#include "bcachefs.h" #include "btree_update.h" #include "btree_update_interior.h" #include "btree_io.h" #include "btree_iter.h" #include "btree_locking.h" #include "debug.h" #include "extents.h" #include "journal.h" #include "journal_reclaim.h" #include "keylist.h" #include #include /* Inserting into a given leaf node (last stage of insert): */ /* Handle overwrites and do insert, for non extents: */ bool bch2_btree_bset_insert_key(struct btree_iter *iter, struct btree *b, struct btree_node_iter *node_iter, struct bkey_i *insert) { const struct bkey_format *f = &b->format; struct bkey_packed *k; struct bset_tree *t; unsigned clobber_u64s; EBUG_ON(btree_node_just_written(b)); EBUG_ON(bset_written(b, btree_bset_last(b))); EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k)); EBUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0 || bkey_cmp(insert->k.p, b->data->max_key) > 0); k = bch2_btree_node_iter_peek_all(node_iter, b); if (k && !bkey_cmp_packed(b, k, &insert->k)) { BUG_ON(bkey_whiteout(k)); t = bch2_bkey_to_bset(b, k); if (bset_unwritten(b, bset(b, t)) && bkey_val_u64s(&insert->k) == bkeyp_val_u64s(f, k) && !bkey_whiteout(&insert->k)) { k->type = insert->k.type; memcpy_u64s(bkeyp_val(f, k), &insert->v, bkey_val_u64s(&insert->k)); return true; } insert->k.needs_whiteout = k->needs_whiteout; btree_keys_account_key_drop(&b->nr, t - b->set, k); if (t == bset_tree_last(b)) { clobber_u64s = k->u64s; /* * If we're deleting, and the key we're deleting doesn't * need a whiteout (it wasn't overwriting a key that had * been written to disk) - just delete it: */ if (bkey_whiteout(&insert->k) && !k->needs_whiteout) { bch2_bset_delete(b, k, clobber_u64s); bch2_btree_node_iter_fix(iter, b, node_iter, t, k, clobber_u64s, 0); return true; } goto overwrite; } k->type = KEY_TYPE_DELETED; bch2_btree_node_iter_fix(iter, b, node_iter, t, k, k->u64s, k->u64s); if (bkey_whiteout(&insert->k)) { reserve_whiteout(b, t, k); return true; } else { k->needs_whiteout = false; } } else { /* * Deleting, but the key to delete wasn't found - nothing to do: */ if (bkey_whiteout(&insert->k)) return false; insert->k.needs_whiteout = false; } t = bset_tree_last(b); k = bch2_btree_node_iter_bset_pos(node_iter, b, t); clobber_u64s = 0; overwrite: bch2_bset_insert(b, node_iter, k, insert, clobber_u64s); if (k->u64s != clobber_u64s || bkey_whiteout(&insert->k)) bch2_btree_node_iter_fix(iter, b, node_iter, t, k, clobber_u64s, k->u64s); return true; } static void __btree_node_flush(struct journal *j, struct journal_entry_pin *pin, unsigned i, u64 seq) { struct bch_fs *c = container_of(j, struct bch_fs, journal); struct btree_write *w = container_of(pin, struct btree_write, journal); struct btree *b = container_of(w, struct btree, writes[i]); btree_node_lock_type(c, b, SIX_LOCK_read); bch2_btree_node_write_cond(c, b, (btree_current_write(b) == w && w->journal.pin_list == journal_seq_pin(j, seq))); six_unlock_read(&b->lock); } static void btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq) { return __btree_node_flush(j, pin, 0, seq); } static void btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq) { return __btree_node_flush(j, pin, 1, seq); } void bch2_btree_journal_key(struct btree_insert *trans, struct btree_iter *iter, struct bkey_i *insert) { struct bch_fs *c = trans->c; struct journal *j = &c->journal; struct btree *b = iter->l[0].b; struct btree_write *w = btree_current_write(b); EBUG_ON(iter->level || b->level); EBUG_ON(trans->journal_res.ref != !