// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2021 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_alloc.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_rmap.h" #include "xfs_rtrmap_btree.h" #include "xfs_trace.h" #include "xfs_cksum.h" #include "xfs_error.h" #include "xfs_extent_busy.h" #include "xfs_bmap.h" #include "xfs_imeta.h" static struct kmem_cache *xfs_rtrmapbt_cur_cache; /* * Realtime Reverse Map btree. * * This is a btree used to track the owner(s) of a given extent in the realtime * device. See the comments in xfs_rmap_btree.c for more information. * * This tree is basically the same as the regular rmap btree except that it * doesn't live in free space, and the startblock and blockcount fields have * been widened to 64 bits. */ static struct xfs_btree_cur * xfs_rtrmapbt_dup_cursor( struct xfs_btree_cur *cur) { struct xfs_btree_cur *new; new = xfs_rtrmapbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ino.ip); /* Copy the flags values since init cursor doesn't get them. */ new->bc_ino.flags = cur->bc_ino.flags; return new; } STATIC int xfs_rtrmapbt_get_minrecs( struct xfs_btree_cur *cur, int level) { if (level == cur->bc_nlevels - 1) { struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes, level == 0) / 2; } return cur->bc_mp->m_rtrmap_mnr[level != 0]; } STATIC int xfs_rtrmapbt_get_maxrecs( struct xfs_btree_cur *cur, int level) { if (level == cur->bc_nlevels - 1) { struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); return xfs_rtrmapbt_maxrecs(cur->bc_mp, ifp->if_broot_bytes, level == 0); } return cur->bc_mp->m_rtrmap_mxr[level != 0]; } /* Calculate number of records in the ondisk realtime rmap btree inode root. */ unsigned int xfs_rtrmapbt_droot_maxrecs( unsigned int blocklen, bool leaf) { blocklen -= sizeof(struct xfs_rtrmap_root); if (leaf) return blocklen / sizeof(struct xfs_rtrmap_rec); return blocklen / (2 * sizeof(struct xfs_rtrmap_key) + sizeof(xfs_rtrmap_ptr_t)); } /* * Get the maximum records we could store in the on-disk format. * * For non-root nodes this is equivalent to xfs_rtrmapbt_get_maxrecs, but * for the root node this checks the available space in the dinode fork * so that we can resize the in-memory buffer to match it. After a * resize to the maximum size this function returns the same value * as xfs_rtrmapbt_get_maxrecs for the root node, too. */ STATIC int xfs_rtrmapbt_get_dmaxrecs( struct xfs_btree_cur *cur, int level) { if (level != cur->bc_nlevels - 1) return cur->bc_mp->m_rtrmap_mxr[level != 0]; return xfs_rtrmapbt_droot_maxrecs(cur->bc_ino.forksize, level == 0); } STATIC void xfs_rtrmapbt_init_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { key->rtrmap.rm_startblock = rec->rtrmap.rm_startblock; key->rtrmap.rm_owner = rec->rtrmap.rm_owner; key->rtrmap.rm_offset = rec->rtrmap.rm_offset; } STATIC void xfs_rtrmapbt_init_high_key_from_rec( union xfs_btree_key *key, const union xfs_btree_rec *rec) { uint64_t off; int adj; adj = be64_to_cpu(rec->rtrmap.rm_blockcount) - 1; key->rtrmap.rm_startblock = rec->rtrmap.rm_startblock; be64_add_cpu(&key->rtrmap.rm_startblock, adj); key->rtrmap.rm_owner = rec->rtrmap.rm_owner; key->rtrmap.rm_offset = rec->rtrmap.rm_offset; if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rtrmap.rm_owner)) || XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rtrmap.rm_offset))) return; off = be64_to_cpu(key->rtrmap.rm_offset); off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK); key->rtrmap.rm_offset = cpu_to_be64(off); } STATIC void xfs_rtrmapbt_init_rec_from_cur( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { rec->rtrmap.rm_startblock = cpu_to_be64(cur->bc_rec.r.rm_startblock); rec->rtrmap.rm_blockcount = cpu_to_be64(cur->bc_rec.r.rm_blockcount); rec->rtrmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner); rec->rtrmap.rm_offset = cpu_to_be64( xfs_rmap_irec_offset_pack(&cur->bc_rec.r)); } STATIC void xfs_rtrmapbt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { ptr->l = 0; } /* * Fork and bmbt are significant parts of the rmap record key, but written * status is merely a record attribute. */ static inline uint64_t offset_keymask(uint64_t offset) { return offset & ~XFS_RMAP_OFF_UNWRITTEN; } STATIC int64_t xfs_rtrmapbt_key_diff( struct xfs_btree_cur *cur, const union xfs_btree_key *key) { struct xfs_rmap_irec *rec = &cur->bc_rec.r; const struct xfs_rtrmap_key *kp = &key->rtrmap; __u64 x, y; x = be64_to_cpu(kp->rm_startblock); y = rec->rm_startblock; if (x > y) return 1; else if (y > x) return -1; x = be64_to_cpu(kp->rm_owner); y = rec->rm_owner; if (x > y) return 1; else if (y > x) return -1; x = offset_keymask(be64_to_cpu(kp->rm_offset)); y = offset_keymask(xfs_rmap_irec_offset_pack(rec)); if (x > y) return 1; else if (y > x) return -1; return 0; } STATIC int64_t xfs_rtrmapbt_diff_two_keys( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2) { const struct xfs_rtrmap_key *kp1 = &k1->rtrmap; const struct xfs_rtrmap_key *kp2 = &k2->rtrmap; __u64 x, y; x = be64_to_cpu(kp1->rm_startblock); y = be64_to_cpu(kp2->rm_startblock); if (x > y) return 1; else if (y > x) return -1; x = be64_to_cpu(kp1->rm_owner); y = be64_to_cpu(kp2->rm_owner); if (x > y) return 1; else if (y > x) return -1; x = offset_keymask(be64_to_cpu(kp1->rm_offset)); y = offset_keymask(be64_to_cpu(kp2->rm_offset)); if (x > y) return 1; else if (y > x) return -1; return 0; } static xfs_failaddr_t xfs_rtrmapbt_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); xfs_failaddr_t fa; int level; if (!xfs_verify_magic(bp, block->bb_magic)) return __this_address; if (!xfs_has_rmapbt(mp)) return __this_address; fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN); if (fa) return fa; level = be16_to_cpu(block->bb_level); if (level > mp->m_rtrmap_maxlevels) return __this_address; return xfs_btree_lblock_verify(bp, mp->m_rtrmap_mxr[level != 0]); } static void xfs_rtrmapbt_read_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; if (!xfs_btree_lblock_verify_crc(bp)) xfs_verifier_error(bp, -EFSBADCRC, __this_address); else { fa = xfs_rtrmapbt_verify(bp); if (fa) xfs_verifier_error(bp, -EFSCORRUPTED, fa); } if (bp->b_error) trace_xfs_btree_corrupt(bp, _RET_IP_); } static void xfs_rtrmapbt_write_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; fa = xfs_rtrmapbt_verify(bp); if (fa) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_verifier_error(bp, -EFSCORRUPTED, fa); return; } xfs_btree_lblock_calc_crc(bp); } const struct xfs_buf_ops xfs_rtrmapbt_buf_ops = { .name = "xfs_rtrmapbt", .magic = { 0, cpu_to_be32(XFS_RTRMAP_CRC_MAGIC) }, .verify_read = xfs_rtrmapbt_read_verify, .verify_write = xfs_rtrmapbt_write_verify, .verify_struct = xfs_rtrmapbt_verify, }; STATIC int xfs_rtrmapbt_keys_inorder( struct xfs_btree_cur *cur, const union xfs_btree_key *k1, const union xfs_btree_key *k2) { uint64_t a; uint64_t b; a = be64_to_cpu(k1->rtrmap.rm_startblock); b = be64_to_cpu(k2->rtrmap.rm_startblock); if (a < b) return 1; else if (a > b) return 0; a = be64_to_cpu(k1->rtrmap.rm_owner); b = be64_to_cpu(k2->rtrmap.rm_owner); if (a < b) return 1; else if (a > b) return 0; a = offset_keymask(be64_to_cpu(k1->rtrmap.rm_offset)); b = offset_keymask(be64_to_cpu(k2->rtrmap.rm_offset)); if (a <= b) return 1; return 0; } STATIC int xfs_rtrmapbt_recs_inorder( struct xfs_btree_cur *cur, const union xfs_btree_rec *r1, const union xfs_btree_rec *r2) { uint64_t a; uint64_t b; a = be64_to_cpu(r1->rtrmap.rm_startblock); b = be64_to_cpu(r2->rtrmap.rm_startblock); if (a < b) return 1; else if (a > b) return 0; a = be64_to_cpu(r1->rtrmap.rm_owner); b = be64_to_cpu(r2->rtrmap.rm_owner); if (a < b) return 1; else if (a > b) return 0; a = offset_keymask(be64_to_cpu(r1->rtrmap.rm_offset)); b = offset_keymask(be64_to_cpu(r2->rtrmap.rm_offset)); if (a <= b) return 1; return 0; } /* Move the rtrmap btree root from one incore buffer to another. */ static void xfs_rtrmapbt_broot_move( struct xfs_inode *ip, int whichfork, struct xfs_btree_block *dst_broot, size_t dst_bytes, struct xfs_btree_block *src_broot, size_t src_bytes, unsigned int level, unsigned int numrecs) { struct xfs_mount *mp = ip->i_mount; void *dptr; void *sptr; ASSERT(xfs_rtrmap_droot_space(src_broot) <= XFS_IFORK_SIZE(ip, whichfork)); /* * We always have to move the pointers because they are not butted * against the btree block header. */ if (numrecs && level > 0) { sptr = xfs_rtrmap_broot_ptr_addr(mp, src_broot, 1, src_bytes); dptr = xfs_rtrmap_broot_ptr_addr(mp, dst_broot, 1, dst_bytes); memmove(dptr, sptr, numrecs * sizeof(xfs_fsblock_t)); } if (src_broot == dst_broot) return; /* * If the root is being totally relocated, we have to migrate the block * header and the keys/records that come after it. */ memcpy(dst_broot, src_broot, XFS_RTRMAP_BLOCK_LEN); if (!numrecs) return; if (level == 0) { sptr = xfs_rtrmap_rec_addr(src_broot, 1); dptr = xfs_rtrmap_rec_addr(dst_broot, 1); memcpy(dptr, sptr, numrecs * sizeof(struct xfs_rtrmap_rec)); } else { sptr = xfs_rtrmap_key_addr(src_broot, 1); dptr = xfs_rtrmap_key_addr(dst_broot, 1); memcpy(dptr, sptr, numrecs * 2 * sizeof(struct xfs_rtrmap_key)); } } static const struct xfs_ifork_broot_ops xfs_rtrmapbt_iroot_ops = { .maxrecs = xfs_rtrmapbt_maxrecs, .size = xfs_rtrmap_broot_space_calc, .move = xfs_rtrmapbt_broot_move, }; static const struct xfs_btree_ops xfs_rtrmapbt_ops = { .rec_len = sizeof(struct xfs_rtrmap_rec), .key_len = 2 * sizeof(struct xfs_rtrmap_key), .dup_cursor = xfs_rtrmapbt_dup_cursor, .alloc_block = xfs_btree_alloc_imeta_block, .free_block = xfs_btree_free_imeta_block, .get_minrecs = xfs_rtrmapbt_get_minrecs, .get_maxrecs = xfs_rtrmapbt_get_maxrecs, .get_dmaxrecs = xfs_rtrmapbt_get_dmaxrecs, .init_key_from_rec = xfs_rtrmapbt_init_key_from_rec, .init_high_key_from_rec = xfs_rtrmapbt_init_high_key_from_rec, .init_rec_from_cur = xfs_rtrmapbt_init_rec_from_cur, .init_ptr_from_cur = xfs_rtrmapbt_init_ptr_from_cur, .key_diff = xfs_rtrmapbt_key_diff, .buf_ops = &xfs_rtrmapbt_buf_ops, .diff_two_keys = xfs_rtrmapbt_diff_two_keys, .keys_inorder = xfs_rtrmapbt_keys_inorder, .recs_inorder = xfs_rtrmapbt_recs_inorder, .iroot_ops = &xfs_rtrmapbt_iroot_ops, }; /* Initialize a new rt rmap btree cursor. */ static struct xfs_btree_cur * xfs_rtrmapbt_init_common( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_inode *ip) { struct xfs_btree_cur *cur; cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_RTRMAP, mp->m_rtrmap_maxlevels, xfs_rtrmapbt_cur_cache); cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE | XFS_BTREE_CRC_BLOCKS | XFS_BTREE_IROOT_RECORDS | XFS_BTREE_OVERLAPPING; cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2); cur->bc_ino.ip = ip; cur->bc_ino.allocated = 0; cur->bc_ino.flags = 0; cur->bc_ops = &xfs_rtrmapbt_ops; return cur; } /* Allocate a new rt rmap btree cursor. */ struct xfs_btree_cur * xfs_rtrmapbt_init_cursor( struct xfs_mount *mp, struct xfs_trans *tp, struct xfs_inode *ip) { struct xfs_btree_cur *cur; struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); cur = xfs_rtrmapbt_init_common(mp, tp, ip); cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1; cur->bc_ino.forksize = XFS_IFORK_SIZE(ip, XFS_DATA_FORK); cur->bc_ino.whichfork = XFS_DATA_FORK; return cur; } /* Create a new rt reverse mapping btree cursor with a fake root for staging. */ struct xfs_btree_cur * xfs_rtrmapbt_stage_cursor( struct xfs_mount *mp, struct xfs_inode *ip, struct xbtree_ifakeroot *ifake) { struct xfs_btree_cur *cur; cur = xfs_rtrmapbt_init_common(mp, NULL, ip); cur->bc_nlevels = ifake->if_levels; cur->bc_ino.forksize = ifake->if_fork_size; cur->bc_ino.whichfork = -1; xfs_btree_stage_ifakeroot(cur, ifake, NULL); return cur; } /* * Install a new rt reverse mapping btree root. Caller is responsible for * invalidating and freeing the old btree blocks. */ void xfs_rtrmapbt_commit_staged_btree( struct xfs_btree_cur *cur, struct xfs_trans *tp) { struct xbtree_ifakeroot *ifake = cur->bc_ino.ifake; struct xfs_ifork *ifp; int flags = XFS_ILOG_CORE | XFS_ILOG_DBROOT; ASSERT(cur->bc_flags & XFS_BTREE_STAGING); ASSERT(ifake->if_fork->if_format == XFS_DINODE_FMT_RMAP); /* * Free any resources hanging off the real fork, then shallow-copy the * staging fork's contents into the real fork to transfer everything * we just built. */ ifp = XFS_IFORK_PTR(cur->bc_ino.ip, XFS_DATA_FORK); xfs_idestroy_fork(ifp); memcpy(ifp, ifake->if_fork, sizeof(struct xfs_ifork)); xfs_trans_log_inode(tp, cur->bc_ino.ip, flags); xfs_btree_commit_ifakeroot(cur, tp, XFS_DATA_FORK, &xfs_rtrmapbt_ops); } /* Calculate number of records in a rt reverse mapping btree block. */ static inline unsigned int xfs_rtrmapbt_block_maxrecs( unsigned int blocklen, bool leaf) { if (leaf) return blocklen / sizeof(struct xfs_rtrmap_rec); return blocklen / (2 * sizeof(struct xfs_rtrmap_key) + sizeof(xfs_rtrmap_ptr_t)); } /* * Calculate number of records in an rt reverse mapping btree block. */ unsigned int xfs_rtrmapbt_maxrecs( struct xfs_mount *mp, unsigned int blocklen, bool leaf) { blocklen -= XFS_RTRMAP_BLOCK_LEN; return xfs_rtrmapbt_block_maxrecs(blocklen, leaf); } /* Compute the max possible height for realtime reverse mapping btrees. */ unsigned int xfs_rtrmapbt_maxlevels_ondisk(void) { unsigned long long max_dblocks; unsigned int minrecs[2]; unsigned int blocklen; blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_LBLOCK_CRC_LEN; minrecs[0] = xfs_rtrmapbt_block_maxrecs(blocklen, true) / 2; minrecs[1] = xfs_rtrmapbt_block_maxrecs(blocklen, false) / 2; /* * Compute the asymptotic maxlevels for an rmapbt on any reflink fs. * * On a reflink filesystem, each rt block can have up to 2^32 (per the * refcount record format) owners, which means that theoretically we * could face up to 2^96 rmap records. However, we're likely to run * out of blocks in the data device long before that happens, which * means that we must compute the max height based on what the btree * will look like if it consumes almost all the blocks in the data * device due to maximal sharing factor. */ max_dblocks = -1U; /* max ag count */ max_dblocks *= XFS_MAX_CRC_AG_BLOCKS; return xfs_btree_space_to_height(minrecs, max_dblocks); } int __init xfs_rtrmapbt_init_cur_cache(void) { xfs_rtrmapbt_cur_cache = kmem_cache_create("xfs_rtrmapbt_cur", xfs_btree_cur_sizeof(xfs_rtrmapbt_maxlevels_ondisk()), 0, 0, NULL); if (!xfs_rtrmapbt_cur_cache) return -ENOMEM; return 0; } void xfs_rtrmapbt_destroy_cur_cache(void) { kmem_cache_destroy(xfs_rtrmapbt_cur_cache); xfs_rtrmapbt_cur_cache = NULL; } /* Compute the maximum height of an rt reverse mapping btree. */ void xfs_rtrmapbt_compute_maxlevels( struct xfs_mount *mp) { unsigned int d_maxlevels, r_maxlevels; if (!xfs_has_rtrmapbt(mp)) { mp->m_rtrmap_maxlevels = 0; return; } /* * The realtime rmapbt lives on the data device, which means that its * maximum height is constrained by the size of the data device and * the height required to store one rmap record for each rt block. * * On a reflink filesystem, each rt block can have up to 2^32 (per the * refcount record format) owners, which means that theoretically we * could face up to 2^96 rmap records. This makes the computation of * maxlevels based on record count meaningless, so we only consider the * size of the data device. */ d_maxlevels = xfs_btree_space_to_height(mp->m_rtrmap_mnr, mp->m_sb.sb_dblocks); if (xfs_has_rtreflink(mp)) { mp->m_rtrmap_maxlevels = d_maxlevels + 