// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "bkey_methods.h" #include "bkey_sort.h" #include "btree_cache.h" #include "btree_io.h" #include "btree_iter.h" #include "btree_locking.h" #include "btree_update.h" #include "btree_update_interior.h" #include "buckets.h" #include "checksum.h" #include "debug.h" #include "error.h" #include "extents.h" #include "io.h" #include "journal_reclaim.h" #include "journal_seq_blacklist.h" #include "super-io.h" #include #include static void verify_no_dups(struct btree *b, struct bkey_packed *start, struct bkey_packed *end, bool extents) { #ifdef CONFIG_BCACHEFS_DEBUG struct bkey_packed *k, *p; if (start == end) return; for (p = start, k = bkey_next_skip_noops(start, end); k != end; p = k, k = bkey_next_skip_noops(k, end)) { struct bkey l = bkey_unpack_key(b, p); struct bkey r = bkey_unpack_key(b, k); BUG_ON(extents ? bkey_cmp(l.p, bkey_start_pos(&r)) > 0 : bkey_cmp(l.p, bkey_start_pos(&r)) >= 0); //BUG_ON(bkey_cmp_packed(&b->format, p, k) >= 0); } #endif } static void set_needs_whiteout(struct bset *i, int v) { struct bkey_packed *k; for (k = i->start; k != vstruct_last(i); k = bkey_next_skip_noops(k, vstruct_last(i))) k->needs_whiteout = v; } static void btree_bounce_free(struct bch_fs *c, unsigned order, bool used_mempool, void *p) { if (used_mempool) mempool_free(p, &c->btree_bounce_pool); else vpfree(p, PAGE_SIZE << order); } static void *btree_bounce_alloc(struct bch_fs *c, unsigned order, bool *used_mempool) { unsigned flags = memalloc_nofs_save(); void *p; BUG_ON(order > btree_page_order(c)); *used_mempool = false; p = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, order); if (!p) { *used_mempool = true; p = mempool_alloc(&c->btree_bounce_pool, GFP_NOIO); } memalloc_nofs_restore(flags); return p; } static void sort_bkey_ptrs(const struct btree *bt, struct bkey_packed **ptrs, unsigned nr) { unsigned n = nr, a = nr / 2, b, c, d; if (!a) return; /* Heap sort: see lib/sort.c: */ while (1) { if (a) a--; else if (--n) swap(ptrs[0], ptrs[n]); else break; for (b = a; c = 2 * b + 1, (d = c + 1) < n;) b = bkey_cmp_packed(bt, ptrs[c], ptrs[d]) >= 0 ? c : d; if (d == n) b = c; while (b != a && bkey_cmp_packed(bt, ptrs[a], ptrs[b]) >= 0) b = (b - 1) / 2; c = b; while (b != a) { b = (b - 1) / 2; swap(ptrs[b], ptrs[c]); } } } static void bch2_sort_whiteouts(struct bch_fs *c, struct btree *b) { struct bkey_packed *new_whiteouts, **ptrs, **ptrs_end, *k; bool used_mempool = false; unsigned order; if (!b->whiteout_u64s) return; order = get_order(b->whiteout_u64s * sizeof(u64)); new_whiteouts = btree_bounce_alloc(c, order, &used_mempool); ptrs = ptrs_end = ((void *) new_whiteouts + (PAGE_SIZE << order)); for (k = unwritten_whiteouts_start(c, b); k != unwritten_whiteouts_end(c, b); k = bkey_next(k)) *--ptrs = k; sort_bkey_ptrs(b, ptrs, ptrs_end - ptrs); k = new_whiteouts; while (ptrs != ptrs_end) { bkey_copy(k, *ptrs); k = bkey_next(k); ptrs++; } verify_no_dups(b, new_whiteouts, (void *) ((u64 *) new_whiteouts + b->whiteout_u64s), btree_node_old_extent_overwrite(b)); memcpy_u64s(unwritten_whiteouts_start(c, b), new_whiteouts, b->whiteout_u64s); btree_bounce_free(c, order, used_mempool, new_whiteouts); } static bool should_compact_bset(struct btree *b, struct bset_tree *t, bool compacting, enum compact_mode mode) { if (!bset_dead_u64s(b, t)) return false; switch (mode) { case COMPACT_LAZY: return should_compact_bset_lazy(b, t) || (compacting && !bset_written(b, bset(b, t))); case COMPACT_ALL: return true; default: BUG(); } } static bool bch2_compact_extent_whiteouts(struct bch_fs *c, struct btree *b, enum compact_mode mode) { const struct bkey_format *f = &b->format; struct bset_tree *t; struct bkey_packed *whiteouts = NULL; struct bkey_packed *u_start, *u_pos; struct sort_iter sort_iter; unsigned order, whiteout_u64s = 0, u64s; bool used_mempool, compacting = false; BUG_ON(!btree_node_is_extents(b)); for_each_bset(b, t) if (should_compact_bset(b, t, whiteout_u64s != 0, mode)) whiteout_u64s += bset_dead_u64s(b, t); if (!whiteout_u64s) return false; bch2_sort_whiteouts(c, b); sort_iter_init(&sort_iter, b); whiteout_u64s += b->whiteout_u64s; order = get_order(whiteout_u64s * sizeof(u64)); whiteouts = btree_bounce_alloc(c, order, &used_mempool); u_start = u_pos = whiteouts; memcpy_u64s(u_pos, unwritten_whiteouts_start(c, b), b->whiteout_u64s); u_pos = (void *) u_pos + b->whiteout_u64s * sizeof(u64); sort_iter_add(&sort_iter, u_start, u_pos); for_each_bset(b, t) { struct bset *i = bset(b, t); struct bkey_packed *k, *n, *out, *start, *end; struct btree_node_entry *src = NULL, *dst = NULL; if (t != b->set && !bset_written(b, i)) { src = container_of(i, struct btree_node_entry, keys); dst = max(write_block(b), (void *) btree_bkey_last(b, t - 1)); } if (src != dst) compacting = true; if (!should_compact_bset(b, t, compacting, mode)) { if (src != dst) { memmove(dst, src, sizeof(*src) + le16_to_cpu(src->keys.u64s) * sizeof(u64)); i = &dst->keys; set_btree_bset(b, t, i); } continue; } compacting = true; u_start = u_pos; start = i->start; end = vstruct_last(i); if (src != dst) { memmove(dst, src, sizeof(*src)); i = &dst->keys; set_btree_bset(b, t, i); } out = i->start; for (k = start; k != end; k = n) { n = bkey_next_skip_noops(k, end); if (bkey_deleted(k)) continue; BUG_ON(bkey_whiteout(k) && k->needs_whiteout && bkey_written(b, k)); if (bkey_whiteout(k) && !k->needs_whiteout) continue; if (bkey_whiteout(k)) { memcpy_u64s(u_pos, k, bkeyp_key_u64s(f, k)); set_bkeyp_val_u64s(f, u_pos, 0); u_pos = bkey_next(u_pos); } else { bkey_copy(out, k); out = bkey_next(out); } } sort_iter_add(&sort_iter, u_start, u_pos); i->u64s = cpu_to_le16((u64 *) out - i->_data); set_btree_bset_end(b, t); bch2_bset_set_no_aux_tree(b, t); } b->whiteout_u64s = (u64 *) u_pos - (u64 *) whiteouts; BUG_ON((void *) unwritten_whiteouts_start(c, b) < (void *) btree_bkey_last(b, bset_tree_last(b))); u64s = bch2_sort_extent_whiteouts(unwritten_whiteouts_start(c, b), &sort_iter); BUG_ON(u64s > b->whiteout_u64s); BUG_ON(u_pos != whiteouts && !u64s); if (u64s != b->whiteout_u64s) { void *src = unwritten_whiteouts_start(c, b); b->whiteout_u64s = u64s; memmove_u64s_up(unwritten_whiteouts_start(c, b), src, u64s); } verify_no_dups(b, unwritten_whiteouts_start(c, b), unwritten_whiteouts_end(c, b), true); btree_bounce_free(c, order, used_mempool, whiteouts); bch2_btree_build_aux_trees(b); bch_btree_keys_u64s_remaining(c, b); bch2_verify_btree_nr_keys(b); return true; } static bool bch2_drop_whiteouts(struct btree *b, enum compact_mode mode) { struct bset_tree *t; bool ret = false; for_each_bset(b, t) { struct bset *i = bset(b, t); struct bkey_packed *k, *n, *out, *start, *end; struct btree_node_entry *src = NULL, *dst = NULL; if (t != b->set && !bset_written(b, i)) { src = container_of(i, struct btree_node_entry, keys); dst = max(write_block(b), (void *) btree_bkey_last(b, t - 1)); } if (src != dst) ret = true; if (!should_compact_bset(b, t, ret, mode)) { if (src != dst) { memmove(dst, src, sizeof(*src) + le16_to_cpu(src->keys.u64s) * sizeof(u64)); i = &dst->keys; set_btree_bset(b, t, i); } continue; } start = btree_bkey_first(b, t); end = btree_bkey_last(b, t); if (src != dst) { memmove(dst, src, sizeof(*src)); i = &dst->keys; set_btree_bset(b, t, i); } out = i->start; for (k = start; k != end; k = n) { n = bkey_next_skip_noops(k, end); if (!bkey_whiteout(k)) { bkey_copy(out, k); out = bkey_next(out); } else { BUG_ON(k->needs_whiteout); } } i->u64s = cpu_to_le16((u64 *) out - i->_data); set_btree_bset_end(b, t); bch2_bset_set_no_aux_tree(b, t); ret = true; } bch2_verify_btree_nr_keys(b); bch2_btree_build_aux_trees(b); return ret; } bool bch2_compact_whiteouts(struct bch_fs *c, struct btree *b, enum compact_mode mode) { return !btree_node_old_extent_overwrite(b) ? bch2_drop_whiteouts(b, mode) : bch2_compact_extent_whiteouts(c, b, mode); } static void btree_node_sort(struct bch_fs *c, struct btree *b, struct btree_iter *iter, unsigned start_idx, unsigned end_idx, bool filter_whiteouts) { struct btree_node *out; struct sort_iter sort_iter; struct bset_tree *t; struct bset *start_bset = bset(b, &b->set[start_idx]); bool used_mempool = false; u64 start_time, seq = 0; unsigned i, u64s = 0, order, shift = end_idx - start_idx - 1; bool sorting_entire_node = start_idx == 0 && end_idx == b->nsets; sort_iter_init(&sort_iter, b); for (t = b->set + start_idx; t < b->set + end_idx; t++) { u64s += le16_to_cpu(bset(b, t)->u64s); sort_iter_add(&sort_iter, btree_bkey_first(b, t), btree_bkey_last(b, t)); } order = sorting_entire_node ? btree_page_order(c) : get_order(__vstruct_bytes(struct btree_node, u64s)); out = btree_bounce_alloc(c, order, &used_mempool); start_time = local_clock(); if (btree_node_old_extent_overwrite(b)) filter_whiteouts = bset_written(b, start_bset); u64s = (btree_node_old_extent_overwrite(b) ? bch2_sort_extents : bch2_sort_keys)(out->keys.start, &sort_iter, filter_whiteouts); out->keys.u64s = cpu_to_le16(u64s); BUG_ON(vstruct_end(&out->keys) > (void *) out + (PAGE_SIZE << order)); if (sorting_entire_node) bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort], start_time); /* Make sure we preserve bset journal_seq: */ for (t = b->set + start_idx; t < b->set + end_idx; t++) seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq)); start_bset->journal_seq = cpu_to_le64(seq); if (sorting_entire_node) { unsigned u64s = le16_to_cpu(out->keys.u64s); BUG_ON(order != btree_page_order(c)); /* * Our temporary buffer is the same size as the btree node's * buffer, we can just swap buffers instead of doing a big * memcpy() */ *out = *b->data; out->keys.u64s = cpu_to_le16(u64s); swap(out, b->data); set_btree_bset(b, b->set, &b->data->keys); } else { start_bset->u64s = out->keys.u64s; memcpy_u64s(start_bset->start, out->keys.start, le16_to_cpu(out->keys.u64s)); } for (i = start_idx + 1; i < end_idx; i++) b->nr.bset_u64s[start_idx] += b->nr.bset_u64s[i]; b->nsets -= shift; for (i = start_idx + 1; i < b->nsets; i++) { b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift]; b->set[i] = b->set[i + shift]; } for (i = b->nsets; i < MAX_BSETS; i++) b->nr.bset_u64s[i] = 0; set_btree_bset_end(b, &b->set[start_idx]); bch2_bset_set_no_aux_tree(b, &b->set[start_idx]); btree_bounce_free(c, order, used_mempool, out); bch2_verify_btree_nr_keys(b); } void bch2_btree_sort_into(struct bch_fs *c, struct btree *dst, struct btree *src) { struct btree_nr_keys nr; struct btree_node_iter src_iter; u64 start_time = local_clock(); BUG_ON(dst->nsets != 1); bch2_bset_set_no_aux_tree(dst, dst->set); bch2_btree_node_iter_init_from_start(&src_iter, src); if (btree_node_is_extents(src)) nr = bch2_sort_repack_merge(c, btree_bset_first(dst), src, &src_iter, &dst->format, true); else