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)); if (likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY))) { u64 seq = trans->journal_res.seq; bool needs_whiteout = insert->k.needs_whiteout; /* ick */ insert->k.needs_whiteout = false; bch2_journal_add_keys(j, &trans->journal_res, iter->btree_id, insert); insert->k.needs_whiteout = needs_whiteout; bch2_journal_set_has_inode(j, &trans->journal_res, insert->k.p.inode); if (trans->journal_seq) *trans->journal_seq = seq; btree_bset_last(b)->journal_seq = cpu_to_le64(seq); } if (unlikely(!journal_pin_active(&w->journal))) { u64 seq = likely(!(trans->flags & BTREE_INSERT_JOURNAL_REPLAY)) ? trans->journal_res.seq : j->replay_journal_seq; bch2_journal_pin_add(j, seq, &w->journal, btree_node_write_idx(b) == 0 ? btree_node_flush0 : btree_node_flush1); } if (unlikely(!btree_node_dirty(b))) set_btree_node_dirty(b); } static enum btree_insert_ret bch2_insert_fixup_key(struct btree_insert *trans, struct btree_insert_entry *insert) { struct btree_iter *iter = insert->iter; struct btree_iter_level *l = &iter->l[0]; EBUG_ON(iter->level); EBUG_ON(insert->k->k.u64s > bch_btree_keys_u64s_remaining(trans->c, l->b)); if (bch2_btree_bset_insert_key(iter, l->b, &l->iter, insert->k)) bch2_btree_journal_key(trans, iter, insert->k); trans->did_work = true; return BTREE_INSERT_OK; } /** * btree_insert_key - insert a key one key into a leaf node */ static enum btree_insert_ret btree_insert_key_leaf(struct btree_insert *trans, struct btree_insert_entry *insert) { struct bch_fs *c = trans->c; struct btree_iter *iter = insert->iter; struct btree *b = iter->l[0].b; enum btree_insert_ret ret; int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); int old_live_u64s = b->nr.live_u64s; int live_u64s_added, u64s_added; btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK); ret = !btree_node_is_extents(b) ? bch2_insert_fixup_key(trans, insert) : bch2_insert_fixup_extent(trans, insert); live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); if (u64s_added > live_u64s_added && bch2_maybe_compact_whiteouts(c, b)) bch2_btree_iter_reinit_node(iter, b); trace_btree_insert_key(c, b, insert->k); return ret; } static bool same_leaf_as_prev(struct btree_insert *trans, struct btree_insert_entry *i) { /* * Because we sorted the transaction entries, if multiple iterators * point to the same leaf node they'll always be adjacent now: */ return i != trans->entries && i[0].iter->l[0].b == i[-1].iter->l[0].b; } #define trans_for_each_entry(trans, i) \ for ((i) = (trans)->entries; (i) < (trans)->entries + (trans)->nr; (i)++) inline void bch2_btree_node_lock_for_insert(struct bch_fs *c, struct btree *b, struct btree_iter *iter) { bch2_btree_node_lock_write(b, iter); if (btree_node_just_written(b) && bch2_btree_post_write_cleanup(c, b)) bch2_btree_iter_reinit_node(iter, b); /* * If the last bset has been written, or if it's gotten too big - start * a new bset to insert into: */ if (want_new_bset(c, b)) bch2_btree_init_next(c, b, iter); } static void multi_lock_write(struct bch_fs *c, struct btree_insert *trans) { struct btree_insert_entry *i; trans_for_each_entry(trans, i) if (!same_leaf_as_prev(trans, i)) bch2_btree_node_lock_for_insert(c, i->iter->l[0].b, i->iter); } static void multi_unlock_write(struct btree_insert *trans) { struct btree_insert_entry *i; trans_for_each_entry(trans, i) if (!same_leaf_as_prev(trans, i)) bch2_btree_node_unlock_write(i->iter->l[0].b, i->iter); } static inline int btree_trans_cmp(struct btree_insert_entry l, struct btree_insert_entry r) { return btree_iter_cmp(l.iter, r.iter); } /* Normal update interface: */ /** * __bch_btree_insert_at - insert keys at given iterator positions * * This is main entry point for btree updates. * * Return values: * -EINTR: locking changed, this