page fault handler falls back to using regular pages and only count thp_fault_alloc when a hugepage has actually been faulted. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page()Kirill A. Shutemov
do_huge_pmd_anonymous_page() has copy-pasted piece of handle_mm_fault() to handle fallback path. Let's consolidate code back by introducing VM_FAULT_FALLBACK return code. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Hugh Dickins <hughd@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10thp: do_huge_pmd_anonymous_page() cleanupKirill A. Shutemov
Minor cleanup: unindent most code of the fucntion by inverting one condition. It's preparation for the next patch. No functional changes. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Hugh Dickins <hughd@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10thp: move maybe_pmd_mkwrite() out of mk_huge_pmd()Kirill A. Shutemov
It's confusing that mk_huge_pmd() has semantics different from mk_pte() or mk_pmd(). I spent some time on debugging issue cased by this inconsistency. Let's move maybe_pmd_mkwrite() out of mk_huge_pmd() and adjust prototype to match mk_pte(). Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Hugh Dickins <hughd@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10mm: cleanup add_to_page_cache_locked()Kirill A. Shutemov
Make add_to_page_cache_locked() cleaner: - unindent most code of the function by inverting one condition; - streamline code no-error path; - move insert error path outside normal code path; - call radix_tree_preload_end() earlier; No functional changes. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Hugh Dickins <hughd@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10thp: account anon transparent huge pages into NR_ANON_PAGESKirill A. Shutemov
We use NR_ANON_PAGES as base for reporting AnonPages to user. There's not much sense in not accounting transparent huge pages there, but add them on printing to user. Let's account transparent huge pages in NR_ANON_PAGES in the first place. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Hugh Dickins <hughd@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Andi Kleen <ak@linux.intel.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10mm-drop-actor-argument-of-do_generic_file_read-fixAndrew Morton
fix mm-drop-actor-argument-of-do_generic_file_read for linux-next changes Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10mm: drop actor argument of do_generic_file_read()Kirill A. Shutemov
There's only one caller of do_generic_file_read() and the only actor is file_read_actor(). No reason to have a callback parameter. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10truncate: drop 'oldsize' truncate_pagecache() parameterKirill A. Shutemov
truncate_pagecache() doesn't care about old size since cedabed49b ("vfs: Fix vmtruncate() regression"). Let's drop it. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10mm: make lru_add_drain_all() selectiveChris Metcalf
make lru_add_drain_all() only selectively interrupt the cpus that have per-cpu free pages that can be drained. This is important in nohz mode where calling mlockall(), for example, otherwise will interrupt every core unnecessarily. This is important on workloads where nohz cores are handling 10 Gb traffic in userspace. Those CPUs do not enter the kernel and place pages into LRU pagevecs and they really, really don't want to be interrupted, or they drop packets on the floor. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> Reviewed-by: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg: add per cgroup writeback pages accountingSha Zhengju
Add memcg routines to count writeback pages, later dirty pages will also be accounted. After Kame's commit 89c06bd5 ("memcg: use new logic for page stat accounting"), we can use 'struct page' flag to test page state instead of per page_cgroup flag. But memcg has a feature to move a page from a cgroup to another one and may have race between "move" and "page stat accounting". So in order to avoid the race we have designed a new lock: mem_cgroup_begin_update_page_stat() modify page information -->(a) mem_cgroup_update_page_stat() -->(b) mem_cgroup_end_update_page_stat() It requires both (a) and (b)(writeback pages accounting) to be pretected in mem_cgroup_{begin/end}_update_page_stat(). It's full no-op for !CONFIG_MEMCG, almost no-op if memcg is disabled (but compiled in), rcu read lock in the most cases (no task is moving), and spin_lock_irqsave on top in the slow path. There're two writeback interfaces to modify: test_{clear/set}_page_writeback(). And the lock order is: --> memcg->move_lock --> mapping->tree_lock Signed-off-by: Sha Zhengju <handai.szj@taobao.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Greg Thelen <gthelen@google.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg: check for proper lock held in mem_cgroup_update_page_statSha Zhengju
We should call mem_cgroup_begin_update_page_stat() before mem_cgroup_update_page_stat() to get proper locks, however the latter doesn't do any checking that we use proper locking, which would be hard. Suggested by Michal Hock we could at least test for rcu_read_lock_held() because RCU is held if !mem_cgroup_disabled(). Signed-off-by: Sha Zhengju <handai.szj@taobao.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Greg Thelen <gthelen@google.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg: remove MEMCG_NR_FILE_MAPPEDSha Zhengju
