// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "scrub/bitmap.h" #include struct xbitmap_node { struct rb_node bn_rbnode; /* First set bit of this interval and subtree. */ uint64_t bn_start; /* Last set bit of this interval. */ uint64_t bn_last; /* Last set bit of this subtree. Do not touch this. */ uint64_t __bn_subtree_last; }; /* Define our own interval tree type with uint64_t parameters. */ #define START(node) ((node)->bn_start) #define LAST(node) ((node)->bn_last) /* * These functions are defined by the INTERVAL_TREE_DEFINE macro, but we'll * forward-declare them anyway for clarity. */ static inline void xbitmap_tree_insert(struct xbitmap_node *node, struct rb_root_cached *root); static inline void xbitmap_tree_remove(struct xbitmap_node *node, struct rb_root_cached *root); static inline struct xbitmap_node * xbitmap_tree_iter_first(struct rb_root_cached *root, uint64_t start, uint64_t last); static inline struct xbitmap_node * xbitmap_tree_iter_next(struct xbitmap_node *node, uint64_t start, uint64_t last); INTERVAL_TREE_DEFINE(struct xbitmap_node, bn_rbnode, uint64_t, __bn_subtree_last, START, LAST, static inline, xbitmap_tree) /* Iterate each interval of a bitmap. Do not change the bitmap. */ #define for_each_xbitmap_extent(bn, bitmap) \ for ((bn) = rb_entry_safe(rb_first(&(bitmap)->xb_root.rb_root), \ struct xbitmap_node, bn_rbnode); \ (bn) != NULL; \ (bn) = rb_entry_safe(rb_next(&(bn)->bn_rbnode), \ struct xbitmap_node, bn_rbnode)) /* Clear a range of this bitmap. */ void xbitmap_clear( struct xbitmap *bitmap, uint64_t start, uint64_t len) { struct xbitmap_node *bn; uint64_t last = start + len - 1; while ((bn = xbitmap_tree_iter_first(&bitmap->xb_root, start, last))) { if (bn->bn_start < start) { /* overlaps with the left side of the clearing range */ xbitmap_tree_remove(bn, &bitmap->xb_root); bn->bn_last = start - 1; xbitmap_tree_insert(bn, &bitmap->xb_root); } else if (bn->bn_last > last) { /* overlaps with the right side of the clearing range */ xbitmap_tree_remove(bn, &bitmap->xb_root); bn->bn_start = last + 1; xbitmap_tree_insert(bn, &bitmap->xb_root); break; } else { /* in the middle of the clearing range */ xbitmap_tree_remove(bn, &bitmap->xb_root); kmem_free(bn); } } } /* Set a range of this bitmap. */ int xbitmap_set( struct xbitmap *bitmap, uint64_t start, uint64_t len) { struct xbitmap_node *left; struct xbitmap_node *right; uint64_t last = start + len - 1; /* Is this whole range already set? */ left = xbitmap_tree_iter_first(&bitmap->xb_root, start, last); if (left && left->bn_start <= start && left->bn_last >= last) return 0; /* Clear out everything in the range we want to set. */ xbitmap_clear(bitmap, start, len); /* Do we have a left-adjacent extent? */ left = xbitmap_tree_iter_first(&bitmap->xb_root, start - 1, start - 1); ASSERT(!left || left->bn_last + 1 == start); /* Do we have a right-adjacent extent? */ right = xbitmap_tree_iter_first(&bitmap->xb_root, last + 1, last + 1); ASSERT(!right || right->bn_start == last + 1); if (left && right) { /* combine left and right adjacent extent */ xbitmap_tree_remove(left, &bitmap->xb_root); xbitmap_tree_remove(right, &bitmap->xb_root); left->bn_last = right->bn_last; xbitmap_tree_insert(left, &bitmap->xb_root); kmem_free(right); } else if (left) { /* combine with left extent */ xbitmap_tree_remove(left, &bitmap->xb_root); left->bn_last = last; xbitmap_tree_insert(left, &bitmap->xb_root); } else if (right) { /* combine with right extent */ xbitmap_tree_remove(right, &bitmap->xb_root); right->bn_start = start; xbitmap_tree_insert(right, &bitmap->xb_root); } else { /* add an extent */ left = kmem_alloc(sizeof(struct xbitmap_node), KM_MAYFAIL); if (!left) return -ENOMEM; left->bn_start = start; left->bn_last = last; xbitmap_tree_insert(left, &bitmap->xb_root); } return 0; } /* Free everything related to this bitmap. */ void xbitmap_destroy( struct xbitmap *bitmap) { struct xbitmap_node *bn; while ((bn = xbitmap_tree_iter_first(&bitmap->xb_root, 0, -1ULL))) { xbitmap_tree_remove(bn, &bitmap->xb_root); kfree(bn); } } /* Set up a per-AG block bitmap. */ void xbitmap_init( struct xbitmap *bitmap) { bitmap->xb_root = RB_ROOT_CACHED; } /* * Remove all the blocks mentioned in @sub from the extents in @bitmap. * * The intent is that callers will iterate the rmapbt for all of its records * for a given owner to generate @bitmap; and iterate all the blocks of the * metadata structures that are not being rebuilt and have the same rmapbt * owner