1; return; } r_maxlevels = xfs_btree_compute_maxlevels(mp->m_rtrmap_mnr, mp->m_sb.sb_rblocks); /* Add one level to handle the inode root level. */ mp->m_rtrmap_maxlevels = min(d_maxlevels, r_maxlevels) + 1; } /* Calculate the rtrmap btree size for some records. */ static unsigned long long xfs_rtrmapbt_calc_size( struct xfs_mount *mp, unsigned long long len) { return xfs_btree_calc_size(mp->m_rtrmap_mnr, len); } /* * Calculate the maximum rmap btree size. */ static unsigned long long xfs_rtrmapbt_max_size( struct xfs_mount *mp, xfs_rtblock_t rtblocks) { /* Bail out if we're uninitialized, which can happen in mkfs. */ if (mp->m_rtrmap_mxr[0] == 0) return 0; return xfs_rtrmapbt_calc_size(mp, rtblocks); } /* * Figure out how many blocks to reserve and how many are used by this btree. */ xfs_filblks_t xfs_rtrmapbt_calc_reserves( struct xfs_mount *mp) { if (!xfs_has_rtrmapbt(mp)) return 0; /* 1/64th (~1.5%) of the space, and enough for 1 record per block. */ return max(mp->m_sb.sb_rblocks >> 6, xfs_rtrmapbt_max_size(mp, mp->m_sb.sb_rblocks)); } /* Convert on-disk form of btree root to in-memory form. */ STATIC void xfs_rtrmapbt_from_disk( struct xfs_inode *ip, struct xfs_rtrmap_root *dblock, unsigned int dblocklen, struct xfs_btree_block *rblock) { struct xfs_mount *mp = ip->i_mount; struct xfs_rtrmap_key *fkp; __be64 *fpp; struct xfs_rtrmap_key *tkp; __be64 *tpp; struct xfs_rtrmap_rec *frp; struct xfs_rtrmap_rec *trp; unsigned int rblocklen = xfs_rtrmap_broot_space(mp, dblock); unsigned int numrecs; unsigned int maxrecs; xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL, XFS_BTNUM_RTRMAP, 0, 0, ip->i_ino, XFS_BTREE_LONG_PTRS | XFS_BTREE_CRC_BLOCKS); rblock->bb_level = dblock->bb_level; rblock->bb_numrecs = dblock->bb_numrecs; numrecs = be16_to_cpu(dblock->bb_numrecs); if (be16_to_cpu(rblock->bb_level) > 0) { maxrecs = xfs_rtrmapbt_droot_maxrecs(dblocklen, false); fkp = xfs_rtrmap_droot_key_addr(dblock, 1); tkp = xfs_rtrmap_key_addr(rblock, 1); fpp = xfs_rtrmap_droot_ptr_addr(dblock, 1, maxrecs); tpp = xfs_rtrmap_broot_ptr_addr(mp, rblock, 1, rblocklen); memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs); memcpy(tpp, fpp, sizeof(*fpp) * numrecs); } else { frp = xfs_rtrmap_droot_rec_addr(dblock, 1); trp = xfs_rtrmap_rec_addr(rblock, 1); memcpy(trp, frp, sizeof(*frp) * numrecs); } } /* Load a realtime reverse mapping btree root in from disk. */ int xfs_iformat_rtrmap( struct xfs_inode *ip, struct xfs_dinode *dip) { struct xfs_mount *mp = ip->i_mount; struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); struct xfs_rtrmap_root *dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK); unsigned int numrecs; unsigned int level; int dsize; dsize = XFS_DFORK_SIZE(dip, mp, XFS_DATA_FORK); numrecs = be16_to_cpu(dfp->bb_numrecs); level = be16_to_cpu(dfp->bb_level); if (level > mp->m_rtrmap_maxlevels || xfs_rtrmap_droot_space_calc(level, numrecs) > dsize) return -EFSCORRUPTED; xfs_iroot_alloc(ip, XFS_DATA_FORK, xfs_rtrmap_broot_space_calc(mp, level, numrecs)); xfs_rtrmapbt_from_disk(ip, dfp, dsize, ifp->if_broot); return 0; } /* Convert in-memory form of btree root to on-disk form. */ void xfs_rtrmapbt_to_disk( struct xfs_mount *mp, struct xfs_btree_block *rblock, unsigned int rblocklen, struct xfs_rtrmap_root *dblock, unsigned int dblocklen) { struct xfs_rtrmap_key *fkp; __be64 *fpp; struct xfs_rtrmap_key *tkp; __be64 *tpp; struct xfs_rtrmap_rec *frp; struct xfs_rtrmap_rec *trp; unsigned int numrecs; unsigned int maxrecs; ASSERT(rblock->bb_magic == cpu_to_be32(XFS_RTRMAP_CRC_MAGIC)); ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)); ASSERT(rblock->bb_u.l.bb_blkno == cpu_to_be64(XFS_BUF_DADDR_NULL)); ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)); ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)); dblock->bb_level = rblock->bb_level; dblock->bb_numrecs = rblock->bb_numrecs; numrecs = be16_to_cpu(rblock->bb_numrecs); if (be16_to_cpu(rblock->bb_level) > 0) { maxrecs = xfs_rtrmapbt_droot_maxrecs(dblocklen, false); fkp = xfs_rtrmap_key_addr(rblock, 1); tkp = xfs_rtrmap_droot_key_addr(dblock, 1); fpp = xfs_rtrmap_broot_ptr_addr(mp, rblock, 1, rblocklen); tpp = xfs_rtrmap_droot_ptr_addr(dblock, 1, maxrecs); memcpy(tkp, fkp, 2 * sizeof(*fkp) * numrecs); memcpy(tpp, fpp, sizeof(*fpp) * numrecs); } else { frp = xfs_rtrmap_rec_addr(rblock, 1); trp = xfs_rtrmap_droot_rec_addr(dblock, 1); memcpy(trp, frp, sizeof(*frp) * numrecs); } } /* Flush a realtime reverse mapping btree root out to disk. */ void xfs_iflush_rtrmap( struct xfs_inode *ip, struct xfs_dinode *dip) { struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); struct xfs_rtrmap_root *dfp = XFS_DFORK_PTR(dip, XFS_DATA_FORK); ASSERT(ifp->if_broot != NULL); ASSERT(ifp->if_broot_bytes > 0); ASSERT(xfs_rtrmap_droot_space(ifp->if_broot) <= XFS_IFORK_SIZE(ip, XFS_DATA_FORK)); xfs_rtrmapbt_to_disk(ip->i_mount, ifp->if_broot, ifp->if_broot_bytes, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, XFS_DATA_FORK)); } /* * Create a realtime rmap btree inode. * * Regardless of the return value, the caller must clean up @ic. If a new * inode is returned through *ipp, the caller must finish setting up the incore * inode and release it. */ int xfs_rtrmapbt_create( struct xfs_trans **tpp, struct xfs_imeta_end *ic, struct xfs_inode **ipp) { struct xfs_mount *mp = (*tpp)->t_mountp; struct xfs_ifork *ifp; struct xfs_inode *ip; xfs_ino_t ino = NULLFSINO; int error; *ipp = NULL; error = xfs_imeta_lookup(mp, &XFS_IMETA_RTRMAPBT, &ino); if (error) return error; if (ino != NULLFSINO) return -EEXIST; error = xfs_imeta_create(tpp, &XFS_IMETA_RTRMAPBT, S_IFREG, 0, ipp, ic); if (error) return error; ip = *ipp; ifp = &ip->i_df; ifp->if_format = XFS_DINODE_FMT_RMAP; ASSERT(ifp->if_broot_bytes == 0); ASSERT(ifp->if_bytes == 0); /* Initialize the empty incore btree root. */ xfs_iroot_alloc(ip, XFS_DATA_FORK, xfs_rtrmap_broot_space_calc(mp, 0, 0)); xfs_btree_init_block_int(ip->i_mount, ifp->if_broot, XFS_BUF_DADDR_NULL, XFS_BTNUM_RTRMAP, 0, 0, ip->i_ino, XFS_BTREE_LONG_PTRS | XFS_BTREE_CRC_BLOCKS); xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE | XFS_ILOG_DBROOT); return 0; }