While accounting memcg page stat, it's not worth to use MEMCG_NR_FILE_MAPPED as an extra layer of indirection because of the complexity and presumed performance overhead. We can use MEM_CGROUP_STAT_FILE_MAPPED directly. Signed-off-by: Sha Zhengju <handai.szj@taobao.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Fengguang Wu <fengguang.wu@intel.com> Reviewed-by: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg: rename RESOURCE_MAX to RES_COUNTER_MAXSha Zhengju
RESOURCE_MAX is far too general name, change it to RES_COUNTER_MAX. Signed-off-by: Sha Zhengju <handai.szj@taobao.com> Signed-off-by: Qiang Huang <h.huangqiang@huawei.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Jeff Liu <jeff.liu@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10mm: memcg: do not trap chargers with full callstack on OOMJohannes Weiner
The memcg OOM handling is incredibly fragile and can deadlock. When a task fails to charge memory, it invokes the OOM killer and loops right there in the charge code until it succeeds. Comparably, any other task that enters the charge path at this point will go to a waitqueue right then and there and sleep until the OOM situation is resolved. The problem is that these tasks may hold filesystem locks and the mmap_sem; locks that the selected OOM victim may need to exit. For example, in one reported case, the task invoking the OOM killer was about to charge a page cache page during a write(), which holds the i_mutex. The OOM killer selected a task that was just entering truncate() and trying to acquire the i_mutex: OOM invoking task: [<ffffffff8110a9c1>] mem_cgroup_handle_oom+0x241/0x3b0 [<ffffffff8110b5ab>] T.1146+0x5ab/0x5c0 [<ffffffff8110c22e>] mem_cgroup_cache_charge+0xbe/0xe0 [<ffffffff810ca28c>] add_to_page_cache_locked+0x4c/0x140 [<ffffffff810ca3a2>] add_to_page_cache_lru+0x22/0x50 [<ffffffff810ca45b>] grab_cache_page_write_begin+0x8b/0xe0 [<ffffffff81193a18>] ext3_write_begin+0x88/0x270 [<ffffffff810c8fc6>] generic_file_buffered_write+0x116/0x290 [<ffffffff810cb3cc>] __generic_file_aio_write+0x27c/0x480 [<ffffffff810cb646>] generic_file_aio_write+0x76/0xf0 # takes ->i_mutex [<ffffffff8111156a>] do_sync_write+0xea/0x130 [<ffffffff81112183>] vfs_write+0xf3/0x1f0 [<ffffffff81112381>] sys_write+0x51/0x90 [<ffffffff815b5926>] system_call_fastpath+0x18/0x1d [<ffffffffffffffff>] 0xffffffffffffffff OOM kill victim: [<ffffffff811109b8>] do_truncate+0x58/0xa0 # takes i_mutex [<ffffffff81121c90>] do_last+0x250/0xa30 [<ffffffff81122547>] path_openat+0xd7/0x440 [<ffffffff811229c9>] do_filp_open+0x49/0xa0 [<ffffffff8110f7d6>] do_sys_open+0x106/0x240 [<ffffffff8110f950>] sys_open+0x20/0x30 [<ffffffff815b5926>] system_call_fastpath+0x18/0x1d [<ffffffffffffffff>] 0xffffffffffffffff The OOM handling task will retry the charge indefinitely while the OOM killed task is not releasing any resources. A similar scenario can happen when the kernel OOM killer for a memcg is disabled and a userspace task is in charge of resolving OOM situations. In this case, ALL tasks that enter the OOM path will be made to sleep on the OOM waitqueue and wait for userspace to free resources or increase the group's limit. But a userspace OOM handler is prone to deadlock itself on the locks held by the waiting tasks. For example one of the sleeping tasks may be stuck in a brk() call with the mmap_sem held for writing but the userspace handler, in order to pick an optimal victim, may need to read files from /proc/<pid>, which tries to acquire the same mmap_sem for reading and deadlocks. This patch changes the way tasks behave after detecting a memcg OOM and makes sure nobody loops or sleeps with locks held: 1. When OOMing in a user fault, invoke the OOM killer and restart the fault instead of looping on the charge attempt. This way, the OOM victim can not get stuck on locks the looping task may hold. 2. When OOMing in a user fault but somebody else is handling it (either the kernel OOM killer or a userspace handler), don't go to sleep in the charge context. Instead, remember the OOMing memcg in the task struct and then fully unwind the page fault stack with -ENOMEM. pagefault_out_of_memory() will then call back into the memcg code to check if the -ENOMEM came from the memcg, and then either put the task to sleep on the memcg's OOM waitqueue or just restart the fault. The OOM victim can no longer get stuck on any lock a sleeping task may hold. Debugged by Michal Hocko. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: azurIt <azurit@pobox.sk> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10mm: memcg: rework and document OOM waiting and wakeupJohannes Weiner
The memcg OOM handler open-codes a sleeping lock for OOM serialization (trylock, wait, repeat) because the required locking is so specific to memcg hierarchies. However, it would be nice if this construct would be clearly recognizable and not be as obfuscated as it is right now. Clean up as follows: 1. Remove the return value of mem_cgroup_oom_unlock() 2. Rename mem_cgroup_oom_lock() to mem_cgroup_oom_trylock(). 3. Pull the prepare_to_wait() out of the memcg_oom_lock scope. This makes it more obvious that the task has to be on the waitqueue before attempting to OOM-trylock the hierarchy, to not miss any wakeups before going to sleep. It just didn't matter until now because it was all lumped together into the global memcg_oom_lock spinlock section. 4. Pull the mem_cgroup_oom_notify() out of the memcg_oom_lock scope. It is proctected by the hierarchical OOM-lock. 5. The memcg_oom_lock spinlock is only required to propagate the OOM lock in any given hierarchy atomically. Restrict its scope to mem_cgroup_oom_(trylock|unlock). 