/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHEFS_BTREE_TYPES_H #define _BCACHEFS_BTREE_TYPES_H #include #include #include #include "bkey_methods.h" #include "buckets_types.h" #include "journal_types.h" struct open_bucket; struct btree_update; struct btree_trans; #define MAX_BSETS 3U struct btree_nr_keys { /* * Amount of live metadata (i.e. size of node after a compaction) in * units of u64s */ u16 live_u64s; u16 bset_u64s[MAX_BSETS]; /* live keys only: */ u16 packed_keys; u16 unpacked_keys; }; struct bset_tree { /* * We construct a binary tree in an array as if the array * started at 1, so that things line up on the same cachelines * better: see comments in bset.c at cacheline_to_bkey() for * details */ /* size of the binary tree and prev array */ u16 size; /* function of size - precalculated for to_inorder() */ u16 extra; u16 data_offset; u16 aux_data_offset; u16 end_offset; }; struct btree_write { struct journal_entry_pin journal; }; struct btree_alloc { struct open_buckets ob; __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX); }; struct btree_bkey_cached_common { struct six_lock lock; u8 level; u8 btree_id; }; struct btree { struct btree_bkey_cached_common c; struct rhash_head hash; u64 hash_val; unsigned long flags; u16 written; u8 nsets; u8 nr_key_bits; u16 version_ondisk; struct bkey_format format; struct btree_node *data; void *aux_data; /* * Sets of sorted keys - the real btree node - plus a binary search tree * * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point * to the memory we have allocated for this btree node. Additionally, * set[0]->data points to the entire btree node as it exists on disk. */ struct bset_tree set[MAX_BSETS]; struct btree_nr_keys nr; u16 sib_u64s[2]; u16 whiteout_u64s; u8 byte_order; u8 unpack_fn_len; struct btree_write writes[2]; /* Key/pointer for this btree node */ __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); /* * XXX: add a delete sequence number, so when bch2_btree_node_relock() * fails because the lock sequence number has changed - i.e. the * contents were modified - we can still relock the node if it's still * the one we want, without redoing the traversal */ /* * For asynchronous splits/interior node updates: * When we do a split, we allocate new child nodes and update the parent * node to point to them: we update the parent in memory immediately, * but then we must wait until the children have been written out before * the update to the parent can be written - this is a list of the * btree_updates that are blocking this node from being * written: */ struct list_head write_blocked; /* * Also for asynchronous splits/interior node updates: * If a btree node isn't reachable yet, we don't want to kick off * another write - because that write also won't yet be reachable and * marking it as completed before it's reachable would be incorrect: */ unsigned long will_make_reachable; struct open_buckets ob; /* lru list */ struct list_head list; }; struct btree_cache { struct rhashtable table; bool table_init_done; /* * We never free a struct btree, except on shutdown - we just put it on * the btree_cache_freed list and reuse it later. This simplifies the * code, and it doesn't cost us much memory as the memory usage is * dominated by buffers that hold the actual btree node data and those * can be freed - and the number of struct btrees allocated is * effectively