function should be called again. Only returned * if passed BTREE_INSERT_ATOMIC. * -EROFS: filesystem read only * -EIO: journal or btree node IO error */ int __bch2_btree_insert_at(struct btree_insert *trans) { struct bch_fs *c = trans->c; struct btree_insert_entry *i; struct btree_iter *split = NULL; bool cycle_gc_lock = false; unsigned u64s; int ret; trans_for_each_entry(trans, i) { BUG_ON(i->iter->level); BUG_ON(bkey_cmp(bkey_start_pos(&i->k->k), i->iter->pos)); BUG_ON(debug_check_bkeys(c) && bch2_bkey_invalid(c, i->iter->btree_id, bkey_i_to_s_c(i->k))); } bubble_sort(trans->entries, trans->nr, btree_trans_cmp); if (unlikely(!percpu_ref_tryget(&c->writes))) return -EROFS; retry_locks: ret = -EINTR; trans_for_each_entry(trans, i) { if (!bch2_btree_iter_set_locks_want(i->iter, 1)) goto err; if (i->iter->uptodate == BTREE_ITER_NEED_TRAVERSE) { ret = bch2_btree_iter_traverse(i->iter); if (ret) goto err; } } retry: trans->did_work = false; u64s = 0; trans_for_each_entry(trans, i) if (!i->done) u64s += jset_u64s(i->k->k.u64s + i->extra_res); memset(&trans->journal_res, 0, sizeof(trans->journal_res)); ret = !(trans->flags & BTREE_INSERT_JOURNAL_REPLAY) ? bch2_journal_res_get(&c->journal, &trans->journal_res, u64s, u64s) : 0; if (ret) goto err; multi_lock_write(c, trans); if (race_fault()) { ret = -EINTR; goto unlock; } u64s = 0; trans_for_each_entry(trans, i) { /* Multiple inserts might go to same leaf: */ if (!same_leaf_as_prev(trans, i)) u64s = 0; /* * bch2_btree_node_insert_fits() must be called under write lock: * with only an intent lock, another thread can still call * bch2_btree_node_write(), converting an unwritten bset to a * written one */ if (!i->done) { u64s += i->k->k.u64s + i->extra_res; if (!bch2_btree_node_insert_fits(c, i->iter->l[0].b, u64s)) { split = i->iter; goto unlock; } } } ret = 0; split = NULL; cycle_gc_lock = false; trans_for_each_entry(trans, i) { if (i->done) continue; switch (btree_insert_key_leaf(trans, i)) { case BTREE_INSERT_OK: i->done = true; break; case BTREE_INSERT_JOURNAL_RES_FULL: case BTREE_INSERT_NEED_TRAVERSE: ret = -EINTR; break; case BTREE_INSERT_NEED_RESCHED: ret = -EAGAIN; break; case BTREE_INSERT_BTREE_NODE_FULL: split = i->iter; break; case BTREE_INSERT_ENOSPC: ret = -ENOSPC; break; case BTREE_INSERT_NEED_GC_LOCK: cycle_gc_lock = true; ret = -EINTR; break; default: BUG(); } if (!trans->did_work && (ret || split)) break; } unlock: multi_unlock_write(trans); bch2_journal_res_put(&c->journal, &trans->journal_res); if (split) goto split; if (ret) goto err; trans_for_each_entry(trans, i) if (i->iter->flags & BTREE_ITER_AT_END_OF_LEAF) goto out; trans_for_each_entry(trans, i) { /* * iterators are inconsistent when they hit end of leaf, until * traversed again */ if (i->iter->uptodate < BTREE_ITER_NEED_TRAVERSE && !same_leaf_as_prev(trans, i)) bch2_foreground_maybe_merge(c, i->iter, 0); } out: /* make sure we didn't lose an error: */ if (!ret && IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) trans_for_each_entry(trans, i) BUG_ON(!i->done); percpu_ref_put(&c->writes); return ret; split: /* * have to drop journal res before splitting, because splitting means * allocating new btree nodes, and holding a journal reservation * potentially blocks the allocator: */ ret = bch2_btree_split_leaf(c, split, trans->flags); /* * This can happen when we insert part of an extent - with an update * with multiple keys, we don't want to redo the entire update - that's * just too confusing: */ if (!ret && (trans->flags & BTREE_INSERT_ATOMIC) && trans->did_work) ret = -EINTR; if (ret) goto err; /* * if the split didn't have to drop locks the insert will still be * atomic (in the BTREE_INSERT_ATOMIC sense, what the caller peeked() * and is overwriting won't have changed) */ goto retry_locks; err: if (cycle_gc_lock) { down_read(&c->gc_lock); up_read(&c->gc_lock); } if (ret == -EINTR) { trans_for_each_entry(trans, i) { int ret2 = bch2_btree_iter_traverse(i->iter); if (ret2) { ret = ret2; goto out; } } /* * BTREE_ITER_ATOMIC means we have to return -EINTR if we * dropped locks: */ if (!