6. Do not wake up the waitqueue unconditionally at the end of the function. Only the lockholder has to wake up the next in line after releasing the lock. Note that the lockholder kicks off the OOM-killer, which in turn leads to wakeups from the uncharges of the exiting task. But a contender is not guaranteed to see them if it enters the OOM path after the OOM kills but before the lockholder releases the lock. Thus there has to be an explicit wakeup after releasing the lock. 7. Put the OOM task on the waitqueue before marking the hierarchy as under OOM as that is the point where we start to receive wakeups. No point in listening before being on the waitqueue. 8. Likewise, unmark the hierarchy before finishing the sleep, for symmetry. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10mm: memcg: enable memcg OOM killer only for user faultsJohannes Weiner
System calls and kernel faults (uaccess, gup) can handle an out of memory situation gracefully and just return -ENOMEM. Enable the memcg OOM killer only for user faults, where it's really the only option available. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: azurIt <azurit@pobox.sk> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg: trivial cleanupsAndrew Morton
Clean up some mess made by the "Soft limit rework" series, and a few other things. Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg, vmscan: do not fall into reclaim-all pass too quicklyMichal Hocko
shrink_zone starts with soft reclaim pass first and then falls back to regular reclaim if nothing has been scanned. This behavior is natural but there is a catch. Memcg iterators, when used with the reclaim cookie, are designed to help to prevent from over reclaim by interleaving reclaimers (per node-zone-priority) so the tree walk might miss many (even all) nodes in the hierarchy e.g. when there are direct reclaimers racing with each other or with kswapd in the global case or multiple allocators reaching the limit for the target reclaim case. To make it even more complicated, targeted reclaim doesn't do the whole tree walk because it stops reclaiming once it reclaims sufficient pages. As a result groups over the limit might be missed, thus nothing is scanned, and reclaim would fall back to the reclaim all mode. This patch checks for the incomplete tree walk in shrink_zone. If no group has been visited and the hierarchy is soft reclaimable then we must have missed some groups, in which case the __shrink_zone is called again. This doesn't guarantee there will be some progress of course because the current reclaimer might be still racing with others but it would at least give a chance to start the walk without a big risk of reclaim latencies. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg: track all children over limit in the rootMichal Hocko
Children in soft limit excess are currently tracked up the hierarchy in memcg->children_in_excess. Nevertheless there still might exist tons of groups that are not in hierarchy relation to the root cgroup (e.g. all first level groups if root_mem_cgroup->use_hierarchy == false). As the whole tree walk has to be done when the iteration starts at root_mem_cgroup the iterator should be able to skip the walk if there is no child above the limit without iterating them. This can be done easily if the root tracks all children rather than only hierarchical children. This is done by this patch which updates root_mem_cgroup children_in_excess if root_mem_cgroup->use_hierarchy == false so the root knows about all children in excess. Please note that this is not an issue for inner memcgs which have use_hierarchy == false because then only the single group is visited so no special optimization is necessary. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg, vmscan: do not attempt soft limit reclaim if it would not scan anythingMichal Hocko
mem_cgroup_should_soft_reclaim controls whether soft reclaim pass is done and it always says yes currently. Memcg iterators are clever to skip nodes that are not soft reclaimable quite efficiently but mem_cgroup_should_soft_reclaim can be more clever and do not start the soft reclaim pass at all if it knows that nothing would be scanned anyway. In order to do that, simply reuse mem_cgroup_soft_reclaim_eligible for the target group of the reclaim and allow the pass only if the whole subtree wouldn't be skipped. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg: track children in soft limit excess to improve soft limitMichal Hocko
Soft limit reclaim has to check the whole reclaim hierarchy while doing the first pass of the reclaim. This leads to a higher system time which can be visible especially when there are many groups in the hierarchy. This patch adds a per-memcg counter of children in excess. It also restores MEM_CGROUP_TARGET_SOFTLIMIT into mem_cgroup_event_ratelimit for a proper batching. If a group crosses soft limit for the first time it increases parent's children_in_excess up the hierarchy. The similarly if a group gets below the limit it will decrease the counter. The transition phase is recorded in soft_contributed flag. mem_cgroup_soft_reclaim_eligible then uses this information to better decide whether to skip the node or the whole subtree. The rule is simple. Skip the node with a children in excess or skip the whole subtree otherwise. This has been tested by a stream IO (dd if=/dev/zero of=file with 4*MemTotal size) which is quite sensitive to overhead during reclaim. The load is running in a group with soft limit set to 0 and without