summaryrefslogtreecommitdiff
path: root/c_src/raid/int.c
diff options
context:
space:
mode:
authorKent Overstreet <kent.overstreet@linux.dev>2024-01-16 17:00:02 -0500
committerKent Overstreet <kent.overstreet@linux.dev>2024-01-16 17:17:23 -0500
commitb5fd066153c40a70a29caa1ea7987723ab687763 (patch)
tree6d43a8b0a90d549a54c65565ac96c92b3e84b594 /c_src/raid/int.c
parent06ff8b55b70fda44d91b31b5511fafd1680a8934 (diff)
Move c_src dirs back to toplevel
We just wanted c sourcefiles out of the top level, not c source directories. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Diffstat (limited to 'c_src/raid/int.c')
-rw-r--r--c_src/raid/int.c556
1 files changed, 0 insertions, 556 deletions
diff --git a/c_src/raid/int.c b/c_src/raid/int.c
deleted file mode 100644
index e16332a5..00000000
--- a/c_src/raid/int.c
+++ /dev/null
@@ -1,556 +0,0 @@
-/*
- * Copyright (C) 2013 Andrea Mazzoleni
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- */
-
-#include "internal.h"
-#include "gf.h"
-
-/*
- * GEN1 (RAID5 with xor) 32bit C implementation
- */
-void raid_gen1_int32(int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p;
- int d, l;
- size_t i;
-
- uint32_t p0;
- uint32_t p1;
-
- l = nd - 1;
- p = v[nd];
-
- for (i = 0; i < size; i += 8) {
- p0 = v_32(v[l][i]);
- p1 = v_32(v[l][i + 4]);
- for (d = l - 1; d >= 0; --d) {
- p0 ^= v_32(v[d][i]);
- p1 ^= v_32(v[d][i + 4]);
- }
- v_32(p[i]) = p0;
- v_32(p[i + 4]) = p1;
- }
-}
-
-/*
- * GEN1 (RAID5 with xor) 64bit C implementation
- */
-void raid_gen1_int64(int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p;
- int d, l;
- size_t i;
-
- uint64_t p0;
- uint64_t p1;
-
- l = nd - 1;
- p = v[nd];
-
- for (i = 0; i < size; i += 16) {
- p0 = v_64(v[l][i]);
- p1 = v_64(v[l][i + 8]);
- for (d = l - 1; d >= 0; --d) {
- p0 ^= v_64(v[d][i]);
- p1 ^= v_64(v[d][i + 8]);
- }
- v_64(p[i]) = p0;
- v_64(p[i + 8]) = p1;
- }
-}
-
-/*
- * GEN2 (RAID6 with powers of 2) 32bit C implementation
- */
-void raid_gen2_int32(int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p;
- uint8_t *q;
- int d, l;
- size_t i;
-
- uint32_t d0, q0, p0;
- uint32_t d1, q1, p1;
-
- l = nd - 1;
- p = v[nd];
- q = v[nd + 1];
-
- for (i = 0; i < size; i += 8) {
- q0 = p0 = v_32(v[l][i]);
- q1 = p1 = v_32(v[l][i + 4]);
- for (d = l - 1; d >= 0; --d) {
- d0 = v_32(v[d][i]);
- d1 = v_32(v[d][i + 4]);
-
- p0 ^= d0;
- p1 ^= d1;
-
- q0 = x2_32(q0);
- q1 = x2_32(q1);
-
- q0 ^= d0;
- q1 ^= d1;
- }
- v_32(p[i]) = p0;
- v_32(p[i + 4]) = p1;
- v_32(q[i]) = q0;
- v_32(q[i + 4]) = q1;
- }
-}
-
-/*
- * GEN2 (RAID6 with powers of 2) 64bit C implementation
- */
-void raid_gen2_int64(int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p;
- uint8_t *q;
- int d, l;
- size_t i;
-
- uint64_t d0, q0, p0;
- uint64_t d1, q1, p1;
-
- l = nd - 1;
- p = v[nd];
- q = v[nd + 1];
-
- for (i = 0; i < size; i += 16) {
- q0 = p0 = v_64(v[l][i]);
- q1 = p1 = v_64(v[l][i + 8]);
- for (d = l - 1; d >= 0; --d) {
- d0 = v_64(v[d][i]);
- d1 = v_64(v[d][i + 8]);
-
- p0 ^= d0;
- p1 ^= d1;
-
- q0 = x2_64(q0);
- q1 = x2_64(q1);
-
- q0 ^= d0;
- q1 ^= d1;
- }
- v_64(p[i]) = p0;
- v_64(p[i + 8]) = p1;
- v_64(q[i]) = q0;
- v_64(q[i + 8]) = q1;
- }
-}
-
-/*
- * GEN3 (triple parity with Cauchy matrix) 8bit C implementation
- *
- * Note that instead of a generic multiplication table, likely resulting
- * in multiple cache misses, a precomputed table could be used.