nr = bch2_sort_repack(btree_bset_first(dst), src, &src_iter, &dst->format, true); bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort], start_time); set_btree_bset_end(dst, dst->set); dst->nr.live_u64s += nr.live_u64s; dst->nr.bset_u64s[0] += nr.bset_u64s[0]; dst->nr.packed_keys += nr.packed_keys; dst->nr.unpacked_keys += nr.unpacked_keys; bch2_verify_btree_nr_keys(dst); } #define SORT_CRIT (4096 / sizeof(u64)) /* * We're about to add another bset to the btree node, so if there's currently * too many bsets - sort some of them together: */ static bool btree_node_compact(struct bch_fs *c, struct btree *b, struct btree_iter *iter) { unsigned unwritten_idx; bool ret = false; for (unwritten_idx = 0; unwritten_idx < b->nsets; unwritten_idx++) if (!bset_written(b, bset(b, &b->set[unwritten_idx]))) break; if (b->nsets - unwritten_idx > 1) { btree_node_sort(c, b, iter, unwritten_idx, b->nsets, false); ret = true; } if (unwritten_idx > 1) { btree_node_sort(c, b, iter, 0, unwritten_idx, false); ret = true; } return ret; } void bch2_btree_build_aux_trees(struct btree *b) { struct bset_tree *t; for_each_bset(b, t) bch2_bset_build_aux_tree(b, t, !bset_written(b, bset(b, t)) && t == bset_tree_last(b)); } /* * @bch_btree_init_next - initialize a new (unwritten) bset that can then be * inserted into * * Safe to call if there already is an unwritten bset - will only add a new bset * if @b doesn't already have one. * * Returns true if we sorted (i.e. invalidated iterators */ void bch2_btree_init_next(struct bch_fs *c, struct btree *b, struct btree_iter *iter) { struct btree_node_entry *bne; bool did_sort; EBUG_ON(!(b->c.lock.state.seq & 1)); EBUG_ON(iter && iter->l[b->c.level].b != b); did_sort = btree_node_compact(c, b, iter); bne = want_new_bset(c, b); if (bne) bch2_bset_init_next(c, b, bne); bch2_btree_build_aux_trees(b); if (iter && did_sort) bch2_btree_iter_reinit_node(iter, b); } static struct nonce btree_nonce(struct bset *i, unsigned offset) { return (struct nonce) {{ [0] = cpu_to_le32(offset), [1] = ((__le32 *) &i->seq)[0], [2] = ((__le32 *) &i->seq)[1], [3] = ((__le32 *) &i->journal_seq)[0]^BCH_NONCE_BTREE, }}; } static void bset_encrypt(struct bch_fs *c, struct bset *i, unsigned offset) { struct nonce nonce = btree_nonce(i, offset); if (!offset) { struct btree_node *bn = container_of(i, struct btree_node, keys); unsigned bytes = (void *) &bn->keys - (void *) &bn->flags; bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, &bn->flags, bytes); nonce = nonce_add(nonce, round_up(bytes, CHACHA_BLOCK_SIZE)); } bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, i->_data, vstruct_end(i) - (void *) i->_data); } static void btree_err_msg(struct printbuf *out, struct bch_fs *c, struct btree *b, struct bset *i, unsigned offset, int write) { pr_buf(out, "error validating btree node %sat btree %u level %u/%u\n" "pos ", write ? "before write " : "", b->c.btree_id, b->c.level, c->btree_roots[b->c.btree_id].level); bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key)); pr_buf(out, " node offset %u", b->written); if (i) pr_buf(out, " bset u64s %u", le16_to_cpu(i->u64s)); } enum btree_err_type { BTREE_ERR_FIXABLE, BTREE_ERR_WANT_RETRY, BTREE_ERR_MUST_RETRY, BTREE_ERR_FATAL, }; enum btree_validate_ret { BTREE_RETRY_READ = 64, }; #define btree_err(type, c, b, i, msg, ...) \ ({ \ __label__ out; \ char _buf[300]; \ struct printbuf out = PBUF(_buf); \ \ btree_err_msg(&out, c, b, i, b->written, write); \ pr_buf(&out, ": " msg, ##__VA_ARGS__); \ \ if (type == BTREE_ERR_FIXABLE && \ write == READ && \ !test_bit(BCH_FS_INITIAL_GC_DONE, &c->flags)) { \ mustfix_fsck_err(c, "%s", _buf); \ goto out; \ } \ \ switch (write) { \ case READ: \ bch_err(c, "%s", _buf); \ \ switch (type) { \ case BTREE_ERR_FIXABLE: \ ret = BCH_FSCK_ERRORS_NOT_FIXED; \ goto fsck_err; \ case BTREE_ERR_WANT_RETRY: \ if (have_retry) { \ ret = BTREE_RETRY_READ; \ goto fsck_err; \ } \ break; \ case BTREE_ERR_MUST_RETRY: \ ret = BTREE_RETRY_READ; \ goto fsck_err; \ case BTREE_ERR_FATAL: \ ret = BCH_FSCK_ERRORS_NOT_FIXED; \ goto fsck_err; \ } \ break; \ case WRITE: \ bch_err(c, "corrupt metadata before write: %s", _buf); \ \ if (bch2_fs_inconsistent(c)) { \ ret = BCH_FSCK_ERRORS_NOT_FIXED; \ goto fsck_err; \ } \ break; \ } \ out: \ true; \ }) #define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false) static int validate_bset(struct bch_fs *c, struct btree *b, struct bset *i, unsigned sectors, int write, bool have_retry) { unsigned version = le16_to_cpu(i->version); const char *err; int ret = 0; btree_err_on((version != BCH_BSET_VERSION_OLD && version < bcachefs_metadata_version_min) || version >= bcachefs_metadata_version_max, BTREE_ERR_FATAL, c, b, i, "unsupported bset version"); if (btree_err_on(b->written + sectors > c->opts.btree_node_size, BTREE_ERR_FIXABLE, c, b, i, "bset past end of btree node")) { i->u64s = 0; return 0; } btree_err_on(b->written && !i->u64s, BTREE_ERR_FIXABLE, c, b, i, "empty bset"); if (!b->written) { struct btree_node *bn = container_of(i, struct btree_node, keys); /* These indicate that we read the wrong btree node: */ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { struct bch_btree_ptr_v2 *bp = &bkey_i_to_btree_ptr_v2(&b->key)->v; /* XXX endianness */ btree_err_on(bp->seq != bn->keys.seq, BTREE_ERR_MUST_RETRY, c, b, NULL, "incorrect