any limit. Apart from that there was a hierarchy with ~500, 2k and 8k groups (two groups on each level) without any pages in them. base denotes to the kernel on which the whole series is based on, rework is the kernel before this patch and reworkoptim is with this patch applied: * Run with soft limit set to 0 Elapsed 0-0-limit/base: min: 88.21 max: 94.61 avg: 91.73 std: 2.65 runs: 3 0-0-limit/rework: min: 76.05 [86.2%] max: 79.08 [83.6%] avg: 77.84 [84.9%] std: 1.30 runs: 3 0-0-limit/reworkoptim: min: 77.98 [88.4%] max: 80.36 [84.9%] avg: 78.92 [86.0%] std: 1.03 runs: 3 System 0.5k-0-limit/base: min: 34.86 max: 36.42 avg: 35.89 std: 0.73 runs: 3 0.5k-0-limit/rework: min: 43.26 [124.1%] max: 48.95 [134.4%] avg: 46.09 [128.4%] std: 2.32 runs: 3 0.5k-0-limit/reworkoptim: min: 46.98 [134.8%] max: 50.98 [140.0%] avg: 48.49 [135.1%] std: 1.77 runs: 3 Elapsed 0.5k-0-limit/base: min: 88.50 max: 97.52 avg: 93.92 std: 3.90 runs: 3 0.5k-0-limit/rework: min: 75.92 [85.8%] max: 78.45 [80.4%] avg: 77.34 [82.3%] std: 1.06 runs: 3 0.5k-0-limit/reworkoptim: min: 75.79 [85.6%] max: 79.37 [81.4%] avg: 77.55 [82.6%] std: 1.46 runs: 3 System 2k-0-limit/base: min: 34.57 max: 37.65 avg: 36.34 std: 1.30 runs: 3 2k-0-limit/rework: min: 64.17 [185.6%] max: 68.20 [181.1%] avg: 66.21 [182.2%] std: 1.65 runs: 3 2k-0-limit/reworkoptim: min: 49.78 [144.0%] max: 52.99 [140.7%] avg: 51.00 [140.3%] std: 1.42 runs: 3 Elapsed 2k-0-limit/base: min: 92.61 max: 97.83 avg: 95.03 std: 2.15 runs: 3 2k-0-limit/rework: min: 78.33 [84.6%] max: 84.08 [85.9%] avg: 81.09 [85.3%] std: 2.35 runs: 3 2k-0-limit/reworkoptim: min: 75.72 [81.8%] max: 78.57 [80.3%] avg: 76.73 [80.7%] std: 1.30 runs: 3 System 8k-0-limit/base: min: 39.78 max: 42.09 avg: 41.09 std: 0.97 runs: 3 8k-0-limit/rework: min: 200.86 [504.9%] max: 265.42 [630.6%] avg: 241.80 [588.5%] std: 29.06 runs: 3 8k-0-limit/reworkoptim: min: 53.70 [135.0%] max: 54.89 [130.4%] avg: 54.43 [132.5%] std: 0.52 runs: 3 Elapsed 8k-0-limit/base: min: 95.11 max: 98.61 avg: 96.81 std: 1.43 runs: 3 8k-0-limit/rework: min: 246.96 [259.7%] max: 331.47 [336.1%] avg: 301.32 [311.2%] std: 38.52 runs: 3 8k-0-limit/reworkoptim: min: 76.79 [80.7%] max: 81.71 [82.9%] avg: 78.97 [81.6%] std: 2.05 runs: 3 System time is increased by 30-40% but it is reduced a lot comparing to kernel without this patch. The higher time can be explained by the fact that the original soft reclaim scanned at priority 0 so it was much more effective for this workload (which is basically touch once and writeback). The Elapsed time looks better though (~20%). * Run with no soft limit set System 0-no-limit/base: min: 42.18 max: 50.38 avg: 46.44 std: 3.36 runs: 3 0-no-limit/rework: min: 40.57 [96.2%] max: 47.04 [93.4%] avg: 43.82 [94.4%] std: 2.64 runs: 3 0-no-limit/reworkoptim: min: 40.45 [95.9%] max: 45.28 [89.9%] avg: 42.10 [90.7%] std: 2.25 runs: 3 Elapsed 0-no-limit/base: min: 75.97 max: 78.21 avg: 76.87 std: 0.96 runs: 3 0-no-limit/rework: min: 75.59 [99.5%] max: 80.73 [103.2%] avg: 77.64 [101.0%] std: 2.23 runs: 3 0-no-limit/reworkoptim: min: 77.85 [102.5%] max: 82.42 [105.4%] avg: 79.64 [103.6%] std: 1.99 runs: 3 System 0.5k-no-limit/base: min: 44.54 max: 46.93 avg: 46.12 std: 1.12 runs: 3 0.5k-no-limit/rework: min: 42.09 [94.5%] max: 46.16 [98.4%] avg: 43.92 [95.2%] std: 1.69 runs: 3 0.5k-no-limit/reworkoptim: min: 42.47 [95.4%] max: 45.67 [97.3%] avg: 44.06 [95.5%] std: 1.31 runs: 3 Elapsed 0.5k-no-limit/base: min: 78.26 max: 81.49 avg: 79.65 std: 1.36 runs: 3 0.5k-no-limit/rework: min: 77.01 [98.4%] max: 80.43 [98.7%] avg: 78.30 [98.3%] std: 1.52 runs: 3 0.5k-no-limit/reworkoptim: min: 76.13 [97.3%] max: 77.87 [95.6%] avg: 77.18 [96.9%] std: 0.75 runs: 3 System 2k-no-limit/base: min: 62.96 max: 69.14 avg: 66.14 std: 2.53 runs: 3 2k-no-limit/rework: min: 76.01 [120.7%] max: 81.06 [117.2%] avg: 78.17 [118.2%] std: 2.12 runs: 3 2k-no-limit/reworkoptim: min: 62.57 [99.4%] max: 66.10 [95.6%] avg: 64.53 [97.6%] std: 1.47 runs: 3 Elapsed 2k-no-limit/base: min: 76.47 max: 84.22 avg: 79.12 std: 3.60 runs: 3 2k-no-limit/rework: min: 89.67 [117.3%] max: 93.26 [110.7%] avg: 91.10 [115.1%] std: 1.55 runs: 3 2k-no-limit/reworkoptim: min: 76.94 [100.6%] max: 79.21 [94.1%] avg: 78.45 [99.2%] std: 1.07 runs: 3 System 8k-no-limit/base: min: 104.74 max: 151.34 avg: 129.21 std: 19.10 runs: 3 8k-no-limit/rework: min: 205.23 [195.9%] max: 285.94 [188.9%] avg: 258.98 [200.4%] std: 38.01 runs: 3 8k-no-limit/reworkoptim: min: 161.16 [153.9%] max: 184.54 [121.9%] avg: 174.52 [135.1%] std: 9.83 runs: 3 Elapsed 8k-no-limit/base: min: 125.43 max: 181.00 avg: 154.81 std: 22.80 runs: 3 8k-no-limit/rework: min: 254.05 [202.5%] max: 355.67 [196.5%] avg: 321.46 [207.6%] std: 47.67 runs: 3 8k-no-limit/reworkoptim: min: 193.77 [154.5%] max: 222.72 [123.0%] avg: 210.18 [135.8%] std: 12.13 runs: 3 Both System and Elapsed are in stdev with the base kernel for all configurations except for 8k where both System and Elapsed are up by 35%. I do not have a good explanation for this because there is no soft reclaim pass going on as no group is above the limit which is checked in mem_cgroup_should_soft_reclaim. Then I have tested kernel build with the same configuration to see the behavior with a more general behavior. * Soft limit set to 0 for the build System 0-0-limit/base: min: 242.70 max: 245.17 avg: 243.85 std: 1.02 runs: 3 0-0-limit/rework min: 237.86 [98.0%] max: 240.22 [98.0%] avg: 239.00 [98.0%] std: 0.97 runs: 3 0-0-limit/reworkoptim: min: 241.11 [99.3%] max: 243.53 [99.3%] avg: 242.01 [99.2%] std: 1.08 runs: 3 Elapsed 