- * But this is only a kind of reference function, and we are not really
- * interested in speed.
- */
-void raid_gen3_int8(int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p;
- uint8_t *q;
- uint8_t *r;
- int d, l;
- size_t i;
-
- uint8_t d0, r0, q0, p0;
-
- l = nd - 1;
- p = v[nd];
- q = v[nd + 1];
- r = v[nd + 2];
-
- for (i = 0; i < size; i += 1) {
- p0 = q0 = r0 = 0;
- for (d = l; d > 0; --d) {
- d0 = v_8(v[d][i]);
-
- p0 ^= d0;
- q0 ^= gfmul[d0][gfgen[1][d]];
- r0 ^= gfmul[d0][gfgen[2][d]];
- }
-
- /* first disk with all coefficients at 1 */
- d0 = v_8(v[0][i]);
-
- p0 ^= d0;
- q0 ^= d0;
- r0 ^= d0;
-
- v_8(p[i]) = p0;
- v_8(q[i]) = q0;
- v_8(r[i]) = r0;
- }
-}
-
-/*
- * GEN4 (quad parity with Cauchy matrix) 8bit C implementation
- *
- * Note that instead of a generic multiplication table, likely resulting
- * in multiple cache misses, a precomputed table could be used.
- * But this is only a kind of reference function, and we are not really
- * interested in speed.
- */
-void raid_gen4_int8(int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p;
- uint8_t *q;
- uint8_t *r;
- uint8_t *s;
- int d, l;
- size_t i;
-
- uint8_t d0, s0, r0, q0, p0;
-
- l = nd - 1;
- p = v[nd];
- q = v[nd + 1];
- r = v[nd + 2];
- s = v[nd + 3];
-
- for (i = 0; i < size; i += 1) {
- p0 = q0 = r0 = s0 = 0;
- for (d = l; d > 0; --d) {
- d0 = v_8(v[d][i]);
-
- p0 ^= d0;
- q0 ^= gfmul[d0][gfgen[1][d]];
- r0 ^= gfmul[d0][gfgen[2][d]];
- s0 ^= gfmul[d0][gfgen[3][d]];
- }
-
- /* first disk with all coefficients at 1 */
- d0 = v_8(v[0][i]);
-
- p0 ^= d0;
- q0 ^= d0;
- r0 ^= d0;
- s0 ^= d0;
-
- v_8(p[i]) = p0;
- v_8(q[i]) = q0;
- v_8(r[i]) = r0;
- v_8(s[i]) = s0;
- }
-}
-
-/*
- * GEN5 (penta parity with Cauchy matrix) 8bit C implementation
- *
- * Note that instead of a generic multiplication table, likely resulting
- * in multiple cache misses, a precomputed table could be used.
- * But this is only a kind of reference function, and we are not really
- * interested in speed.
