// SPDX-License-Identifier: GPL-2.0 #include "bcachefs.h" #include "bcachefs_ioctl.h" #include "btree_update.h" #include "btree_write_buffer.h" #include "buckets.h" #include "compress.h" #include "disk_accounting.h" #include "error.h" #include "journal_io.h" #include "replicas.h" /* * Notes on disk accounting: * * We have two parallel sets of counters to be concerned with, and both must be * kept in sync. * * - Persistent/on disk accounting, stored in the accounting btree and updated * via btree write buffer updates that treat new accounting keys as deltas to * apply to existing values. But reading from a write buffer btree is * expensive, so we also have * * - In memory accounting, where accounting is stored as an array of percpu * counters, indexed by an eytzinger array of disk acounting keys/bpos (which * are the same thing, excepting byte swabbing on big endian). * * Cheap to read, but non persistent. * * Disk accounting updates are generated by transactional triggers; these run as * keys enter and leave the btree, and can compare old and new versions of keys; * the output of these triggers are deltas to the various counters. * * Disk accounting updates are done as btree write buffer updates, where the * counters in the disk accounting key are deltas that will be applied to the * counter in the btree when the key is flushed by the write buffer (or journal * replay). * * To do a disk accounting update: * - initialize a disk_accounting_pos, to specify which counter is being update * - initialize counter deltas, as an array of 1-3 s64s * - call bch2_disk_accounting_mod() * * This queues up the accounting update to be done at transaction commit time. * Underneath, it's a normal btree write buffer update. * * The transaction commit path is responsible for propagating updates to the in * memory counters, with bch2_accounting_mem_mod(). * * The commit path also assigns every disk accounting update a unique version * number, based on the journal sequence number and offset within that journal * buffer; this is used by journal replay to determine which updates have been * done. * * The transaction commit path also ensures that replicas entry accounting * updates are properly marked in the superblock (so that we know whether we can * mount without data being unavailable); it will update the superblock if * bch2_accounting_mem_mod() tells it to. */ static const char * const disk_accounting_type_strs[] = { #define x(t, n, ...) [n] = #t, BCH_DISK_ACCOUNTING_TYPES() #undef x NULL }; int bch2_disk_accounting_mod(struct btree_trans *trans, struct disk_accounting_pos *k, s64 *d, unsigned nr, bool gc) { /* Normalize: */ switch (k->type) { case BCH_DISK_ACCOUNTING_replicas: bubble_sort(k->replicas.devs, k->replicas.nr_devs, u8_cmp); break; } BUG_ON(nr > BCH_ACCOUNTING_MAX_COUNTERS); struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; struct bkey_i_accounting *acc = bkey_accounting_init(&k_i.k); acc->k.p = disk_accounting_pos_to_bpos(k); set_bkey_val_u64s(&acc->k, sizeof(struct bch_accounting) / sizeof(u64) + nr); memcpy_u64s_small(acc->v.d, d, nr); return likely(!gc) ? bch2_trans_update_buffered(trans, BTREE_ID_accounting, &acc->k_i) : bch2_accounting_mem_add(trans, accounting_i_to_s_c(acc), true); } int bch2_mod_dev_cached_sectors(struct btree_trans *trans, unsigned