0-0-limit/base: min: 348.48 max: 360.86 avg: 356.04 std: 5.41 runs: 3 0-0-limit/rework min: 286.95 [82.3%] max: 290.26 [80.4%] avg: 288.27 [81.0%] std: 1.43 runs: 3 0-0-limit/reworkoptim: min: 286.55 [82.2%] max: 289.00 [80.1%] avg: 287.69 [80.8%] std: 1.01 runs: 3 System 0.5k-0-limit/base: min: 251.77 max: 254.41 avg: 252.70 std: 1.21 runs: 3 0.5k-0-limit/rework min: 286.44 [113.8%] max: 289.30 [113.7%] avg: 287.60 [113.8%] std: 1.23 runs: 3 0.5k-0-limit/reworkoptim: min: 252.18 [100.2%] max: 253.16 [99.5%] avg: 252.62 [100.0%] std: 0.41 runs: 3 Elapsed 0.5k-0-limit/base: min: 347.83 max: 353.06 avg: 350.04 std: 2.21 runs: 3 0.5k-0-limit/rework min: 290.19 [83.4%] max: 295.62 [83.7%] avg: 293.12 [83.7%] std: 2.24 runs: 3 0.5k-0-limit/reworkoptim: min: 293.91 [84.5%] max: 294.87 [83.5%] avg: 294.29 [84.1%] std: 0.42 runs: 3 System 2k-0-limit/base: min: 263.05 max: 271.52 avg: 267.94 std: 3.58 runs: 3 2k-0-limit/rework min: 458.99 [174.5%] max: 468.31 [172.5%] avg: 464.45 [173.3%] std: 3.97 runs: 3 2k-0-limit/reworkoptim: min: 267.10 [101.5%] max: 279.38 [102.9%] avg: 272.78 [101.8%] std: 5.05 runs: 3 Elapsed 2k-0-limit/base: min: 372.33 max: 379.32 avg: 375.47 std: 2.90 runs: 3 2k-0-limit/rework min: 334.40 [89.8%] max: 339.52 [89.5%] avg: 337.44 [89.9%] std: 2.20 runs: 3 2k-0-limit/reworkoptim: min: 301.47 [81.0%] max: 319.19 [84.1%] avg: 307.90 [82.0%] std: 8.01 runs: 3 System 8k-0-limit/base: min: 320.50 max: 332.10 avg: 325.46 std: 4.88 runs: 3 8k-0-limit/rework min: 1115.76 [348.1%] max: 1165.66 [351.0%] avg: 1132.65 [348.0%] std: 23.34 runs: 3 8k-0-limit/reworkoptim: min: 403.75 [126.0%] max: 409.22 [123.2%] avg: 406.16 [124.8%] std: 2.28 runs: 3 Elapsed 8k-0-limit/base: min: 475.48 max: 585.19 avg: 525.54 std: 45.30 runs: 3 8k-0-limit/rework min: 616.25 [129.6%] max: 625.90 [107.0%] avg: 620.68 [118.1%] std: 3.98 runs: 3 8k-0-limit/reworkoptim: min: 420.18 [88.4%] max: 428.28 [73.2%] avg: 423.05 [80.5%] std: 3.71 runs: 3 Apart from 8k the system time is comparable with the base kernel while Elapsed is up to 20% better with all configurations. * No soft limit set System 0-no-limit/base: min: 234.76 max: 237.42 avg: 236.25 std: 1.11 runs: 3 0-no-limit/rework min: 233.09 [99.3%] max: 238.65 [100.5%] avg: 236.09 [99.9%] std: 2.29 runs: 3 0-no-limit/reworkoptim: min: 236.12 [100.6%] max: 240.53 [101.3%] avg: 237.94 [100.7%] std: 1.88 runs: 3 Elapsed 0-no-limit/base: min: 288.52 max: 295.42 avg: 291.29 std: 2.98 runs: 3 0-no-limit/rework min: 283.17 [98.1%] max: 284.33 [96.2%] avg: 283.78 [97.4%] std: 0.48 runs: 3 0-no-limit/reworkoptim: min: 288.50 [100.0%] max: 290.79 [98.4%] avg: 289.78 [99.5%] std: 0.95 runs: 3 System 0.5k-no-limit/base: min: 286.51 max: 293.23 avg: 290.21 std: 2.78 runs: 3 0.5k-no-limit/rework min: 291.69 [101.8%] max: 294.38 [100.4%] avg: 292.97 [101.0%] std: 1.10 runs: 3 0.5k-no-limit/reworkoptim: min: 277.05 [96.7%] max: 288.76 [98.5%] avg: 284.17 [97.9%] std: 5.11 runs: 3 Elapsed 0.5k-no-limit/base: min: 294.94 max: 298.92 avg: 296.47 std: 1.75 runs: 3 0.5k-no-limit/rework min: 292.55 [99.2%] max: 294.21 [98.4%] avg: 293.55 [99.0%] std: 0.72 runs: 3 0.5k-no-limit/reworkoptim: min: 294.41 [99.8%] max: 301.67 [100.9%] avg: 297.78 [100.4%] std: 2.99 runs: 3 System 2k-no-limit/base: min: 443.41 max: 466.66 avg: 457.66 std: 10.19 runs: 3 2k-no-limit/rework min: 490.11 [110.5%] max: 516.02 [110.6%] avg: 501.42 [109.6%] std: 10.83 runs: 3 2k-no-limit/reworkoptim: min: 435.25 [98.2%] max: 458.11 [98.2%] avg: 446.73 [97.6%] std: 9.33 runs: 3 Elapsed 2k-no-limit/base: min: 330.85 max: 333.75 avg: 332.52 std: 1.23 runs: 3 2k-no-limit/rework min: 343.06 [103.7%] max: 349.59 [104.7%] avg: 345.95 [104.0%] std: 2.72 runs: 3 2k-no-limit/reworkoptim: min: 330.01 [99.7%] max: 333.92 [100.1%] avg: 332.22 [99.9%] std: 1.64 runs: 3 System 8k-no-limit/base: min: 1175.64 max: 1259.38 avg: 1222.39 std: 34.88 runs: 3 8k-no-limit/rework min: 1226.31 [104.3%] max: 1241.60 [98.6%] avg: 1233.74 [100.9%] std: 6.25 runs: 3 8k-no-limit/reworkoptim: min: 1023.45 [87.1%] max: 1056.74 [83.9%] avg: 1038.92 [85.0%] std: 13.69 runs: 3 Elapsed 8k-no-limit/base: min: 613.36 max: 619.60 avg: 616.47 std: 2.55 runs: 3 8k-no-limit/rework min: 627.56 [102.3%] max: 642.33 [103.7%] avg: 633.44 [102.8%] std: 6.39 runs: 3 8k-no-limit/reworkoptim: min: 545.89 [89.0%] max: 555.36 [89.6%] avg: 552.06 [89.6%] std: 4.37 runs: 3 and these numbers look good as well. System time is around 100% (suprisingly better for the 8k case) and Elapsed is copies that trend. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10mm: fix memcg-less page reclaimHugh Dickins
Now that everybody loves memcg, configures it on, and would not dream of booting with cgroup_disable=memory, it can pass unnoticed for weeks that memcg-less page reclaim is completely broken. mmotm's "memcg: enhance memcg iterator to support predicates" replaces __shrink_zone()'s "do { } while (memcg);" loop by a "while (memcg) {}" loop: which is nicer for memcg, but does nothing for !CONFIG_MEMCG or cgroup_disable=memory. Page reclaim hangs, making no progress. Adding mem_cgroup_disabled() and once++ test there is ugly. Ideally, even a !CONFIG_MEMCG build might in future have a stub root_mem_cgroup, which would get around this: but that's not so at present. However, it appears that nothing actually dereferences the memcg pointer in the mem_cgroup_disabled() case, here or anywhere else that case can reach mem_cgroup_iter() (mem_cgroup_iter_break() is not called in global reclaim). So, simply pass back an ordinarily-oopsing non-NULL address the first time, and we shall hear about it if I'm wrong. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg: enhance memcg iterator to support predicatesMichal Hocko