(trans->flags & BTREE_INSERT_ATOMIC)) goto retry; } goto out; } int bch2_btree_delete_at(struct btree_iter *iter, unsigned flags) { struct bkey_i k; bkey_init(&k.k); k.k.p = iter->pos; return bch2_btree_insert_at(iter->c, NULL, NULL, NULL, BTREE_INSERT_NOFAIL| BTREE_INSERT_USE_RESERVE|flags, BTREE_INSERT_ENTRY(iter, &k)); } int bch2_btree_insert_list_at(struct btree_iter *iter, struct keylist *keys, struct disk_reservation *disk_res, struct extent_insert_hook *hook, u64 *journal_seq, unsigned flags) { BUG_ON(flags & BTREE_INSERT_ATOMIC); BUG_ON(bch2_keylist_empty(keys)); bch2_verify_keylist_sorted(keys); while (!bch2_keylist_empty(keys)) { int ret = bch2_btree_insert_at(iter->c, disk_res, hook, journal_seq, flags, BTREE_INSERT_ENTRY(iter, bch2_keylist_front(keys))); if (ret) return ret; bch2_keylist_pop_front(keys); } return 0; } /** * bch_btree_insert - insert keys into the extent btree * @c: pointer to struct bch_fs * @id: btree to insert into * @insert_keys: list of keys to insert * @hook: insert callback */ int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k, struct disk_reservation *disk_res, struct extent_insert_hook *hook, u64 *journal_seq, int flags) { struct btree_iter iter; int ret; bch2_btree_iter_init(&iter, c, id, bkey_start_pos(&k->k), BTREE_ITER_INTENT); ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq, flags, BTREE_INSERT_ENTRY(&iter, k)); bch2_btree_iter_unlock(&iter); return ret; } /* * bch_btree_delete_range - delete everything within a given range * * Range is a half open interval - [start, end) */ int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id, struct bpos start, struct bpos end, struct bversion version, struct disk_reservation *disk_res, struct extent_insert_hook *hook, u64 *journal_seq) { struct btree_iter iter; struct bkey_s_c k; int ret = 0; bch2_btree_iter_init(&iter, c, id, start, BTREE_ITER_INTENT); while ((k = bch2_btree_iter_peek(&iter)).k && !(ret = btree_iter_err(k))) { unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits); /* really shouldn't be using a bare, unpadded bkey_i */ struct bkey_i delete; if (bkey_cmp(iter.pos, end) >= 0) break; bkey_init(&delete.k); /* * For extents, iter.pos won't necessarily be the same as * bkey_start_pos(k.k) (for non extents they always will be the * same). It's important that we delete starting from iter.pos * because the range we want to delete could start in the middle * of k. * * (bch2_btree_iter_peek() does guarantee that iter.pos >= * bkey_start_pos(k.k)). */ delete.k.p = iter.pos; delete.k.version = version; if (iter.flags & BTREE_ITER_IS_EXTENTS) { /* * The extents btree is special - KEY_TYPE_DISCARD is * used for deletions, not KEY_TYPE_DELETED. This is an * internal implementation detail that probably * shouldn't be exposed (internally, KEY_TYPE_DELETED is * used as a proxy for k->size == 0): */ delete.k.type = KEY_TYPE_DISCARD; /* create the biggest key we can */ bch2_key_resize(&delete.k, max_sectors); bch2_cut_back(end, &delete.k); } ret = bch2_btree_insert_at(c, disk_res, hook, journal_seq, BTREE_INSERT_NOFAIL, BTREE_INSERT_ENTRY(&iter, &delete)); if (ret) break; bch2_btree_iter_cond_resched(&iter); } bch2_btree_iter_unlock(&iter); return ret; }