sequence number (wrong btree node)"); } btree_err_on(BTREE_NODE_ID(bn) != b->c.btree_id, BTREE_ERR_MUST_RETRY, c, b, i, "incorrect btree id"); btree_err_on(BTREE_NODE_LEVEL(bn) != b->c.level, BTREE_ERR_MUST_RETRY, c, b, i, "incorrect level"); if (BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN) { u64 *p = (u64 *) &bn->ptr; *p = swab64(*p); } if (!write) compat_btree_node(b->c.level, b->c.btree_id, version, BSET_BIG_ENDIAN(i), write, bn); if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { struct bch_btree_ptr_v2 *bp = &bkey_i_to_btree_ptr_v2(&b->key)->v; btree_err_on(bkey_cmp(b->data->min_key, bp->min_key), BTREE_ERR_MUST_RETRY, c, b, NULL, "incorrect min_key: got %llu:%llu should be %llu:%llu", b->data->min_key.inode, b->data->min_key.offset, bp->min_key.inode, bp->min_key.offset); } btree_err_on(bkey_cmp(bn->max_key, b->key.k.p), BTREE_ERR_MUST_RETRY, c, b, i, "incorrect max key"); if (write) compat_btree_node(b->c.level, b->c.btree_id, version, BSET_BIG_ENDIAN(i), write, bn); /* XXX: ideally we would be validating min_key too */ #if 0 /* * not correct anymore, due to btree node write error * handling * * need to add bn->seq to btree keys and verify * against that */ btree_err_on(!extent_contains_ptr(bkey_i_to_s_c_extent(&b->key), bn->ptr), BTREE_ERR_FATAL, c, b, i, "incorrect backpointer"); #endif err = bch2_bkey_format_validate(&bn->format); btree_err_on(err, BTREE_ERR_FATAL, c, b, i, "invalid bkey format: %s", err); compat_bformat(b->c.level, b->c.btree_id, version, BSET_BIG_ENDIAN(i), write, &bn->format); } fsck_err: return ret; } static int validate_bset_keys(struct bch_fs *c, struct btree *b, struct bset *i, unsigned *whiteout_u64s, int write, bool have_retry) { unsigned version = le16_to_cpu(i->version); struct bkey_packed *k, *prev = NULL; bool seen_non_whiteout = false; int ret = 0; if (!BSET_SEPARATE_WHITEOUTS(i)) { seen_non_whiteout = true; *whiteout_u64s = 0; } for (k = i->start; k != vstruct_last(i);) { struct bkey_s u; struct bkey tmp; const char *invalid; if (btree_err_on(bkey_next(k) > vstruct_last(i), BTREE_ERR_FIXABLE, c, b, i, "key extends past end of bset")) { i->u64s = cpu_to_le16((u64 *) k - i->_data); break; } if (btree_err_on(k->format > KEY_FORMAT_CURRENT, BTREE_ERR_FIXABLE, c, b, i, "invalid bkey format %u", k->format)) { i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); memmove_u64s_down(k, bkey_next(k), (u64 *) vstruct_end(i) - (u64 *) k); continue; } /* XXX: validate k->u64s */ if (!write) bch2_bkey_compat(b->c.level, b->c.btree_id, version, BSET_BIG_ENDIAN(i), write, &b->format, k); u = __bkey_disassemble(b, k, &tmp); invalid = __bch2_bkey_invalid(c, u.s_c, btree_node_type(b)) ?: bch2_bkey_in_btree_node(b, u.s_c) ?: (write ? bch2_bkey_val_invalid(c, u.s_c) : NULL); if (invalid) { char buf[160]; bch2_bkey_val_to_text(&PBUF(buf), c, u.s_c); btree_err(BTREE_ERR_FIXABLE, c, b, i, "invalid bkey:\n%s\n%s", invalid, buf); i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); memmove_u64s_down(k, bkey_next(k), (u64 *) vstruct_end(i) - (u64 *) k); continue; } if (write) bch2_bkey_compat(b->c.level, b->c.btree_id, version, BSET_BIG_ENDIAN(i), write, &b->format, k); /* * with the separate whiteouts thing (used for extents), the * second set of keys actually can have whiteouts too, so we * can't solely go off bkey_whiteout()... */ if (!seen_non_whiteout && (!bkey_whiteout(k) || (prev && bkey_iter_cmp(b, prev, k) > 0))) { *whiteout_u64s = k->_data - i->_data; seen_non_whiteout = true; } else if (prev && bkey_iter_cmp(b, prev, k) > 0) { char buf1[80]; char buf2[80]; struct bkey up = bkey_unpack_key(b, prev); bch2_bkey_to_text(&PBUF(buf1), &up); bch2_bkey_to_text(&PBUF(buf2), u.k); bch2_dump_bset(c, b, i, 0); btree_err(BTREE_ERR_FATAL, c, b, i, "keys out of order: %s > %s", buf1, buf2); /* XXX: repair this */ } prev = k; k = bkey_next_skip_noops(k, vstruct_last(i)); } fsck_err: return ret; } int bch2_btree_node_read_done(struct bch_fs *c, struct btree *b, bool have_retry) { struct btree_node_entry *bne; struct sort_iter *iter; struct btree_node *sorted; struct bkey_packed *k; struct bset *i; bool used_mempool, blacklisted; unsigned u64s; int ret, retry_read = 0, write = READ; iter = mempool_alloc(&c->fill_iter, GFP_NOIO); sort_iter_init(iter, b); iter->size = (btree_blocks(c) + 1) * 2; if (bch2_meta_read_fault("btree")) btree_err(BTREE_ERR_MUST_RETRY, c, b, NULL, "dynamic fault"); btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c), BTREE_ERR_MUST_RETRY, c, b, NULL, "bad magic"); btree_err_on(!b->data->keys.seq, BTREE_ERR_MUST_RETRY, c, b, NULL, "bad btree header"); if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { struct bch_btree_ptr_v2 *bp = &bkey_i_to_btree_ptr_v2(&b->key)->v; btree_err_on(b->data->keys.seq != bp->seq, BTREE_ERR_MUST_RETRY, c, b, NULL, "got wrong btree node (seq %llx want %llx)", b->data->keys.seq, bp->seq); } while (b->written < c->opts.btree_node_size) { unsigned sectors, whiteout_u64s = 0; struct nonce nonce; struct bch_csum csum; bool first = !b->written; if (!b->written) { i = &b->data->keys; btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)), BTREE_ERR_WANT_RETRY, c, b, i, "unknown checksum type"); nonce = btree_nonce(i, b->written << 9); csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data); btree_err_on(bch2_crc_cmp(csum, b->data->csum), BTREE_ERR_WANT_RETRY, c, b, i, "invalid