The caller of the iterator might know that some nodes or even subtrees should be skipped but there is no way to tell iterators about that so the only choice left is to let iterators to visit each node and do the selection outside of the iterating code. This, however, doesn't scale well with hierarchies with many groups where only few groups are interesting. This patch adds mem_cgroup_iter_cond variant of the iterator with a callback which gets called for every visited node. There are three possible ways how the callback can influence the walk. Either the node is visited, it is skipped but the tree walk continues down the tree or the whole subtree of the current group is skipped. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@openvz.org> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10vmscan, memcg: do softlimit reclaim also for targeted reclaimMichal Hocko
Soft reclaim has been done only for the global reclaim (both background and direct). Since "memcg: integrate soft reclaim tighter with zone shrinking code" there is no reason for this limitation anymore as the soft limit reclaim doesn't use any special code paths and it is a part of the zone shrinking code which is used by both global and targeted reclaims. From the semantic point of view it is natural to consider soft limit before touching all groups in the hierarchy tree which is touching the hard limit because soft limit tells us where to push back when there is a memory pressure. It is not important whether the pressure comes from the limit or imbalanced zones. This patch simply enables soft reclaim unconditionally in mem_cgroup_should_soft_reclaim so it is enabled for both global and targeted reclaim paths. mem_cgroup_soft_reclaim_eligible needs to learn about the root of the reclaim to know where to stop checking soft limit state of parents up the hierarchy. Say we have A (over soft limit) \ B (below s.l., hit the hard limit) / \ C D (below s.l.) B is the source of the outside memory pressure now for D but we shouldn't soft reclaim it because it is behaving well under B subtree and we can still reclaim from C (pressumably it is over the limit). mem_cgroup_soft_reclaim_eligible should therefore stop climbing up the hierarchy at B (root of the memory pressure). Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Tejun Heo <tj@kernel.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg: get rid of soft-limit tree infrastructureMichal Hocko
Now that the soft limit is integrated to the reclaim directly the whole soft-limit tree infrastructure is not needed anymore. Rip it out. Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Tejun Heo <tj@kernel.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg, vmscan: integrate soft reclaim tighter with zone shrinking codeMichal Hocko
This patchset is sitting out of tree for quite some time without any objections. I would be really happy if it made it into 3.12. I do not want to push it too hard but I think this work is basically ready and waiting more doesn't help. The basic idea is quite simple. Pull soft reclaim into shrink_zone in the first step and get rid of the previous soft reclaim infrastructure. shrink_zone is done in two passes now. First it tries to do the soft limit reclaim and it falls back to reclaim-all mode if no group is over the limit or no pages have been scanned. The second pass happens at the same priority so the only time we waste is the memcg tree walk which has been updated in the third step to have only negligible overhead. As a bonus we will get rid of a _lot_ of code by this and soft reclaim will not stand out like before when it wasn't integrated into the zone shrinking code and it reclaimed at priority 0 (the testing results show that some workloads suffers from such an aggressive reclaim). The clean up is in a separate patch because I felt it would be easier to review that way. The second step is soft limit reclaim integration into targeted reclaim. It should be rather straight forward. Soft limit has been used only for the global reclaim so far but it makes sense for any kind of pressure coming from up-the-hierarchy, including targeted reclaim. The third step (patches 4-8) addresses the tree walk overhead by enhancing memcg iterators to enable skipping whole subtrees and tracking number of over soft limit children at each level of the hierarchy. This information is updated same way the old soft limit tree was updated (from memcg_check_events) so we shouldn't see an additional overhead. In fact mem_cgroup_update_soft_limit is much simpler than tree manipulation done previously. __shrink_zone uses mem_cgroup_soft_reclaim_eligible as a predicate for mem_cgroup_iter so the decision whether a particular group should be visited is done at the iterator level which allows us to decide to skip the whole subtree as well (if there is no child in excess). This reduces the tree walk overhead considerably. * TEST 1 ======== My primary test case was a parallel kernel build with 2 groups (make is running with -j8 with a distribution .config in a separate cgroup without any hard limit) on a 32 CPU machine booted with 1GB memory and both builds run taskset to Node 0 cpus. I was mostly interested in 2 setups. Default - no soft limit set and - and 0 soft limit set to both groups. The first one should tell us whether the rework regresses the default behavior