bounded. * * btree_cache_freeable effectively is a small cache - we use it because * high order page allocations can be rather expensive, and it's quite * common to delete and allocate btree nodes in quick succession. It * should never grow past ~2-3 nodes in practice. */ struct mutex lock; struct list_head live; struct list_head freeable; struct list_head freed_pcpu; struct list_head freed_nonpcpu; /* Number of elements in live + freeable lists */ unsigned used; unsigned reserve; atomic_t dirty; struct shrinker shrink; /* * If we need to allocate memory for a new btree node and that * allocation fails, we can cannibalize another node in the btree cache * to satisfy the allocation - lock to guarantee only one thread does * this at a time: */ struct task_struct *alloc_lock; struct closure_waitlist alloc_wait; }; struct btree_node_iter { struct btree_node_iter_set { u16 k, end; } data[MAX_BSETS]; }; /* * Iterate over all possible positions, synthesizing deleted keys for holes: */ #define BTREE_ITER_SLOTS (1 << 0) /* * Indicates that intent locks should be taken on leaf nodes, because we expect * to be doing updates: */ #define BTREE_ITER_INTENT (1 << 1) /* * Causes the btree iterator code to prefetch additional btree nodes from disk: */ #define BTREE_ITER_PREFETCH (1 << 2) /* * Indicates that this iterator should not be reused until transaction commit, * either because a pending update references it or because the update depends * on that particular key being locked (e.g. by the str_hash code, for hash * table consistency) */ #define BTREE_ITER_KEEP_UNTIL_COMMIT (1 << 3) /* * Used in bch2_btree_iter_traverse(), to indicate whether we're searching for * @pos or the first key strictly greater than @pos */ #define BTREE_ITER_IS_EXTENTS (1 << 4) #define BTREE_ITER_NOT_EXTENTS (1 << 5) #define BTREE_ITER_CACHED (1 << 6) #define BTREE_ITER_CACHED_NOFILL (1 << 7) #define BTREE_ITER_CACHED_NOCREATE (1 << 8) #define BTREE_ITER_WITH_KEY_CACHE (1 << 9) #define BTREE_ITER_WITH_UPDATES (1 << 10) #define BTREE_ITER_WITH_JOURNAL (1 << 11) #define __BTREE_ITER_ALL_SNAPSHOTS (1 << 12) #define BTREE_ITER_ALL_SNAPSHOTS (1 << 13) #define BTREE_ITER_FILTER_SNAPSHOTS (1 << 14) #define BTREE_ITER_NOPRESERVE (1 << 15) enum btree_path_uptodate { BTREE_ITER_UPTODATE = 0, BTREE_ITER_NEED_RELOCK = 1, BTREE_ITER_NEED_TRAVERSE = 2, }; #define BTREE_ITER_NO_NODE_GET_LOCKS ((struct btree *) 1) #define BTREE_ITER_NO_NODE_DROP ((struct btree *) 2) #define BTREE_ITER_NO_NODE_LOCK_ROOT ((struct btree *) 3) #define BTREE_ITER_NO_NODE_UP ((struct btree *) 4) #define BTREE_ITER_NO_NODE_DOWN ((struct btree *) 5) #define BTREE_ITER_NO_NODE_INIT ((struct btree *) 6) #define BTREE_ITER_NO_NODE_ERROR ((struct btree *) 7) #define BTREE_ITER_NO_NODE_CACHED ((struct btree *) 8) struct btree_path { u8 idx; u8 sorted_idx; u8 ref; u8 intent_ref; /* btree_iter_copy starts here: */ struct bpos pos; enum btree_id btree_id:4; bool cached:1; bool preserve:1; enum btree_path_uptodate uptodate:2; /* * When true, failing to relock this path will cause the transaction to * restart: */ bool should_be_locked:1; unsigned level:3, locks_want:4, nodes_locked:4, nodes_intent_locked:4; struct btree_path_level { struct btree *b; struct btree_node_iter iter; u32 lock_seq; } l[BTREE_MAX_DEPTH]; #ifdef CONFIG_BCACHEFS_DEBUG unsigned long ip_allocated; #endif }; static inline struct btree_path_level *path_l(struct btree_path *path) { return path->l + path->level; } /* * @pos - iterator's current position * @level - current btree depth * @locks_want - btree level below which we start taking intent locks * @nodes_locked - bitmask indicating which nodes in @nodes are locked * @nodes_intent_locked - bitmask indicating which locks are intent locks */ struct btree_iter { struct btree_trans *trans; struct btree_path *path; struct btree_path *update_path; struct btree_path *key_cache_path; enum btree_id btree_id:4; unsigned min_depth:4; /* btree_iter_copy starts here: */ u16 flags; /* When we're filtering by snapshot, the snapshot ID we're looking for: */ unsigned snapshot; struct bpos pos; struct bpos pos_after_commit; /* * Current unpacked key - so that bch2_btree_iter_next()/ * bch2_btree_iter_next_slot() can correctly advance pos. */ struct bkey k; #ifdef CONFIG_BCACHEFS_DEBUG unsigned long ip_allocated; #endif }; struct btree_key_cache { struct mutex lock; struct rhashtable table; bool table_init_done; struct list_head freed; struct shrinker shrink; unsigned shrink_iter; size_t nr_freed; atomic_long_t nr_keys; atomic_long_t nr_dirty; }; struct bkey_cached_key { u32 btree_id; struct bpos pos; } __attribute__((packed, aligned(4))); #define BKEY_CACHED_ACCESSED 0 #define BKEY_CACHED_DIRTY 1 struct bkey_cached { struct btree_bkey_cached_common c; unsigned long flags; u8 u64s; bool valid; u32 btree_trans_barrier_seq; struct bkey_cached_key key; struct rhash_head hash; struct list_head list; struct journal_preres res; struct journal_entry_pin journal; struct bkey_i *k; }; struct btree_insert_entry { unsigned flags; u8 bkey_type; enum btree_id btree_id:8; u8 level:4; bool cached:1; bool insert_trigger_run:1; bool overwrite_trigger_run:1; /* * @old_k may be a key from the journal; @old_btree_u64s always refers * to the size of the key being overwritten in the btree: */ u8 old_btree_u64s; struct bkey_i *k; struct btree_path *path; /* key being overwritten: */ struct bkey old_k; const struct bch_val *old_v; unsigned long ip_allocated; }; #ifndef CONFIG_LOCKDEP #define BTREE_ITER_MAX 64 #else #define BTREE_ITER_MAX 32 #endif struct btree_trans_commit_hook; typedef int (btree_trans_commit_hook_fn)(struct btree_trans *, struct btree_trans_commit_hook *); struct btree_trans_commit_hook { btree_trans_commit_hook_fn *fn; struct btree_trans_commit_hook *next; }; #define BTREE_TRANS_MEM_MAX (1U << 14) struct btree_trans { struct bch_fs *c; const char *fn; struct list_head list; struct btree *locking; unsigned locking_path_idx; struct bpos locking_pos; u8 locking_btree_id; u8 locking_level; u8 locking_lock_type; pid_t pid; int srcu_idx; u8 nr_sorted; u8 nr_updates; u8 traverse_all_idx; bool used_mempool:1; bool in_traverse_all:1; bool restarted:1; bool memory_allocation_failure:1; bool journal_transaction_names:1; bool is_initial_gc:1; /* * For when bch2_trans_update notices we'll be splitting a compressed * extent: */ unsigned extra_journal_res; u64 paths_allocated; unsigned mem_top; unsigned mem_bytes; void *mem; u8 sorted[BTREE_ITER_MAX]; struct btree_path *paths; struct btree_insert_entry *updates; /* update path: */ struct btree_trans_commit_hook *hooks; struct jset_entry *extra_journal_entries; unsigned extra_journal_entry_u64s; struct journal_entry_pin *journal_pin; struct journal_res journal_res; struct journal_preres journal_preres; u64 *journal_seq; struct disk_reservation *disk_res; unsigned flags; unsigned journal_u64s; unsigned journal_preres_u64s; struct replicas_delta_list *fs_usage_deltas; }; #define BTREE_FLAGS() \ x(read_in_flight) \ x(read_error) \ x(dirty) \ x(need_write) \ x(write_blocked) \ x(will_make_reachable) \ x(noevict) \ x(write_idx) \ x(accessed) \ x(write_in_flight) \ x(write_in_flight_inner) \ x(just_written) \ x(dying) \ x(fake) \ x(need_rewrite) \ x(never_write) enum btree_flags { #define x(flag) BTREE_NODE_##flag, BTREE_FLAGS() #undef x }; #define x(flag) \ static inline bool btree_node_ ## flag(struct btree *b) \ { return test_bit(BTREE_NODE_ ## flag, &b->flags); } \ \ static inline void set_btree_node_ ## flag(struct btree *b) \ { set_bit(BTREE_NODE_ ## flag, &b->flags); } \ \ static inline void clear_btree_node_ ## flag(struct btree *b) \ { clear_bit(BTREE_NODE_ ## flag, &b->flags); } BTREE_FLAGS() #undef x static inline struct btree_write *btree_current_write(struct btree *b) { return b->writes + btree_node_write_idx(b); } static inline struct btree_write *btree_prev_write(struct btree *b) { return b->writes + (btree_node_write_idx(b) ^ 1); } static inline struct bset_tree *bset_tree_last(struct btree *b) { EBUG_ON(!b->nsets); return b->set + b->nsets - 1; } static inline void * __btree_node_offset_to_ptr(const struct btree *b, u16 offset) { return (void *) ((u64 *) b->data + 1 + offset); } static inline u16 __btree_node_ptr_to_offset(const struct btree *b, const void *p) { u16 ret = (u64 *) p - 1 - (u64 *) b->data; EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p); return ret; } static inline struct bset *bset(const struct btree *b, const struct bset_tree *t) { return __btree_node_offset_to_ptr(b, t->data_offset); } static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t) { t->end_offset = __btree_node_ptr_to_offset(b, vstruct_last(bset(b, t))); } static inline void set_btree_bset(struct btree *b, struct bset_tree *t, const struct bset *i) { t->data_offset = __btree_node_ptr_to_offset(b, i); set_btree_bset_end(b, t); } static inline struct bset *btree_bset_first(struct btree *b) { return bset(b, b->set); } static inline struct bset *btree_bset_last(struct btree *b) { return bset(b, bset_tree_last(b)); } static inline u16 __btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k) { return __btree_node_ptr_to_offset(b, k); } static inline struct bkey_packed * __btree_node_offset_to_key(const struct btree *b, u16 k) { return __btree_node_offset_to_ptr(b, k); } static inline unsigned btree_bkey_first_offset(const struct bset_tree *t) { return t->data_offset + offsetof(struct bset, _data) / sizeof(u64); } #define btree_bkey_first(_b, _t) \ ({ \ EBUG_ON(bset(_b, _t)->start != \ __btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\ \ bset(_b, _t)->start; \ }) #define btree_bkey_last(_b, _t) \ ({ \ EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) != \ vstruct_last(bset(_b, _t))); \ \ __btree_node_offset_to_key(_b, (_t)->end_offset); \ }) static inline unsigned bset_u64s(struct bset_tree *t) { return t->end_offset - t->data_offset - sizeof(struct bset) / sizeof(u64); } static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t) { return bset_u64s(t) - b->nr.bset_u64s[t - b->set]; } static inline unsigned bset_byte_offset(struct btree *b, void *i) { return i - (void *) b->data; } enum btree_node_type { #define x(kwd, val) BKEY_TYPE_##kwd = val, BCH_BTREE_IDS() #undef x BKEY_TYPE_btree, }; /* Type of a key in btree @id at level @level: */ static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id) { return level ? BKEY_TYPE_btree : (enum btree_node_type) id; } /* Type of keys @b contains: */ static inline enum btree_node_type btree_node_type(struct btree *b) { return __btree_node_type(b->c.level, b->c.btree_id); } #define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS \ ((1U << BKEY_TYPE_extents)| \ (1U << BKEY_TYPE_alloc)| \ (1U << BKEY_TYPE_inodes)| \ (1U << BKEY_TYPE_stripes)| \ (1U << BKEY_TYPE_reflink)| \ (1U << BKEY_TYPE_btree)) #define BTREE_NODE_TYPE_HAS_MEM_TRIGGERS \ ((1U << BKEY_TYPE_alloc)| \ (1U << BKEY_TYPE_inodes)| \ (1U << BKEY_TYPE_stripes)| \ (1U << BKEY_TYPE_snapshots)) #define BTREE_NODE_TYPE_HAS_TRIGGERS \ (BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS| \ BTREE_NODE_TYPE_HAS_MEM_TRIGGERS) #define BTREE_ID_IS_EXTENTS \ ((1U << BTREE_ID_extents)| \ (1U << BTREE_ID_reflink)| \ (1U << BTREE_ID_freespace)) static inline bool btree_node_type_is_extents(enum btree_node_type type) { return (1U << type) & BTREE_ID_IS_EXTENTS; } #define BTREE_ID_HAS_SNAPSHOTS \ ((1U << BTREE_ID_extents)| \ (1U << BTREE_ID_inodes)| \ (1U << BTREE_ID_dirents)| \ (1U << BTREE_ID_xattrs)) #define BTREE_ID_HAS_PTRS \ ((1U << BTREE_ID_extents)| \ (1U << BTREE_ID_reflink)) static inline bool btree_type_has_snapshots(enum btree_id id) { return (1 << id) & BTREE_ID_HAS_SNAPSHOTS; } enum btree_update_flags { __BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE, __BTREE_UPDATE_KEY_CACHE_RECLAIM, __BTREE_TRIGGER_NORUN, /* Don't run triggers at all */ __BTREE_TRIGGER_INSERT, __BTREE_TRIGGER_OVERWRITE, __BTREE_TRIGGER_GC, __BTREE_TRIGGER_BUCKET_INVALIDATE, __BTREE_TRIGGER_NOATOMIC, }; #define BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE (1U << __BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) #define BTREE_UPDATE_KEY_CACHE_RECLAIM (1U << __BTREE_UPDATE_KEY_CACHE_RECLAIM) #define BTREE_TRIGGER_NORUN (1U << __BTREE_TRIGGER_NORUN) #define BTREE_TRIGGER_INSERT (1U << __BTREE_TRIGGER_INSERT) #define BTREE_TRIGGER_OVERWRITE (1U << __BTREE_TRIGGER_OVERWRITE) #define BTREE_TRIGGER_GC (1U << __BTREE_TRIGGER_GC) #define BTREE_TRIGGER_BUCKET_INVALIDATE (1U << __BTREE_TRIGGER_BUCKET_INVALIDATE) #define BTREE_TRIGGER_NOATOMIC (1U << __BTREE_TRIGGER_NOATOMIC) #define BTREE_TRIGGER_WANTS_OLD_AND_NEW \ ((1U << KEY_TYPE_alloc)| \ (1U << KEY_TYPE_alloc_v2)| \ (1U << KEY_TYPE_alloc_v3)| \ (1U << KEY_TYPE_stripe)| \ (1U << KEY_TYPE_inode)| \ (1U << KEY_TYPE_inode_v2)| \ (1U << KEY_TYPE_snapshot)) static inline bool btree_node_type_needs_gc(enum btree_node_type type) { return BTREE_NODE_TYPE_HAS_TRIGGERS & (1U << type); } struct btree_root { struct btree *b; /* On disk root - see async splits: */ __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); u8 level; u8 alive; s8 error; }; enum btree_insert_ret { BTREE_INSERT_OK, /* leaf node needs to be split */ BTREE_INSERT_BTREE_NODE_FULL, BTREE_INSERT_NEED_MARK_REPLICAS, BTREE_INSERT_NEED_JOURNAL_RES, BTREE_INSERT_NEED_JOURNAL_RECLAIM, }; enum btree_gc_coalesce_fail_reason { BTREE_GC_COALESCE_FAIL_RESERVE_GET, BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC, BTREE_GC_COALESCE_FAIL_FORMAT_FITS, }; enum btree_node_sibling { btree_prev_sib, btree_next_sib, }; #endif /* _BCACHEFS_BTREE_TYPES_H */