- */
-void raid_gen5_int8(int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p;
- uint8_t *q;
- uint8_t *r;
- uint8_t *s;
- uint8_t *t;
- int d, l;
- size_t i;
-
- uint8_t d0, t0, s0, r0, q0, p0;
-
- l = nd - 1;
- p = v[nd];
- q = v[nd + 1];
- r = v[nd + 2];
- s = v[nd + 3];
- t = v[nd + 4];
-
- for (i = 0; i < size; i += 1) {
- p0 = q0 = r0 = s0 = t0 = 0;
- for (d = l; d > 0; --d) {
- d0 = v_8(v[d][i]);
-
- p0 ^= d0;
- q0 ^= gfmul[d0][gfgen[1][d]];
- r0 ^= gfmul[d0][gfgen[2][d]];
- s0 ^= gfmul[d0][gfgen[3][d]];
- t0 ^= gfmul[d0][gfgen[4][d]];
- }
-
- /* first disk with all coefficients at 1 */
- d0 = v_8(v[0][i]);
-
- p0 ^= d0;
- q0 ^= d0;
- r0 ^= d0;
- s0 ^= d0;
- t0 ^= d0;
-
- v_8(p[i]) = p0;
- v_8(q[i]) = q0;
- v_8(r[i]) = r0;
- v_8(s[i]) = s0;
- v_8(t[i]) = t0;
- }
-}
-
-/*
- * GEN6 (hexa parity with Cauchy matrix) 8bit C implementation
- *
- * Note that instead of a generic multiplication table, likely resulting
- * in multiple cache misses, a precomputed table could be used.
- * But this is only a kind of reference function, and we are not really
- * interested in speed.
- */
-void raid_gen6_int8(int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p;
- uint8_t *q;
- uint8_t *r;
- uint8_t *s;
- uint8_t *t;
- uint8_t *u;
- int d, l;
- size_t i;
-
- uint8_t d0, u0, t0, s0, r0, q0, p0;
-
- l = nd - 1;
- p = v[nd];
- q = v[nd + 1];
- r = v[nd + 2];
- s = v[nd + 3];
- t = v[nd + 4];
- u = v[nd + 5];
-
- for (i = 0; i < size; i += 1) {
- p0 = q0 = r0 = s0 = t0 = u0 = 0;
- for (d = l; d > 0; --d) {
- d0 = v_8(v[d][i]);
-
- p0 ^= d0;
- q0 ^= gfmul[d0][gfgen[1][d]];
- r0 ^= gfmul[d0][gfgen[2][d]];
- s0 ^= gfmul[d0][gfgen[3][d]];
- t0 ^= gfmul[d0][gfgen[4][d]];
- u0 ^= gfmul[d0][gfgen[5][d]];
- }
-
- /* first disk with all coefficients at 1 */
- d0 = v_8(v[0][i]);
-
- p0 ^= d0;
- q0 ^= d0;
- r0 ^= d0;
- s0 ^= d0;
- t0 ^= d0;
- u0 ^= d0;
-
- v_8(p[i]) = p0;
- v_8(q[i]) = q0;
- v_8(r[i]) = r0;
- v_8(s[i]) = s0;
- v_8(t[i]) = t0;
- v_8(u[i]) = u0;
- }
-}
-
-/*
- * Recover failure of one data block at index id[0] using parity at index
- * ip[0] for any RAID level.
- *
- * Starting from the equation:
- *
- * Pd = A[ip[0],id[0]] * Dx
- *
- * and solving we get:
- *
- * Dx = A[ip[0],id[0]]^-1 * Pd
- */
-void raid_rec1_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p;
- uint8_t *pa;
- const uint8_t *T;
- uint8_t G;
- uint8_t V;
- size_t i;
-
- (void)nr; /* unused, it's always 1 */
-
- /* if it's RAID5 uses the faster function */
- if (ip[0] == 0) {
- raid_rec1of1(id, nd, size, vv);
- return;
- }
-
- /* setup the coefficients matrix */
- G = A(ip[0], id[0]);
-
- /* invert it to solve the system of linear equations */
- V = inv(G);
-
- /* get multiplication tables */
- T = table(V);
-
- /* compute delta parity */
- raid_delta_gen(1, id, ip, nd, size, vv);
-
- p = v[nd + ip[0]];
- pa = v[id[0]];
-
- for (i = 0; i < size; ++i) {
- /* delta */
- uint8_t Pd = p[i] ^ pa[i];
-
- /* reconstruct */
- pa[i] = T[Pd];
- }
-}
-
-/*
- * Recover failure of two data blocks at indexes id[0],id[1] using parity at
- * indexes ip[0],ip[1] for any RAID level.