while the second one should show us improvements in an extreme case where both workloads are always over the soft limit. /usr/bin/time -v has been used to collect the statistics and each configuration had 3 runs after fresh boot without any other load on the system. base is mmotm-2013-07-18-16-40 rework all 8 patches applied on top of base * No-limit User no-limit/base: min: 651.92 max: 672.65 avg: 664.33 std: 8.01 runs: 6 no-limit/rework: min: 657.34 [100.8%] max: 668.39 [99.4%] avg: 663.13 [99.8%] std: 3.61 runs: 6 System no-limit/base: min: 69.33 max: 71.39 avg: 70.32 std: 0.79 runs: 6 no-limit/rework: min: 69.12 [99.7%] max: 71.05 [99.5%] avg: 70.04 [99.6%] std: 0.59 runs: 6 Elapsed no-limit/base: min: 398.27 max: 422.36 avg: 408.85 std: 7.74 runs: 6 no-limit/rework: min: 386.36 [97.0%] max: 438.40 [103.8%] avg: 416.34 [101.8%] std: 18.85 runs: 6 The results are within noise. Elapsed time has a bigger variance but the average looks good. * 0-limit User 0-limit/base: min: 573.76 max: 605.63 avg: 585.73 std: 12.21 runs: 6 0-limit/rework: min: 645.77 [112.6%] max: 666.25 [110.0%] avg: 656.97 [112.2%] std: 7.77 runs: 6 System 0-limit/base: min: 69.57 max: 71.13 avg: 70.29 std: 0.54 runs: 6 0-limit/rework: min: 68.68 [98.7%] max: 71.40 [100.4%] avg: 69.91 [99.5%] std: 0.87 runs: 6 Elapsed 0-limit/base: min: 1306.14 max: 1550.17 avg: 1430.35 std: 90.86 runs: 6 0-limit/rework: min: 404.06 [30.9%] max: 465.94 [30.1%] avg: 434.81 [30.4%] std: 22.68 runs: 6 The improvement is really huge here (even bigger than with my previous testing and I suspect that this highly depends on the storage). Page fault statistics tell us at least part of the story: Minor 0-limit/base: min: 37180461.00 max: 37319986.00 avg: 37247470.00 std: 54772.71 runs: 6 0-limit/rework: min: 36751685.00 [98.8%] max: 36805379.00 [98.6%] avg: 36774506.33 [98.7%] std: 17109.03 runs: 6 Major 0-limit/base: min: 170604.00 max: 221141.00 avg: 196081.83 std: 18217.01 runs: 6 0-limit/rework: min: 2864.00 [1.7%] max: 10029.00 [4.5%] avg: 5627.33 [2.9%] std: 2252.71 runs: 6 Same as with my previous testing Minor faults are more or less within noise but Major fault count is way bellow the base kernel. While this looks as a nice win it is fair to say that 0-limit configuration is quite artificial. So I was playing with 0-no-limit loads as well. * TEST 2 ======== The following results are from 2 groups configuration on a 16GB machine (single NUMA node). - A running stream IO (dd if=/dev/zero of=local.file bs=1024) with 2*TotalMem with 0 soft limit. - B running a mem_eater which consumes TotalMem-1G without any limit. The mem_eater consumes the memory in 100 chunks with 1s nap after each mmap+poppulate so that both loads have chance to fight for the memory. The expected result is that B shouldn't be reclaimed and A shouldn't see a big dropdown in elapsed time. User base: min: 2.68 max: 2.89 avg: 2.76 std: 0.09 runs: 3 rework: min: 3.27 [122.0%] max: 3.74 [129.4%] avg: 3.44 [124.6%] std: 0.21 runs: 3 System base: min: 86.26 max: 88.29 avg: 87.28 std: 0.83 runs: 3 rework: min: 81.05 [94.0%] max: 84.96 [96.2%] avg: 83.14 [95.3%] std: 1.61 runs: 3 Elapsed base: min: 317.28 max: 332.39 avg: 325.84 std: 6.33 runs: 3 rework: min: 281.53 [88.7%] max: 298.16 [89.7%] avg: 290.99 [89.3%] std: 6.98 runs: 3 System time improved slightly as well as Elapsed. My previous testing has shown worse numbers but this again seem to depend on the storage speed. My theory is that the writeback doesn't catch up and prio-0 soft reclaim falls into wait on writeback page too often in the base kernel. The patched kernel doesn't do that because the soft reclaim is done from the kswapd/direct reclaim context. This can be seen on the following graph nicely. The A's group usage_in_bytes regurarly drops really low very often. All 3 runs http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream.png resp. a detail of the single run http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/stream-one-run.png mem_eater seems to be doing better as well. It gets to the full allocation size faster as can be seen on the following graph: http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/mem_eater-one-run.png /proc/meminfo collected during the test also shows that rework kernel hasn't swapped that much (well almost not at all): base: max: 123900 K avg: 56388.29 K rework: max: 300 K avg: 128.68 K kswapd and direct reclaim statistics are of no use unfortunatelly because soft reclaim is not accounted properly as the counters are hidden by global_reclaim() checks in the base kernel. * TEST 3 ======== Another test was the same configuration as TEST2 except the stream IO was replaced by a single kbuild (16 parallel jobs bound to Node0 cpus same as in TEST1) and mem_eater allocated TotalMem-200M so kbuild had only 200MB left. Kbuild did better with the rework kernel here as well: User base: min: 860.28 max: 872.86 avg: 868.03 std: 5.54 runs: 3 rework: min: 880.81 [102.4%] max: 887.45 [101.7%] avg: 883.56 [101.8%] std: 2.83 runs: 3 System base: min: 84.35 max: 85.06 avg: 84.79 std: 0.31 runs: 3 rework: min: 85.62 [101.5%] max: 86.09 [101.2%] avg: 85.79 [101.2%] std: 0.21 runs: 3 Elapsed base: min: 135.36 max: 243.30 avg: 182.47 std: 45.12 runs: 3 rework: min: 110.46 [81.6%] max: 116.20 [47.8%] avg: 114.15 [62.6%] std: 2.61 runs: 3 Minor base: min: 36635476.00 max: 36673365.00 avg: 36654812.00 std: 15478.03 runs: 3 rework: min: 36639301.00 [100.0%] max: 36695541.00 [100.1%] avg: 36665511.00 [100.0%] std: 23118.23 runs: 3 Major base: min: 14708.00 