summaryrefslogtreecommitdiff
path: root/fs/xfs/scrub/xfile.c
blob: 94cdc81c37a53e6635cbc3155335f9ab668eaa3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2021 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <djwong@kernel.org>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "scrub/array.h"
#include "scrub/scrub.h"
#include "scrub/trace.h"
#include "scrub/xfile.h"
#include <linux/shmem_fs.h>

/*
 * Swappable Temporary Memory
 * ==========================
 *
 * Online checking sometimes needs to be able to stage a large amount of data
 * in memory.  This information might not fit in the available memory and it
 * doesn't all need to be accessible at all times.  In other words, we want an
 * indexed data buffer to store data that can be paged out.
 *
 * When CONFIG_TMPFS=y, shmemfs is enough of a filesystem to meet those
 * requirements.  Therefore, the xfile mechanism uses an unlinked shmem file to
 * store our staging data.  This file is not installed in the file descriptor
 * table so that user programs cannot access the data, which means that the
 * xfile must be freed with xfile_destroy.
 *
 * xfiles assume that the caller will handle all required concurrency
 * management; standard vfs locks (freezer and inode) are not taken.  Reads
 * and writes are satisfied directly from the page cache.
 *
 * NOTE: The current shmemfs implementation has a quirk that in-kernel reads
 * from a hole causes a page to be mapped into the file.  If you are going to
 * create a sparse xfile, please be careful about reading from uninitialized
 * parts of the file.
 */

/*
 * xfiles must not be exposed to userspace and require upper layers to
 * coordinate access to the one handle returned by the constructor, so
 * establish a separate lock class for xfiles to avoid confusing lockdep.
 */
static struct lock_class_key xfile_i_mutex_key;

/*
 * Create an xfile of the given size.  The description will be used in the
 * trace output.
 */
struct xfile *
xfile_create(
	const char		*description,
	loff_t			size)
{
	struct xfile		*xf;

	xf = kmem_alloc(sizeof(struct xfile), KM_MAYFAIL);
	if (!xf)
		return ERR_PTR(-ENOMEM);

	xf->filp = shmem_file_setup(description, size, 0);
	if (!xf->filp) {
		kmem_free(xf);
		return ERR_PTR(-ENOMEM);
	}
	if (IS_ERR(xf->filp)) {
		int	ret = PTR_ERR(xf->filp);

		kmem_free(xf);
		return ERR_PTR(ret);
	}

	/*
	 * We want a large sparse file that we can pread, pwrite, and seek.
	 * xfile users are responsible for keeping the xfile hidden away from
	 * all other callers, so we skip timestamp updates and security checks.
	 */
	xf->filp->f_mode |= FMODE_PREAD | FMODE_PWRITE | FMODE_NOCMTIME |
			    FMODE_LSEEK;
	xf->filp->f_flags |= O_RDWR | O_LARGEFILE | O_NOATIME;
	xf->filp->f_inode->i_flags |= S_PRIVATE | S_NOCMTIME | S_NOATIME;

	lockdep_set_class(&file_inode(xf->filp)->i_rwsem, &xfile_i_mutex_key);

	trace_xfile_create(xf);
	return xf;
}

/* Close the file and release all resources. */
void
xfile_destroy(
	struct xfile		*xf)
{
	struct inode		*inode = file_inode(xf->filp);

	trace_xfile_destroy(xf, 0, 0);

	lockdep_set_class(&inode->i_rwsem, &inode->i_sb->s_type->i_mutex_key);
	fput(xf->filp);
}

/* Read a buffer directly from the xfile's page cache. */
int
xfile_pread(
	struct xfile		*xf,
	void			*buf,
	size_t			count,
	loff_t			offset)
{
	struct inode		*inode = file_inode(xf->filp);
	struct address_space	*mapping = inode->i_mapping;
	struct page		*page = NULL;
	unsigned int		pflags;

	if (count > MAX_RW_COUNT)
		return -ENOMEM;
	if (inode->i_sb->s_maxbytes - offset < count)
		return -ENOMEM;

	trace_xfile_pread(xf, offset, count);

	pflags = memalloc_nofs_save();
	while (count > 0) {
		void		*p, *kaddr;
		unsigned int	len;

		len = min_t(ssize_t, count, PAGE_SIZE - offset_in_page(offset));