checksum"); bset_encrypt(c, i, b->written << 9); if (btree_node_is_extents(b) && !BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data)) set_btree_node_old_extent_overwrite(b); sectors = vstruct_sectors(b->data, c->block_bits); } else { bne = write_block(b); i = &bne->keys; if (i->seq != b->data->keys.seq) break; btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)), BTREE_ERR_WANT_RETRY, c, b, i, "unknown checksum type"); nonce = btree_nonce(i, b->written << 9); csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); btree_err_on(bch2_crc_cmp(csum, bne->csum), BTREE_ERR_WANT_RETRY, c, b, i, "invalid checksum"); bset_encrypt(c, i, b->written << 9); sectors = vstruct_sectors(bne, c->block_bits); } ret = validate_bset(c, b, i, sectors, READ, have_retry); if (ret) goto fsck_err; if (!b->written) btree_node_set_format(b, b->data->format); ret = validate_bset_keys(c, b, i, &whiteout_u64s, READ, have_retry); if (ret) goto fsck_err; SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); b->written += sectors; blacklisted = bch2_journal_seq_is_blacklisted(c, le64_to_cpu(i->journal_seq), true); btree_err_on(blacklisted && first, BTREE_ERR_FIXABLE, c, b, i, "first btree node bset has blacklisted journal seq"); if (blacklisted && !first) continue; sort_iter_add(iter, i->start, vstruct_idx(i, whiteout_u64s)); sort_iter_add(iter, vstruct_idx(i, whiteout_u64s), vstruct_last(i)); } for (bne = write_block(b); bset_byte_offset(b, bne) < btree_bytes(c); bne = (void *) bne + block_bytes(c)) btree_err_on(bne->keys.seq == b->data->keys.seq, BTREE_ERR_WANT_RETRY, c, b, NULL, "found bset signature after last bset"); sorted = btree_bounce_alloc(c, btree_page_order(c), &used_mempool); sorted->keys.u64s = 0; set_btree_bset(b, b->set, &b->data->keys); b->nr = (btree_node_old_extent_overwrite(b) ? bch2_extent_sort_fix_overlapping : bch2_key_sort_fix_overlapping)(c, &sorted->keys, iter); u64s = le16_to_cpu(sorted->keys.u64s); *sorted = *b->data; sorted->keys.u64s = cpu_to_le16(u64s); swap(sorted, b->data); set_btree_bset(b, b->set, &b->data->keys); b->nsets = 1; BUG_ON(b->nr.live_u64s != u64s); btree_bounce_free(c, btree_page_order(c), used_mempool, sorted); i = &b->data->keys; for (k = i->start; k != vstruct_last(i);) { struct bkey tmp; struct bkey_s u = __bkey_disassemble(b, k, &tmp); const char *invalid = bch2_bkey_val_invalid(c, u.s_c); if (invalid || (inject_invalid_keys(c) && !bversion_cmp(u.k->version, MAX_VERSION))) { char buf[160]; bch2_bkey_val_to_text(&PBUF(buf), c, u.s_c); btree_err(BTREE_ERR_FIXABLE, c, b, i, "invalid bkey %s: %s", buf, invalid); btree_keys_account_key_drop(&b->nr, 0, k); i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); memmove_u64s_down(k, bkey_next(k), (u64 *) vstruct_end(i) - (u64 *) k); set_btree_bset_end(b, b->set); continue; } if (u.k->type == KEY_TYPE_btree_ptr_v2) { struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(u); bp.v->mem_ptr = 0; } k = bkey_next_skip_noops(k, vstruct_last(i)); } bch2_bset_build_aux_tree(b, b->set, false); set_needs_whiteout(btree_bset_first(b), true); btree_node_reset_sib_u64s(b); out: mempool_free(iter, &c->fill_iter); return retry_read; fsck_err: if (ret == BTREE_RETRY_READ) { retry_read = 1; } else { bch2_inconsistent_error(c); set_btree_node_read_error(b); } goto out; } static void btree_node_read_work(struct work_struct *work) { struct btree_read_bio *rb = container_of(work, struct btree_read_bio, work); struct bch_fs *c = rb->c; struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); struct btree *b = rb->bio.bi_private; struct bio *bio = &rb->bio; struct bch_io_failures failed = { .nr = 0 }; bool can_retry; goto start; while (1) { bch_info(c, "retrying read"); ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); rb->have_ioref = bch2_dev_get_ioref(ca, READ); bio_reset(bio); bio->bi_opf = REQ_OP_READ|REQ_SYNC|REQ_META; bio->bi_iter.bi_sector = rb->pick.ptr.offset; bio->bi_iter.bi_size = btree_bytes(c); if (rb->have_ioref) { bio_set_dev(bio, ca->disk_sb.bdev); submit_bio_wait(bio); } else { bio->bi_status = BLK_STS_REMOVED; } start: bch2_dev_io_err_on(bio->bi_status, ca, "btree read"); if (rb->have_ioref) percpu_ref_put(&ca->io_ref); rb->have_ioref = false; bch2_mark_io_failure(&failed, &rb->pick); can_retry = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key), &failed, &rb->pick) > 0; if (!bio->bi_status && !bch2_btree_node_read_done(c, b, can_retry)) break; if (!can_retry) { set_btree_node_read_error(b); break; } } bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read], rb->start_time); bio_put(&rb->bio); clear_btree_node_read_in_flight(b); wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); } static void btree_node_read_endio(struct bio *bio) { struct btree_read_bio *rb = container_of(bio, struct btree_read_bio, bio); struct bch_fs *c = rb->c; if (rb->have_ioref) { struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); bch2_latency_acct(ca, rb->start_time, READ); } queue_work(system_unbound_wq, &rb->work); } void bch2_btree_node_read(struct bch_fs *c, struct btree *b, bool sync) { struct extent_ptr_decoded pick; struct btree_read_bio *rb; struct bch_dev *ca; struct bio *bio; int ret; trace_btree_read(c, b); ret = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key), NULL, &pick); if (bch2_fs_fatal_err_on(ret <= 0, c, "btree node read error: no device to read from")) { set_btree_node_read_error(b); return; } ca = bch_dev_bkey_exists(c, pick.ptr.dev); bio = bio_alloc_bioset(GFP_NOIO, buf_pages(b->data, btree_bytes(c)), &c->btree_bio); rb = container_of(bio, struct btree_read_bio, bio); rb->c = c; rb->start_time = local_clock(); rb->have_ioref = bch2_dev_get_ioref(ca, READ); rb->pick = pick; INIT_WORK(&rb->work, btree_node_read_work); bio->bi_opf = REQ_OP_READ|REQ_SYNC|REQ_META; bio->bi_iter.bi_sector = pick.ptr.offset; bio->bi_end_io = btree_node_read_endio; bio->bi_private = b; bch2_bio_map(bio, b->data, btree_bytes(c)); set_btree_node_read_in_flight(b); if (rb->have_ioref) { this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_BTREE], bio_sectors(bio)); bio_set_dev(bio, ca->disk_sb.bdev); if (sync) { submit_bio_wait(bio); bio->bi_private = b; btree_node_read_work(&rb->work); } else { submit_bio(bio); } } else { bio->bi_status = BLK_STS_REMOVED; if (sync) btree_node_read_work(&rb->work); else queue_work(system_unbound_wq, &rb->work); } } int bch2_btree_root_read(struct bch_fs *c, enum btree_id id, const struct bkey_i *k, unsigned level) { struct closure cl; struct btree *b; int ret; closure_init_stack(&cl); do { ret = bch2_btree_cache_cannibalize_lock(c, &cl); closure_sync(&cl); } while (ret); b = bch2_btree_node_mem_alloc(c); bch2_btree_cache_cannibalize_unlock(c); BUG_ON(IS_ERR(b)); bkey_copy(&b->key, k); BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id)); bch2_btree_node_read(c, b, true); if (btree_node_read_error(b)) { bch2_btree_node_hash_remove(&c->btree_cache, b); mutex_lock(&c->btree_cache.lock); list_move(&b->list, &c->btree_cache.freeable); mutex_unlock(&c->btree_cache.lock); ret = -EIO; goto err; } bch2_btree_set_root_for_read(c, b); err: six_unlock_write(&b->c.lock); six_unlock_intent(&b->c.lock); return ret; } void bch2_btree_complete_write(struct bch_fs *c, struct btree *b, struct btree_write *w) { unsigned long old, new, v = READ_ONCE(b->will_make_reachable); do { old = new = v; if (!(old & 1)) break; new &= ~1UL; } while ((v = cmpxchg(&b->will_make_reachable, old, new)) != old); if (old & 1) closure_put(&((struct btree_update *) new)->cl); bch2_journal_pin_drop(&c->journal, &w->journal); } static void btree_node_write_done(struct bch_fs *c, struct btree *b) { struct btree_write *w = btree_prev_write(b); bch2_btree_complete_write(c, b, w); btree_node_io_unlock(b); } static void bch2_btree_node_write_error(struct bch_fs *c, struct btree_write_bio *wbio) { struct btree *b = wbio->wbio.bio.bi_private; __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; struct bch_extent_ptr *ptr; struct btree_trans trans; struct btree_iter *iter; int ret; bch2_trans_init(&trans, c, 0, 0); iter = bch2_trans_get_node_iter(&trans, b->c.btree_id, b->key.k.p, BTREE_MAX_DEPTH, b->c.level, 0); retry: ret = bch2_btree_iter_traverse(iter); if (ret) goto err; /* has node been freed? */ if (iter->l[b->c.level].b != b) { /* node has been freed: */ BUG_ON(!btree_node_dying(b)); goto out; } BUG_ON(!btree_node_hashed(b)); bkey_copy(&tmp.k, &b->key); bch2_bkey_drop_ptrs(bkey_i_to_s(&tmp.k), ptr, bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev)); if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(&tmp.k))) goto err; ret = bch2_btree_node_update_key(c, iter, b, &tmp.k); if (ret == -EINTR) goto retry; if (ret) goto err; out: bch2_trans_exit(&trans); bio_put(&wbio->wbio.bio); btree_node_write_done(c, b); return; err: set_btree_node_noevict(b); bch2_fs_fatal_error(c, "fatal error writing btree node"); goto out; } void bch2_btree_write_error_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, btree_write_error_work); struct bio *bio; while (1) { spin_lock_irq(&c->btree_write_error_lock); bio = bio_list_pop(&c->btree_write_error_list); spin_unlock_irq(&c->btree_write_error_lock); if (!bio) break; bch2_btree_node_write_error(c, container_of(bio, struct btree_write_bio, wbio.bio)); } } static void btree_node_write_work(struct work_struct *work) { struct btree_write_bio *wbio = container_of(work, struct btree_write_bio, work); struct bch_fs *c = wbio->wbio.c; struct btree *b = wbio->wbio.bio.bi_private; btree_bounce_free(c, wbio->wbio.order, wbio->wbio.used_mempool, wbio->data); if (wbio->wbio.failed.nr) { unsigned long flags; spin_lock_irqsave(&c->btree_write_error_lock, flags); bio_list_add(&c->btree_write_error_list, &wbio->wbio.bio); spin_unlock_irqrestore(&c->btree_write_error_lock, flags); queue_work(c->wq, &c->btree_write_error_work); return; } bio_put(&wbio->wbio.bio); btree_node_write_done(c, b); } static void btree_node_write_endio(struct bio *bio) { struct bch_write_bio *wbio = to_wbio(bio); struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; struct bch_write_bio *orig = parent ?: wbio; struct bch_fs *c = wbio->c; struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev); unsigned long flags; if (wbio->have_ioref) bch2_latency_acct(ca, wbio->submit_time, WRITE); if (bio->bi_status == BLK_STS_REMOVED || bch2_dev_io_err_on(bio->bi_status, ca, "btree write") || bch2_meta_write_fault("btree")) { spin_lock_irqsave(&c->btree_write_error_lock, flags); bch2_dev_list_add_dev(&orig->failed, wbio->dev); spin_unlock_irqrestore(&c->btree_write_error_lock, flags); } if (wbio->have_ioref) percpu_ref_put(&ca->io_ref); if (parent) { bio_put(bio); bio_endio(&parent->bio); } else { struct btree_write_bio *wb = container_of(orig, struct btree_write_bio, wbio); INIT_WORK(&wb->work, btree_node_write_work); queue_work(system_unbound_wq, &wb->work); } } static int validate_bset_for_write(struct bch_fs *c, struct btree *b, struct bset *i, unsigned sectors) { unsigned whiteout_u64s = 0; int ret; if (bch2_bkey_invalid(c, bkey_i_to_s_c(&b->key), BKEY_TYPE_BTREE)) return -1; ret = validate_bset(c, b, i, sectors, WRITE, false) ?: validate_bset_keys(c, b, i, &whiteout_u64s, WRITE, false); if (ret) bch2_inconsistent_error(c); return ret; } void __bch2_btree_node_write(struct bch_fs *c, struct btree *b, enum six_lock_type lock_type_held) { struct btree_write_bio *wbio; struct bset_tree *t; struct bset *i; struct btree_node *bn = NULL; struct btree_node_entry *bne = NULL; BKEY_PADDED(key) k; struct bch_extent_ptr *ptr; struct sort_iter sort_iter; struct nonce nonce; unsigned bytes_to_write, sectors_to_write, order, bytes, u64s; u64 seq = 0; bool used_mempool; unsigned long old, new; bool validate_before_checksum = false; void *data; if (test_bit(BCH_FS_HOLD_BTREE_WRITES, &c->flags)) return; /* * We may only have a read lock on the btree node - the dirty bit is our * "lock" against racing with other threads that may be trying to start * a write, we do a write iff we clear the dirty bit. Since setting the * dirty bit requires a write lock, we can't race with other threads * redirtying it: */ do { old = new = READ_ONCE(b->flags); if (!(old & (1 << BTREE_NODE_dirty))) return; if (!btree_node_may_write(b)) return; if (old & (1 << BTREE_NODE_write_in_flight)) { btree_node_wait_on_io(b); continue; } new &= ~(1 << BTREE_NODE_dirty); new &= ~(1 << BTREE_NODE_need_write); new |= (1 << BTREE_NODE_write_in_flight); new |= (1 << BTREE_NODE_just_written); new ^= (1 << BTREE_NODE_write_idx); } while (cmpxchg_acquire(&b->flags, old, new) != old); BUG_ON(btree_node_fake(b)); BUG_ON((b->will_make_reachable != 0) != !b->written); BUG_ON(b->written >= c->opts.btree_node_size); BUG_ON(b->written & (c->opts.block_size - 1)); BUG_ON(bset_written(b, btree_bset_last(b))); BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c)); BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format))); bch2_sort_whiteouts(c, b); sort_iter_init(&sort_iter, b); bytes = !b->written ? sizeof(struct btree_node) : sizeof(struct btree_node_entry); bytes += b->whiteout_u64s * sizeof(u64); for_each_bset(b, t) { i = bset(b, t); if (bset_written(b, i)) continue; bytes += le16_to_cpu(i->u64s) * sizeof(u64); sort_iter_add(&sort_iter, btree_bkey_first(b, t), btree_bkey_last(b, t)); seq = max(seq, le64_to_cpu(i->journal_seq)); } order = get_order(bytes); data = btree_bounce_alloc(c, order, &used_mempool); if (!b->written) { bn = data; *bn = *b->data; i = &bn->keys; } else { bne = data; bne->keys = b->data->keys; i = &bne->keys; } i->journal_seq = cpu_to_le64(seq); i->u64s = 0; if (!btree_node_old_extent_overwrite(b)) { sort_iter_add(&sort_iter, unwritten_whiteouts_start(c, b), unwritten_whiteouts_end(c, b)); SET_BSET_SEPARATE_WHITEOUTS(i, false); } else { memcpy_u64s(i->start, unwritten_whiteouts_start(c, b), b->whiteout_u64s); i->u64s = cpu_to_le16(b->whiteout_u64s); SET_BSET_SEPARATE_WHITEOUTS(i, true); } b->whiteout_u64s = 0; u64s = btree_node_old_extent_overwrite(b) ? bch2_sort_extents(vstruct_last(i), &sort_iter, false) : bch2_sort_keys(i->start, &sort_iter, false); le16_add_cpu(&i->u64s, u64s); set_needs_whiteout(i, false); /* do we have data to write? */ if (b->written && !i->u64s) goto nowrite; bytes_to_write = vstruct_end(i) - data; sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9; memset(data + bytes_to_write, 0, (sectors_to_write << 9) - bytes_to_write); BUG_ON(b->written + sectors_to_write > c->opts.btree_node_size); BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN); BUG_ON(i->seq != b->data->keys.seq); i->version = c->sb.version < bcachefs_metadata_version_new_versioning ? cpu_to_le16(BCH_BSET_VERSION_OLD) : cpu_to_le16(c->sb.version); SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c)); if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i))) validate_before_checksum = true; /* validate_bset will be modifying: */ if (le16_to_cpu(i->version) < bcachefs_metadata_version_max) validate_before_checksum = true; /* if we're going to be encrypting, check metadata validity first: */ if (validate_before_checksum && validate_bset_for_write(c, b, i, sectors_to_write)) goto err; bset_encrypt(c, i, b->written << 9); nonce = btree_nonce(i, b->written << 9); if (bn) bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn); else bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); /* if we're not encrypting, check metadata after checksumming: */ if (!validate_before_checksum && validate_bset_for_write(c, b, i, sectors_to_write)) goto err; /* * We handle btree write errors by immediately halting the journal - * after we've done that, we can't issue any subsequent btree writes * because they might have pointers to new nodes that failed to write. * * Furthermore, there's no point in doing any more btree writes because * with the journal stopped, we're never going to update the journal to * reflect that those writes were done and the data flushed from the * journal: * * Also on journal error, the pending