to generate @sub. This routine subtracts all the extents * mentioned in sub from all the extents linked in @bitmap, which leaves * @bitmap as the list of blocks that are not accounted for, which we assume * are the dead blocks of the old metadata structure. The blocks mentioned in * @bitmap can be reaped. * * This is the logical equivalent of bitmap &= ~sub. */ void xbitmap_disunion( struct xbitmap *bitmap, struct xbitmap *sub) { struct xbitmap_node *bn; if (xbitmap_empty(bitmap) || xbitmap_empty(sub)) return; for_each_xbitmap_extent(bn, sub) xbitmap_clear(bitmap, bn->bn_start, bn->bn_last - bn->bn_start + 1); } /* * Record all btree blocks seen while iterating all records of a btree. * * We know that the btree query_all function starts at the left edge and walks * towards the right edge of the tree. Therefore, we know that we can walk up * the btree cursor towards the root; if the pointer for a given level points * to the first record/key in that block, we haven't seen this block before; * and therefore we need to remember that we saw this block in the btree. * * So if our btree is: * * 4 * / | \ * 1 2 3 * * Pretend for this example that each leaf block has 100 btree records. For * the first btree record, we'll observe that bc_ptrs[0] == 1, so we record * that we saw block 1. Then we observe that bc_ptrs[1] == 1, so we record * block 4. The list is [1, 4]. * * For the second btree record, we see that bc_ptrs[0] == 2, so we exit the * loop. The list remains [1, 4]. * * For the 101st btree record, we've moved onto leaf block 2. Now * bc_ptrs[0] == 1 again, so we record that we saw block 2. We see that * bc_ptrs[1] == 2, so we exit the loop. The list is now [1, 4, 2]. * * For the 102nd record, bc_ptrs[0] == 2, so we continue. * * For the 201st record, we've moved on to leaf block 3. bc_ptrs[0] == 1, so * we add 3 to the list. Now it is [1, 4, 2, 3]. * * For the 300th record we just exit, with the list being [1, 4, 2, 3]. */ /* * Record all the buffers pointed to by the btree cursor. Callers already * engaged in a btree walk should call this function to capture the list of * blocks going from the leaf towards the root. */ int xbitmap_set_btcur_path( struct xbitmap *bitmap, struct xfs_btree_cur *cur) { struct xfs_buf *bp; xfs_fsblock_t fsb; int i; int error; for (i = 0; i < cur->bc_nlevels && cur->bc_ptrs[i] == 1; i++) { xfs_btree_get_block(cur, i, &bp); if (!bp) continue; fsb = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)); error = xbitmap_set(bitmap, fsb, 1); if (error) return error; } return 0; } /* Collect a btree's block in the bitmap. */ STATIC int xbitmap_collect_btblock( struct xfs_btree_cur *cur, int level, void *priv) { struct xbitmap *bitmap = priv; struct xfs_buf *bp; xfs_fsblock_t fsbno; xfs_btree_get_block(cur, level, &bp); if (!bp) return 0; fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp)); return xbitmap_set(bitmap, fsbno, 1); } /* Walk the btree and mark the bitmap wherever a btree block is found. */ int xbitmap_set_btblocks( struct xbitmap *bitmap, struct xfs_btree_cur *cur) { return xfs_btree_visit_blocks(cur, xbitmap_collect_btblock, XFS_BTREE_VISIT_ALL, bitmap); } /* How many bits are set in this bitmap? */ uint64_t xbitmap_hweight( struct xbitmap *bitmap) { struct xbitmap_node *bn; uint64_t ret = 0; for_each_xbitmap_extent(bn, bitmap) ret += bn->bn_last - bn->bn_start + 1; return ret; } /* Call a function for every run of set bits in this bitmap. */ int xbitmap_walk( struct xbitmap *bitmap, xbitmap_walk_fn fn, void *priv) { struct xbitmap_node *bn; int error = 0; for_each_xbitmap_extent(bn, bitmap) { error = fn(bn->bn_start, bn->bn_last - bn->bn_start + 1, priv); if (error) break; } return error; } /* Does this bitmap have no bits set at all? */ bool xbitmap_empty( struct xbitmap *bitmap) { return bitmap->xb_root.rb_root.rb_node == NULL; } /* Count the number of set regions in this bitmap. */ uint64_t xbitmap_count_set_regions( struct xbitmap *bitmap) { struct xbitmap_node *bn; uint64_t nr = 0; for_each_xbitmap_extent(bn, bitmap) nr++; return nr; } /* Is the start of the range set or clear? And for how long? */ bool xbitmap_test( struct xbitmap *bitmap, uint64_t start, uint64_t *len) { struct xbitmap_node *bn; uint64_t last = start + *len - 1; bn = xbitmap_tree_iter_first(&bitmap->xb_root, start, last); if (!bn) return false; if (bn->bn_start <= start) { if (bn->bn_last < last) *len = bn->bn_last - start + 1; return true; } *len = bn->bn_start - start; return false; }