dev, s64 sectors, bool gc) { struct disk_accounting_pos acc = { .type = BCH_DISK_ACCOUNTING_replicas, }; bch2_replicas_entry_cached(&acc.replicas, dev); return bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); } int bch2_accounting_invalid(struct bch_fs *c, struct bkey_s_c k, enum bkey_invalid_flags flags, struct printbuf *err) { return 0; } void bch2_accounting_key_to_text(struct printbuf *out, struct disk_accounting_pos *k) { if (k->type >= BCH_DISK_ACCOUNTING_TYPE_NR) { prt_printf(out, "unknown type %u", k->type); return; } prt_str(out, disk_accounting_type_strs[k->type]); prt_str(out, " "); switch (k->type) { case BCH_DISK_ACCOUNTING_nr_inodes: break; case BCH_DISK_ACCOUNTING_persistent_reserved: prt_printf(out, "replicas=%u", k->persistent_reserved.nr_replicas); break; case BCH_DISK_ACCOUNTING_replicas: bch2_replicas_entry_to_text(out, &k->replicas); break; case BCH_DISK_ACCOUNTING_dev_data_type: prt_printf(out, "dev=%u data_type=", k->dev_data_type.dev); bch2_prt_data_type(out, k->dev_data_type.data_type); break; case BCH_DISK_ACCOUNTING_dev_stripe_buckets: prt_printf(out, "dev=%u", k->dev_stripe_buckets.dev); break; case BCH_DISK_ACCOUNTING_compression: bch2_prt_compression_type(out, k->compression.type); break; } } void bch2_accounting_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { struct bkey_s_c_accounting acc = bkey_s_c_to_accounting(k); struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, k.k->p); bch2_accounting_key_to_text(out, &acc_k); for (unsigned i = 0; i < bch2_accounting_counters(k.k); i++) prt_printf(out, " %lli", acc.v->d[i]); } void bch2_accounting_swab(struct bkey_s k) { for (u64 *p = (u64 *) k.v; p < (u64 *) bkey_val_end(k); p++) *p = swab64(*p); } static inline bool accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct bpos p) { struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, p); switch (acc_k.type) { case BCH_DISK_ACCOUNTING_replicas: memcpy(r, &acc_k.replicas, replicas_entry_bytes(&acc_k.replicas)); return true; default: return false; } } static int bch2_accounting_update_sb_one(struct bch_fs *c, struct bpos p) { struct bch_replicas_padded r; return accounting_to_replicas(&r.e, p) ? bch2_mark_replicas(c, &r.e) : 0; } /* * Ensure accounting keys being updated are present in the superblock, when * applicable (i.e. replicas updates) */ int bch2_accounting_update_sb(struct btree_trans *trans) { for (struct jset_entry *i = trans->journal_entries; i != (void *) ((u64 *) trans->journal_entries + trans->journal_entries_u64s); i = vstruct_next(i)) if (jset_entry_is_key(i) && i->start->k.type == KEY_TYPE_accounting) { int ret = bch2_accounting_update_sb_one(trans->c, i->start->k.p); if (ret) return ret; } return 0; } static int __bch2_accounting_mem_mod_slowpath(struct bch_fs *c, struct bkey_s_c_accounting a, bool gc) { struct bch_replicas_padded r; if (accounting_to_replicas(&r.e, a.k->p) && !bch2_replicas_marked_locked(c, &r.e)) return -BCH_ERR_btree_insert_need_mark_replicas; struct bch_accounting_mem *acc = &c->accounting[gc]; unsigned new_nr_counters = acc->nr_counters + bch2_accounting_counters(a.k); u64 __percpu *new_counters = __alloc_percpu_gfp(new_nr_counters * sizeof(u64), sizeof(u64), GFP_KERNEL); if (!new_counters) return -BCH_ERR_ENOMEM_disk_accounting; preempt_disable(); memcpy(this_cpu_ptr(new_counters), bch2_acc_percpu_u64s(acc->v, acc->nr_counters), acc->nr_counters * sizeof(u64)); preempt_enable(); struct accounting_pos_offset n = { .pos = a.k->p, .version = a.k->version, .offset = acc->nr_counters, .nr_counters = bch2_accounting_counters(a.k), }; if (darray_push(&acc->k, n)) { free_percpu(new_counters); return -BCH_ERR_ENOMEM_disk_accounting; } eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), accounting_pos_cmp, NULL); free_percpu(acc->v); acc->v = new_counters; acc->nr_counters = new_nr_counters; for (unsigned i = 0; i < n.nr_counters; i++) this_cpu_add(acc->v[n.offset + i], a.v->d[i]); return 0; } int bch2_accounting_mem_mod_slowpath(struct bch_fs *c, struct bkey_s_c_accounting a, bool gc) { percpu_up_read(&c->mark_lock); percpu_down_write(&c->mark_lock); int ret = __bch2_accounting_mem_mod_slowpath(c, a, gc); percpu_up_write(&c->mark_lock); percpu_down_read(&c->mark_lock); return ret; } /* * Read out accounting keys for replicas entries, as an array of * bch_replicas_usage entries. * * Note: this may be deprecated/removed at smoe point in the future and replaced * with something more general, it exists to support the ioctl used by the * 'bcachefs fs usage' command. */ int bch2_fs_replicas_usage_read(struct bch_fs *c, darray_char *usage) { struct bch_accounting_mem *acc = &c->accounting[0]; int ret = 0; darray_init(usage); percpu_down_read(&c->mark_lock); darray_for_each(acc->k, i) { struct { struct bch_replicas_usage r; u8 pad[BCH_BKEY_PTRS_MAX]; } u; if (!accounting_to_replicas(&u.r.r, i->pos)) continue; bch2_accounting_mem_read(c, i->pos, &u.r.sectors, 1); ret = darray_make_room(usage, replicas_usage_bytes(&u.r)); if (ret) break; memcpy(&darray_top(*usage), &u.r, replicas_usage_bytes(&u.r)); usage->nr += replicas_usage_bytes(&u.r); } percpu_up_read(&c->mark_lock); if (ret) darray_exit(usage); return ret; } void bch2_fs_accounting_to_text(struct printbuf *out, struct bch_fs *c) { struct bch_accounting_mem *acc = &c->accounting[0]; percpu_down_read(&c->mark_lock); out->atomic++; eytzinger0_for_each(i, acc->k.nr) { struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, acc->k.data[i].pos); bch2_accounting_key_to_text(out, &acc_k); u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; bch2_accounting_mem_read_counters(c, i, v, ARRAY_SIZE(v), false); prt_str(out, ":"); for (unsigned j = 0; j < acc->k.data[i].nr_counters; j++) prt_printf(out, " %llu", v[j]); prt_newline(out); } --out->atomic; percpu_up_read(&c->mark_lock); } /* Ensures all counters in @src exist in @dst: */ static int copy_counters(struct bch_accounting_mem *dst, struct bch_accounting_mem *src) { unsigned orig_dst_k_nr = dst->k.nr; unsigned dst_counters = dst->nr_counters; darray_for_each(src->k, i) if (eytzinger0_find(dst->k.data, orig_dst_k_nr, sizeof(dst->k.data[0]), accounting_pos_cmp, &i->pos) >= orig_dst_k_nr) { if (darray_push(&dst->k, ((struct accounting_pos_offset) { .pos = i->pos, .offset = dst_counters, .nr_counters = i->nr_counters }))) goto err; dst_counters += i->nr_counters; } if (dst->k.nr == orig_dst_k_nr) return 0; u64 __percpu *new_counters = __alloc_percpu_gfp(dst_counters * sizeof(u64), sizeof(u64), GFP_KERNEL); if (!new_counters) goto err; preempt_disable(); memcpy(this_cpu_ptr(new_counters), bch2_acc_percpu_u64s(dst->v, dst->nr_counters), dst->nr_counters * sizeof(u64)); preempt_enable(); free_percpu(dst->v); dst->v = new_counters; dst->nr_counters = dst_counters; eytzinger0_sort(dst->k.data, dst->k.nr, sizeof(dst->k.data[0]), accounting_pos_cmp, NULL); return 0; err: dst->k.nr = orig_dst_k_nr; return -BCH_ERR_ENOMEM_disk_accounting; } int bch2_accounting_gc_done(struct bch_fs *c) { struct bch_accounting_mem *dst = &c->accounting[0]; struct bch_accounting_mem *src = &c->accounting[1]; struct btree_trans *trans = bch2_trans_get(c); struct printbuf buf = PRINTBUF; int ret = 0; percpu_down_write(&c->mark_lock); ret = copy_counters(dst, src) ?: copy_counters(src, dst); if (ret) goto err; BUG_ON(dst->k.nr != src->k.nr); for (unsigned i = 0; i < src->k.nr; i++) { BUG_ON(src->k.data[i].nr_counters != dst->k.data[i].nr_counters); BUG_ON(!bpos_eq(dst->k.data[i].pos, src->k.data[i].pos)); struct disk_accounting_pos acc_k; bpos_to_disk_accounting_pos(&acc_k, src->k.data[i].pos); unsigned nr = src->k.data[i].nr_counters; u64 src_v[BCH_ACCOUNTING_MAX_COUNTERS]; u64 dst_v[BCH_ACCOUNTING_MAX_COUNTERS]; bch2_accounting_mem_read_counters(c, i, dst_v, nr, false); bch2_accounting_mem_read_counters(c, i, src_v, nr, true); if (memcmp(dst_v, src_v, nr * sizeof(u64))) { printbuf_reset(&buf); prt_str(&buf, "accounting mismatch for "); bch2_accounting_key_to_text(&buf, &acc_k); prt_str(&buf, ": got"); for (unsigned j = 0; j < nr; j++) prt_printf(&buf, " %llu", dst_v[j]); prt_str(&buf, " should be"); for (unsigned j = 0; j < nr; j++) prt_printf(&buf, " %llu", src_v[j]); for (unsigned j = 0; j < nr; j++) src_v[j] -= dst_v[j]; if (fsck_err(c, accounting_mismatch, "%s", buf.buf)) { ret = commit_do(trans, NULL, NULL, 0, bch2_disk_accounting_mod(trans, &acc_k, src_v, nr, false)); if (ret) goto err; } } } err: fsck_err: percpu_up_write(&c->mark_lock); printbuf_exit(&buf); bch2_trans_put(trans); bch_err_fn(c, ret); return ret; } static int accounting_read_key(struct bch_fs *c, struct bkey_s_c k) { struct printbuf buf = PRINTBUF; if (k.k->type != KEY_TYPE_accounting) return 0; percpu_down_read(&c->mark_lock); int ret = __bch2_accounting_mem_mod(c, bkey_s_c_to_accounting(k), false); percpu_up_read(&c->mark_lock); if (bch2_accounting_key_is_zero(bkey_s_c_to_accounting(k)) && ret == -BCH_ERR_btree_insert_need_mark_replicas) ret = 0; struct disk_accounting_pos acc; bpos_to_disk_accounting_pos(&acc, k.k->p); if (fsck_err_on(ret == -BCH_ERR_btree_insert_need_mark_replicas, c, accounting_replicas_not_marked, "accounting not marked in superblock replicas\n %s", (bch2_accounting_key_to_text(&buf, &acc), buf.buf))) ret = bch2_accounting_update_sb_one(c, k.k->p); fsck_err: printbuf_exit(&buf); return ret; } /* * At startup time, initialize the in memory accounting from the btree (and * journal) */ int bch2_accounting_read(struct bch_fs *c) { struct bch_accounting_mem *acc = &c->accounting[0]; int ret = bch2_trans_run(c, for_each_btree_key(trans, iter, BTREE_ID_accounting, POS_MIN, BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, k, ({ struct bkey u; struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, &iter), &u); accounting_read_key(c, k); }))); if (ret) goto err; struct journal_keys *keys = &c->journal_keys; move_gap(keys, keys->nr); darray_for_each(*keys, i) { if (i->k->k.type == KEY_TYPE_accounting) { struct bkey_s_c k = bkey_i_to_s_c(i->k); unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), accounting_pos_cmp, &k.k->p); bool applied = idx < acc->k.nr && bversion_cmp(acc->k.data[idx].version, k.k->version) >= 0; if (applied) continue; ret = accounting_read_key(c, k); if (ret) goto err; } } percpu_down_read(&c->mark_lock); preempt_disable(); struct bch_fs_usage_base *usage = this_cpu_ptr(c->usage); for (unsigned i = 0; i < acc->k.nr; i++) { struct disk_accounting_pos k; bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos); u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; bch2_accounting_mem_read_counters(c, i, v, ARRAY_SIZE(v), false); switch (k.type) { case BCH_DISK_ACCOUNTING_persistent_reserved: usage->reserved += v[0] * k.persistent_reserved.nr_replicas; break; case BCH_DISK_ACCOUNTING_replicas: fs_usage_data_type_to_base(usage, k.replicas.data_type, v[0]); break; case BCH_DISK_ACCOUNTING_dev_data_type: if (bch2_dev_exists2(c, k.dev_data_type.dev)) { struct bch_dev *ca = bch_dev_bkey_exists(c, k.dev_data_type.dev); struct bch_dev_usage_type __percpu *d = &ca->usage->d[k.dev_data_type.data_type]; percpu_u64_set(&d->buckets, v[0]); percpu_u64_set(&d->sectors, v[1]); percpu_u64_set(&d->fragmented, v[2]); if (k.dev_data_type.data_type == BCH_DATA_sb || k.dev_data_type.data_type == BCH_DATA_journal) usage->hidden += v[0] * ca->mi.bucket_size; } break; } } preempt_enable(); percpu_up_read(&c->mark_lock); err: bch_err_fn(c, ret); return ret; } int bch2_dev_usage_remove(struct bch_fs *c, unsigned dev) { return bch2_trans_run(c, bch2_btree_write_buffer_flush_sync(trans) ?: for_each_btree_key_commit(trans, iter, BTREE_ID_accounting, POS_MIN, BTREE_ITER_ALL_SNAPSHOTS, k, NULL, NULL, 0, ({ struct disk_accounting_pos acc; bpos_to_disk_accounting_pos(&acc, k.k->p); acc.type == BCH_DISK_ACCOUNTING_dev_data_type && acc.dev_data_type.dev == dev ? bch2_btree_bit_mod_buffered(trans, BTREE_ID_accounting, k.k->p, 0) : 0; })) ?: bch2_btree_write_buffer_flush_sync(trans)); } int bch2_dev_usage_init(struct bch_dev *ca, bool gc) { struct bch_fs *c = ca->fs; struct disk_accounting_pos acc = { .type = BCH_DISK_ACCOUNTING_dev_data_type, .dev_data_type.dev = ca->dev_idx, .dev_data_type.data_type = BCH_DATA_free, }; u64 v[3] = { ca->mi.nbuckets - ca->mi.first_bucket, 0, 0 }; int ret = bch2_trans_do(c, NULL, NULL, 0, bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), gc)); bch_err_fn(c, ret); return ret; } void bch2_verify_accounting_clean(struct bch_fs *c) { bool mismatch = false; bch2_trans_run(c, for_each_btree_key(trans, iter, BTREE_ID_accounting, POS_MIN, BTREE_ITER_ALL_SNAPSHOTS, k, ({ u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; struct bkey_s_c_accounting a = bkey_s_c_to_accounting(k); unsigned nr = bch2_accounting_counters(k.k); bch2_accounting_mem_read(c, k.k->p, v, nr); if (memcmp(a.v->d, v, nr * sizeof(u64))) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, k); prt_str(&buf, " !="); for (unsigned j = 0; j < nr; j++) prt_printf(&buf, " %llu", v[j]); pr_err("%s", buf.buf); printbuf_exit(&buf); mismatch = true; } 0; }))); WARN_ON(mismatch); } void bch2_accounting_free(struct bch_accounting_mem *acc) { darray_exit(&acc->k); free_percpu(acc->v); acc->v = NULL; acc->nr_counters = 0; } void bch2_fs_accounting_exit(struct bch_fs *c) { bch2_accounting_free(&c->accounting[0]); }