max: 53328.00 avg: 31379.00 std: 16202.24 runs: 3 rework: min: 302.00 [2.1%] max: 414.00 [0.8%] avg: 366.33 [1.2%] std: 47.22 runs: 3 Again we can see a significant improvement in Elapsed (it also seems to be more stable), there is a huge dropdown for the Major page faults and much more swapping: base: max: 583736 K avg: 112547.43 K rework: max: 4012 K avg: 124.36 K Graphs from all three runs show the variability of the kbuild quite nicely. It even seems that it took longer after every run with the base kernel which would be quite surprising as the source tree for the build is removed and caches are dropped after each run so the build operates on a freshly extracted sources everytime. http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater.png My other testing shows that this is just a matter of timing and other runs behave differently the std for Elapsed time is similar ~50. Example of other three runs: http://labs.suse.cz/mhocko/soft_limit_rework/stream_io-vs-mem_eater/kbuild-mem_eater2.png So to wrap this up. The series is still doing good and improves the soft limit. The testing results for bunch of cgroups with both stream IO and kbuild loads can be found in "memcg: track children in soft limit excess to improve soft limit". This patch: Memcg soft reclaim has been traditionally triggered from the global reclaim paths before calling shrink_zone. mem_cgroup_soft_limit_reclaim then picked up a group which exceeds the soft limit the most and reclaimed it with 0 priority to reclaim at least SWAP_CLUSTER_MAX pages. The infrastructure requires per-node-zone trees which hold over-limit groups and keep them up-to-date (via memcg_check_events) which is not cost free. Although this overhead hasn't turned out to be a bottle neck the implementation is suboptimal because mem_cgroup_update_tree has no idea which zones consumed memory over the limit so we could easily end up having a group on a node-zone tree having only few pages from that node-zone. This patch doesn't try to fix node-zone trees management because it seems that integrating soft reclaim into zone shrinking sounds much easier and more appropriate for several reasons. First of all 0 priority reclaim was a crude hack which might lead to big stalls if the group's LRUs are big and hard to reclaim (e.g. a lot of dirty/writeback pages). Soft reclaim should be applicable also to the targeted reclaim which is awkward right now without additional hacks. Last but not least the whole infrastructure eats quite some code. After this patch shrink_zone is done in 2 passes. First it tries to do the soft reclaim if appropriate (only for global reclaim for now to keep compatible with the original state) and fall back to ignoring soft limit if no group is eligible to soft reclaim or nothing has been scanned during the first pass. Only groups which are over their soft limit or any of their parents up the hierarchy is over the limit are considered eligible during the first pass. Soft limit tree which is not necessary anymore will be removed in the follow up patch to make this patch smaller and easier to review. Signed-off-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Tejun Heo <tj@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Ying Han <yinghan@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10memcg: remove redundant code in mem_cgroup_force_empty_write()Li Zefan
vfs guarantees the cgroup won't be destroyed, so it's redundant to get a css reference. Signed-off-by: Li Zefan <lizefan@huawei.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2013-09-10Merge branch 'akpm-current/current'Stephen Rothwell
Conflicts: fs/namei.c fs/namespace.c kernel/fork.c
2013-09-10Merge remote-tracking branch 'aio/master'Stephen Rothwell
Conflicts: fs/block_dev.c fs/nfs/direct.c
2013-09-10Merge remote-tracking branch 'slab/for-next'Stephen Rothwell
2013-09-10Merge remote-tracking branch 'pm/linux-next'Stephen Rothwell
2013-09-10Merge remote-tracking branch 'aio-direct/for-next'Stephen Rothwell
Conflicts: fs/block_dev.c fs/direct-io.c
2013-09-09Merge branch 'acpi-hotplug-next' into linux-nextRafael J. Wysocki
* acpi-hotplug-next: PM / hibernate / memory hotplug: Rework mutual exclusion PM / hibernate: Create memory bitmaps after freezing user space ACPI / scan: Change ordering of locks for device hotplug
2013-09-06Merge branch 'for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial Pull trivial tree from Jiri Kosina: "The usual trivial updates all over the tree -- mostly typo fixes and documentation updates" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (52 commits) doc: Documentation/cputopology.txt fix typo treewide: Convert retrun typos to return Fix comment typo for init_cma_reserved_pageblock Documentation/trace: Correcting and extending tracepoint documentation mm/hotplug: fix a typo in Documentation/memory-hotplug.txt power: Documentation: Update s2ram link doc: fix a typo in Documentation/00-INDEX Documentation/printk-formats.txt: No casts needed for u64/s64 doc: Fix typo "is is" in Documentations treewide: Fix printks with 0x%# zram: doc fixes Documentation/kmemcheck: update kmemcheck documentation doc: documentation/hwspinlock.txt fix typo PM / Hibernate: add section for resume options doc: filesystems : Fix typo in Documentations/filesystems scsi/megaraid fixed several typos in comments ppc: init_32: Fix error typo "CONFIG_START_KERNEL" treewide: Add __GFP_NOWARN to k.alloc calls with v.alloc fallbacks page_isolation: Fix a comment typo in test_pages_isolated() doc: fix a typo about irq affinity ...