#ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H #define _BCACHEFS_BTREE_UPDATE_INTERIOR_H #include "btree_cache.h" #include "btree_update.h" struct btree_reserve { struct disk_reservation disk_res; unsigned nr; struct btree *b[BTREE_RESERVE_MAX]; }; void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *); bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *, struct bkey_format *); /* Btree node freeing/allocation: */ /* * Tracks a btree node that has been (or is about to be) freed in memory, but * has _not_ yet been freed on disk (because the write that makes the new * node(s) visible and frees the old hasn't completed yet) */ struct pending_btree_node_free { bool index_update_done; __le64 seq; enum btree_id btree_id; unsigned level; __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); }; /* * Tracks an in progress split/rewrite of a btree node and the update to the * parent node: * * When we split/rewrite a node, we do all the updates in memory without * waiting for any writes to complete - we allocate the new node(s) and update * the parent node, possibly recursively up to the root. * * The end result is that we have one or more new nodes being written - * possibly several, if there were multiple splits - and then a write (updating * an interior node) which will make all these new nodes visible. * * Additionally, as we split/rewrite nodes we free the old nodes - but the old * nodes can't be freed (their space on disk can't be reclaimed) until the * update to the interior node that makes the new node visible completes - * until then, the old nodes are still reachable on disk. * */ struct btree_update { struct closure cl; struct bch_fs *c; struct list_head list; /* What kind of update are we doing? */ enum { BTREE_INTERIOR_NO_UPDATE, BTREE_INTERIOR_UPDATING_NODE, BTREE_INTERIOR_UPDATING_ROOT, BTREE_INTERIOR_UPDATING_AS, } mode; enum btree_id btree_id; unsigned flags; struct btree_reserve *reserve; /* * BTREE_INTERIOR_UPDATING_NODE: * The update that made the new nodes visible was a regular update to an * existing interior node - @b. We can't write out the update to @b * until the new nodes we created are finished writing, so we block @b * from writing by putting this btree_interior update on the * @b->write_blocked list with @write_blocked_list: */ struct btree *b; struct list_head write_blocked_list; /* * BTREE_INTERIOR_UPDATING_AS: btree node we updated was freed, so now * we're now blocking another btree_update * @parent_as - btree_update that's waiting on our nodes to finish * writing, before it can make new nodes visible on disk * @wait - list of child btree_updates that are waiting on this * btree_update to make all the new nodes visible before they can free * their old btree nodes */ struct btree_update *parent_as; struct closure_waitlist wait; /* * We may be freeing nodes that were dirty, and thus had journal entries * pinned: we need to transfer the oldest of those pins to the * btree_update operation, and release it when the new node(s) * are all persistent and reachable: */ struct journal_entry_pin journal; u64 journal_seq; /* * Nodes being freed: * Protected by c->btree_node_pending_free_lock */ struct pending_btree_node_free pending[BTREE_MAX_DEPTH + GC_MERGE_NODES]; unsigned nr_pending; /* New nodes, that will be made reachable by this update: */ struct btree *new_nodes[BTREE_MAX_DEPTH * 2 + GC_MERGE_NODES]; unsigned nr_new_nodes; /* Only here to reduce stack usage on recursive splits: */ struct keylist parent_keys; /* * Enough room for btree_split's keys without realloc - btree node * pointers never have crc/compression info, so we only need to acount * for the pointers for three keys */ u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3]; }; #define BTREE_INTERIOR_UPDATE_MUST_REWRITE (1 << 0) #define for_each_pending_btree_node_free(c, as, p) \ list_for_each_entry(as, &c->btree_interior_update_list, list) \ for (p = as->pending; p < as->pending + as->nr_pending; p++) void bch2_btree_node_free_inmem(struct bch_fs *, struct btree *, struct btree_iter *); void bch2_btree_node_free_never_inserted(struct bch_fs *, struct btree *); void bch2_btree_open_bucket_put(struct bch_fs *, struct btree *); struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *, struct btree *, struct bkey_format); void bch2_btree_update_done(struct btree_update *); struct btree_update * bch2_btree_update_start(struct bch_fs *, enum btree_id, unsigned, unsigned, struct closure *); void bch2_btree_interior_update_will_free_node(struct btree_update *, struct btree *); void bch2_btree_insert_node(struct btree_update *, struct btree *, struct btree_iter *, struct keylist *); int bch2_btree_split_leaf(struct bch_fs *, struct btree_iter *, unsigned); int bch2_foreground_maybe_merge(struct bch_fs *, struct btree_iter *, enum btree_node_sibling); void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *); int bch2_btree_root_alloc(struct bch_fs *, enum btree_id, struct closure *); static inline unsigned btree_update_reserve_required(struct bch_fs *c, struct btree *b) { unsigned depth = btree_node_root(c, b)->level - b->level; return btree_reserve_required_nodes(depth); } static inline void btree_node_reset_sib_u64s(struct btree *b) { b->sib_u64s[0] = b->nr.live_u64s; b->sib_u64s[1] = b->nr.live_u64s; } static inline void *btree_data_end(struct bch_fs *c, struct btree *b) { return (void *) b->data + btree_bytes(c); } static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c, struct btree *b) { return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s); } static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c, struct btree *b) { return btree_data_end(c, b); } static inline void *write_block(struct btree *b) { return (void *) b->data + (b->written << 9); } static inline bool bset_written(struct btree *b, struct bset *i) { return (void *) i < write_block(b); } static inline bool bset_unwritten(struct btree *b, struct bset *i) { return (void *) i > write_block(b); } static inline unsigned bset_end_sector(struct bch_fs *c, struct btree *b, struct bset *i) { return round_up(bset_byte_offset(b, vstruct_end(i)), block_bytes(c)) >> 9; } static inline unsigned btree_write_set_buffer(struct btree *b) { /* * Could buffer up larger amounts of keys for btrees with larger keys, * pending benchmarking: */ return 4 << 10; } static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, struct btree *b) { struct bset *i = btree_bset_last(b); unsigned offset = max_t(unsigned, b->written << 9, bset_byte_offset(b, vstruct_end(i))); ssize_t n = (ssize_t) btree_bytes(c) - (ssize_t) (offset + sizeof(struct btree_node_entry) + b->whiteout_u64s * sizeof(u64) + b->uncompacted_whiteout_u64s * sizeof(u64)); EBUG_ON(offset > btree_bytes(c)); if ((unlikely(bset_written(b, i)) && n > 0) || (unlikely(vstruct_bytes(i) > btree_write_set_buffer(b)) && n > btree_write_set_buffer(b))) return (void *) b->data + offset; return NULL; } static inline void unreserve_whiteout(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { if (bset_written(b, bset(b, t))) { EBUG_ON(b->uncompacted_whiteout_u64s < bkeyp_key_u64s(&b->format, k)); b->uncompacted_whiteout_u64s -= bkeyp_key_u64s(&b->format, k); } } static inline void reserve_whiteout(struct btree *b, struct bset_tree *t, struct bkey_packed *k) { if (bset_written(b, bset(b, t))) { BUG_ON(!k->needs_whiteout); b->uncompacted_whiteout_u64s += bkeyp_key_u64s(&b->format, k); } } static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c, struct btree *b) { struct bset *i = btree_bset_last(b); unsigned used = bset_byte_offset(b, vstruct_end(i)) / sizeof(u64) + b->whiteout_u64s + b->uncompacted_whiteout_u64s; unsigned total = c->opts.btree_node_size << 6; EBUG_ON(used > total); if (bset_written(b, i)) return 0; return total - used; } /* * write lock must be held on @b (else the dirty bset that we were going to * insert into could be written out from under us) */ static inline bool bch2_btree_node_insert_fits(struct bch_fs *c, struct btree *b, unsigned u64s) { if (btree_node_is_extents(b)) { /* The insert key might split an existing key * (bch2_insert_fixup_extent() -> BCH_EXTENT_OVERLAP_MIDDLE case: */ u64s += BKEY_EXTENT_U64s_MAX; } return u64s <= bch_btree_keys_u64s_remaining(c, b); } static inline bool journal_res_insert_fits(struct btree_insert *trans, struct btree_insert_entry *insert) { unsigned u64s = 0; struct btree_insert_entry *i; /* * If we didn't get a journal reservation, we're in journal replay and * we're not journalling updates: */ if (!trans->journal_res.ref) return true; for (i = insert; i < trans->entries + trans->nr; i++) u64s += jset_u64s(i->k->k.u64s + i->extra_res); return u64s <= trans->journal_res.u64s; } #endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */