From ad56b738c5dd223a2f66685830f82194025a6138 Mon Sep 17 00:00:00 2001 From: Mike Rapoport Date: Wed, 21 Mar 2018 21:22:47 +0200 Subject: docs/vm: rename documentation files to .rst Signed-off-by: Mike Rapoport Signed-off-by: Jonathan Corbet --- Documentation/vm/balance.rst | 102 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 102 insertions(+) create mode 100644 Documentation/vm/balance.rst (limited to 'Documentation/vm/balance.rst') diff --git a/Documentation/vm/balance.rst b/Documentation/vm/balance.rst new file mode 100644 index 000000000000..6a1fadf3e173 --- /dev/null +++ b/Documentation/vm/balance.rst @@ -0,0 +1,102 @@ +.. _balance: + +================ +Memory Balancing +================ + +Started Jan 2000 by Kanoj Sarcar + +Memory balancing is needed for !__GFP_ATOMIC and !__GFP_KSWAPD_RECLAIM as +well as for non __GFP_IO allocations. + +The first reason why a caller may avoid reclaim is that the caller can not +sleep due to holding a spinlock or is in interrupt context. The second may +be that the caller is willing to fail the allocation without incurring the +overhead of page reclaim. This may happen for opportunistic high-order +allocation requests that have order-0 fallback options. In such cases, +the caller may also wish to avoid waking kswapd. + +__GFP_IO allocation requests are made to prevent file system deadlocks. + +In the absence of non sleepable allocation requests, it seems detrimental +to be doing balancing. Page reclamation can be kicked off lazily, that +is, only when needed (aka zone free memory is 0), instead of making it +a proactive process. + +That being said, the kernel should try to fulfill requests for direct +mapped pages from the direct mapped pool, instead of falling back on +the dma pool, so as to keep the dma pool filled for dma requests (atomic +or not). A similar argument applies to highmem and direct mapped pages. +OTOH, if there is a lot of free dma pages, it is preferable to satisfy +regular memory requests by allocating one from the dma pool, instead +of incurring the overhead of regular zone balancing. + +In 2.2, memory balancing/page reclamation would kick off only when the +_total_ number of free pages fell below 1/64 th of total memory. With the +right ratio of dma and regular memory, it is quite possible that balancing +would not be done even when the dma zone was completely empty. 2.2 has +been running production machines of varying memory sizes, and seems to be +doing fine even with the presence of this problem. In 2.3, due to +HIGHMEM, this problem is aggravated. + +In 2.3, zone balancing can be done in one of two ways: depending on the +zone size (and possibly of the size of lower class zones), we can decide +at init time how many free pages we should aim for while balancing any +zone. The good part is, while balancing, we do not need to look at sizes +of lower class zones, the bad part is, we might do too frequent balancing +due to ignoring possibly lower usage in the lower class zones. Also, +with a slight change in the allocation routine, it is possible to reduce +the memclass() macro to be a simple equality. + +Another possible solution is that we balance only when the free memory +of a zone _and_ all its lower class zones falls below 1/64th of the +total memory in the zone and its lower class zones. This fixes the 2.2 +balancing problem, and stays as close to 2.2 behavior as possible. Also, +the balancing algorithm works the same way on the various architectures, +which have different numbers and types of zones. If we wanted to get +fancy, we could assign different weights to free pages in different +zones in the future. + +Note that if the size of the regular zone is huge compared to dma zone, +it becomes less significant to consider the free dma pages while +deciding whether to balance the regular zone. The first solution +becomes more attractive then. + +The appended patch implements the second solution. It also "fixes" two +problems: first, kswapd is woken up as in 2.2 on low memory conditions +for non-sleepable allocations. Second, the HIGHMEM zone is also balanced, +so as to give a fighting chance for replace_with_highmem() to get a +HIGHMEM page, as well as to ensure that HIGHMEM allocations do not +fall back into regular zone. This also makes sure that HIGHMEM pages +are not leaked (for example, in situations where a HIGHMEM page is in +the swapcache but is not being used by anyone) + +kswapd also needs to know about the zones it should balance. kswapd is +primarily needed in a situation where balancing can not be done, +probably because all allocation requests are coming from intr context +and all process contexts are sleeping. For 2.3, kswapd does not really +need to balance the highmem zone, since intr context does not request +highmem pages. kswapd looks at the zone_wake_kswapd field in the zone +structure to decide whether a zone needs balancing. + +Page stealing from process memory and shm is done if stealing the page would +alleviate memory pressure on any zone in the page's node that has fallen below +its watermark. + +watemark[WMARK_MIN/WMARK_LOW/WMARK_HIGH]/low_on_memory/zone_wake_kswapd: These +are per-zone fields, used to determine when a zone needs to be balanced. When +the number of pages falls below watermark[WMARK_MIN], the hysteric field +low_on_memory gets set. This stays set till the number of free pages becomes +watermark[WMARK_HIGH]. When low_on_memory is set, page allocation requests will +try to free some pages in the zone (providing GFP_WAIT is set in the request). +Orthogonal to this, is the decision to poke kswapd to free some zone pages. +That decision is not hysteresis based, and is done when the number of free +pages is below watermark[WMARK_LOW]; in which case zone_wake_kswapd is also set. + + +(Good) Ideas that I have heard: + +1. Dynamic experience should influence balancing: number of failed requests + for a zone can be tracked and fed into the balancing scheme (jalvo@mbay.net) +2. Implement a replace_with_highmem()-like replace_with_regular() to preserve + dma pages. (lkd@tantalophile.demon.co.uk) -- cgit v1.2.3