- *
- * Starting from the equations:
- *
- * Pd = A[ip[0],id[0]] * Dx + A[ip[0],id[1]] * Dy
- * Qd = A[ip[1],id[0]] * Dx + A[ip[1],id[1]] * Dy
- *
- * we solve inverting the coefficients matrix.
- */
-void raid_rec2_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p;
- uint8_t *pa;
- uint8_t *q;
- uint8_t *qa;
- const int N = 2;
- const uint8_t *T[N][N];
- uint8_t G[N * N];
- uint8_t V[N * N];
- size_t i;
- int j, k;
-
- (void)nr; /* unused, it's always 2 */
-
- /* if it's RAID6 recovering with P and Q uses the faster function */
- if (ip[0] == 0 && ip[1] == 1) {
- raid_rec2of2_int8(id, ip, nd, size, vv);
- return;
- }
-
- /* setup the coefficients matrix */
- for (j = 0; j < N; ++j)
- for (k = 0; k < N; ++k)
- G[j * N + k] = A(ip[j], id[k]);
-
- /* invert it to solve the system of linear equations */
- raid_invert(G, V, N);
-
- /* get multiplication tables */
- for (j = 0; j < N; ++j)
- for (k = 0; k < N; ++k)
- T[j][k] = table(V[j * N + k]);
-
- /* compute delta parity */
- raid_delta_gen(2, id, ip, nd, size, vv);
-
- p = v[nd + ip[0]];
- q = v[nd + ip[1]];
- pa = v[id[0]];
- qa = v[id[1]];
-
- for (i = 0; i < size; ++i) {
- /* delta */
- uint8_t Pd = p[i] ^ pa[i];
- uint8_t Qd = q[i] ^ qa[i];
-
- /* reconstruct */
- pa[i] = T[0][0][Pd] ^ T[0][1][Qd];
- qa[i] = T[1][0][Pd] ^ T[1][1][Qd];
- }
-}
-
-/*
- * Recover failure of N data blocks at indexes id[N] using parity at indexes
- * ip[N] for any RAID level.
- *
- * Starting from the N equations, with 0<=i<N :
- *
- * PD[i] = sum(A[ip[i],id[j]] * D[i]) 0<=j<N
- *
- * we solve inverting the coefficients matrix.
- *
- * Note that referring at previous equations you have:
- * PD[0] = Pd, PD[1] = Qd, PD[2] = Rd, ...
- * D[0] = Dx, D[1] = Dy, D[2] = Dz, ...
- */
-void raid_recX_int8(int nr, int *id, int *ip, int nd, size_t size, void **vv)
-{
- uint8_t **v = (uint8_t **)vv;
- uint8_t *p[RAID_PARITY_MAX];
- uint8_t *pa[RAID_PARITY_MAX];
- const uint8_t *T[RAID_PARITY_MAX][RAID_PARITY_MAX];
- uint8_t G[RAID_PARITY_MAX * RAID_PARITY_MAX];
- uint8_t V[RAID_PARITY_MAX * RAID_PARITY_MAX];
- size_t i;
- int j, k;
-
- /* setup the coefficients matrix */
- for (j = 0; j < nr; ++j)
- for (k = 0; k < nr; ++k)
- G[j * nr + k] = A(ip[j], id[k]);
-
- /* invert it to solve the system of linear equations */
- raid_invert(G, V, nr);
-
- /* get multiplication tables */
- for (j = 0; j < nr; ++j)
- for (k = 0; k < nr; ++k)
- T[j][k] = table(V[j * nr + k]);
-
- /* compute delta parity */
- raid_delta_gen(nr, id, ip, nd, size, vv);
-
- for (j = 0; j < nr; ++j) {
- p[j] = v[nd + ip[j]];
- pa[j] = v[id[j]];
- }
-
- for (i = 0; i < size; ++i) {
- uint8_t PD[RAID_PARITY_MAX];
-
- /* delta */
- for (j = 0; j < nr; ++j)
- PD[j] = p[j][i] ^ pa[j][i];
-
- /* reconstruct */
- for (j = 0; j < nr; ++j) {
- uint8_t b = 0;
-
- for (k = 0; k < nr; ++k)
- b ^= T[j][k][PD[k]];
- pa[j][i] = b;
- }
- }
-}
-