		/*
		 * In-kernel reads of a shmem file cause it to allocate a page
		 * if the mapping shows a hole.  Therefore, if we hit ENOMEM
		 * we can continue by zeroing the caller's buffer.
		 */
		page = shmem_read_mapping_page_gfp(mapping,
				offset >> PAGE_SHIFT, __GFP_NOWARN);
		if (IS_ERR(page)) {
			if (PTR_ERR(page) != -ENOMEM)
				break;
			page = NULL;
		}

		if (!page || !PageUptodate(page)) {
			memset(buf, 0, len);
		} else {
			/*
			 * xfile pages must never be mapped into userspace, so
			 * we skip the dcache flush.
			 */
			kaddr = kmap_local_page(page);
			p = kaddr + offset_in_page(offset);
			memcpy(buf, p, len);
			kunmap_local(kaddr);
		}
		if (page)
			put_page(page);

		count -= len;
		offset += len;
		buf += len;
	}
	memalloc_nofs_restore(pflags);

	/*
	 * Since we're treating this file as "memory", any IO error or short
	 * read should be treated as a failure to allocate memory.
	 */
	return count > 0 ? -ENOMEM : 0;
}

/* Write a buffer directly to the xfile's page cache. */
int
xfile_pwrite(
	struct xfile		*xf,
	void			*buf,
	size_t			count,
	loff_t			offset)
{
	struct inode		*inode = file_inode(xf->filp);
	struct address_space	*mapping = inode->i_mapping;
	struct page		*page = NULL;
	unsigned int		pflags;
	int			error;

	if (count > MAX_RW_COUNT)
		return -ENOMEM;
	if (inode->i_sb->s_maxbytes - offset < count)
		return -ENOMEM;

	trace_xfile_pwrite(xf, offset, count);

	pflags = memalloc_nofs_save();
	while (count > 0) {
		void		*fsdata;
		void		*p, *kaddr;
		unsigned int	len;

		len = min_t(ssize_t, count, PAGE_SIZE - offset_in_page(offset));

		/*
		 * We call pagecache_write_begin directly here to avoid all
		 * the freezer protection lock-taking that happens in the
		 * normal path.  shmem doesn't support fs freeze, but lockdep
		 * doesn't know that and will trip over that.
		 */
		error = pagecache_write_begin(NULL, mapping, offset, len,
				AOP_FLAG_NOFS, &page, &fsdata);
		if (error)
			break;

		/*
		 * xfile pages must never be mapped into userspace, so we skip
		 * the dcache flush.
		 */
		kaddr = kmap_local_page(page);
		p = kaddr + offset_in_page(offset);
		memcpy(p, buf, len);
		kunmap_local(kaddr);

		error = pagecache_write_end(NULL, mapping, offset, len, len,
				page, fsdata);
		if (error < 0)
			break;

		count -= len;
		offset += len;
		buf += len;
	}
	memalloc_nofs_restore(pflags);

	/*
	 * Since we're treating this file as "memory", any IO error or short
	 * write should be treated as a failure to allocate memory.
	 */
	return count > 0 ? -ENOMEM : 0;
}

/* Discard pages backing a range of the xfile. */
void
xfile_discard(
	struct xfile		*xf,
	loff_t			start,
	loff_t			end)
{
	trace_xfile_discard(xf, start, end);
	shmem_truncate_range(file_inode(xf->filp), start, end);
}

/* Find the next batch of xfile data for a given offset. */
loff_t
xfile_seek_data(
	struct xfile		*xf,
	loff_t			pos)
{
	loff_t			ret;

	ret = vfs_llseek(xf->filp, pos, SEEK_DATA);
	trace_xfile_seek_data(xf, pos, ret);
	return ret;
}

/* Query statx information for an xfile. */
int
xfile_statx(
	struct xfile		*xf,
	struct kstat		*statbuf)
{
	return vfs_getattr_nosec(&xf->filp->f_path, statbuf,
			STATX_SIZE | STATX_BLOCKS, AT_STATX_DONT_SYNC);
}