write may have updates that were * never journalled (interior nodes, see btree_update_nodes_written()) - * it's critical that we don't do the write in that case otherwise we * will have updates visible that weren't in the journal: * * Make sure to update b->written so bch2_btree_init_next() doesn't * break: */ if (bch2_journal_error(&c->journal) || c->opts.nochanges) goto err; trace_btree_write(b, bytes_to_write, sectors_to_write); wbio = container_of(bio_alloc_bioset(GFP_NOIO, buf_pages(data, sectors_to_write << 9), &c->btree_bio), struct btree_write_bio, wbio.bio); wbio_init(&wbio->wbio.bio); wbio->data = data; wbio->wbio.order = order; wbio->wbio.used_mempool = used_mempool; wbio->wbio.bio.bi_opf = REQ_OP_WRITE|REQ_META; wbio->wbio.bio.bi_end_io = btree_node_write_endio; wbio->wbio.bio.bi_private = b; bch2_bio_map(&wbio->wbio.bio, data, sectors_to_write << 9); /* * If we're appending to a leaf node, we don't technically need FUA - * this write just needs to be persisted before the next journal write, * which will be marked FLUSH|FUA. * * Similarly if we're writing a new btree root - the pointer is going to * be in the next journal entry. * * But if we're writing a new btree node (that isn't a root) or * appending to a non leaf btree node, we need either FUA or a flush * when we write the parent with the new pointer. FUA is cheaper than a * flush, and writes appending to leaf nodes aren't blocking anything so * just make all btree node writes FUA to keep things sane. */ bkey_copy(&k.key, &b->key); bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&k.key)), ptr) ptr->offset += b->written; b->written += sectors_to_write; /* XXX: submitting IO with btree locks held: */ bch2_submit_wbio_replicas(&wbio->wbio, c, BCH_DATA_BTREE, &k.key); return; err: set_btree_node_noevict(b); b->written += sectors_to_write; nowrite: btree_bounce_free(c, order, used_mempool, data); btree_node_write_done(c, b); } /* * Work that must be done with write lock held: */ bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b) { bool invalidated_iter = false; struct btree_node_entry *bne; struct bset_tree *t; if (!btree_node_just_written(b)) return false; BUG_ON(b->whiteout_u64s); clear_btree_node_just_written(b); /* * Note: immediately after write, bset_written() doesn't work - the * amount of data we had to write after compaction might have been * smaller than the offset of the last bset. * * However, we know that all bsets have been written here, as long as * we're still holding the write lock: */ /* * XXX: decide if we really want to unconditionally sort down to a * single bset: */ if (b->nsets > 1) { btree_node_sort(c, b, NULL, 0, b->nsets, true); invalidated_iter = true; } else { invalidated_iter = bch2_drop_whiteouts(b, COMPACT_ALL); } for_each_bset(b, t) set_needs_whiteout(bset(b, t), true); bch2_btree_verify(c, b); /* * If later we don't unconditionally sort down to a single bset, we have * to ensure this is still true: */ BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b)); bne = want_new_bset(c, b); if (bne) bch2_bset_init_next(c, b, bne); bch2_btree_build_aux_trees(b); return invalidated_iter; } /* * Use this one if the node is intent locked: */ void bch2_btree_node_write(struct bch_fs *c, struct btree *b, enum six_lock_type lock_type_held) { BUG_ON(lock_type_held == SIX_LOCK_write); if (lock_type_held == SIX_LOCK_intent || six_lock_tryupgrade(&b->c.lock)) { __bch2_btree_node_write(c, b, SIX_LOCK_intent); /* don't cycle lock unnecessarily: */ if (btree_node_just_written(b) && six_trylock_write(&b->c.lock)) { bch2_btree_post_write_cleanup(c, b); six_unlock_write(&b->c.lock); } if (lock_type_held == SIX_LOCK_read) six_lock_downgrade(&b->c.lock); } else { __bch2_btree_node_write(c, b, SIX_LOCK_read); } } static void __bch2_btree_flush_all(struct bch_fs *c, unsigned flag) { struct bucket_table *tbl; struct rhash_head *pos; struct btree *b; unsigned i; restart: rcu_read_lock(); for_each_cached_btree(b, c, tbl, i, pos) if (test_bit(flag, &b->flags)) { rcu_read_unlock(); wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE); goto restart; } rcu_read_unlock(); } void bch2_btree_flush_all_reads(struct bch_fs *c) { __bch2_btree_flush_all(c, BTREE_NODE_read_in_flight); } void bch2_btree_flush_all_writes(struct bch_fs *c) { __bch2_btree_flush_all(c, BTREE_NODE_write_in_flight); } void bch2_btree_verify_flushed(struct bch_fs *c) { struct bucket_table *tbl; struct rhash_head *pos; struct btree *b; unsigned i; rcu_read_lock(); for_each_cached_btree(b, c, tbl, i, pos) { unsigned long flags = READ_ONCE(b->flags); BUG_ON((flags & (1 << BTREE_NODE_dirty)) || (flags & (1 << BTREE_NODE_write_in_flight))); } rcu_read_unlock(); } ssize_t bch2_dirty_btree_nodes_print(struct bch_fs *c, char *buf) { struct printbuf out = _PBUF(buf, PAGE_SIZE); struct bucket_table *tbl; struct rhash_head *pos; struct btree *b; unsigned i; rcu_read_lock(); for_each_cached_btree(b, c, tbl, i, pos) { unsigned long flags = READ_ONCE(b->flags); if (!(flags & (1 << BTREE_NODE_dirty))) continue; pr_buf(&out, "%p d %u n %u l %u w %u b %u r %u:%lu\n", b, (flags & (1 << BTREE_NODE_dirty)) != 0, (flags & (1 << BTREE_NODE_need_write)) != 0, b->c.level, b->written, !list_empty_careful(&b->write_blocked), b->will_make_reachable != 0, b->will_make_reachable & 1); } rcu_read_unlock(); return out.pos - buf; }