summaryrefslogtreecommitdiff
path: root/libbcache/btree_cache.c
diff options
context:
space:
mode:
authorKent Overstreet <kent.overstreet@gmail.com>2017-03-19 15:56:34 -0800
committerKent Overstreet <kent.overstreet@gmail.com>2017-03-19 17:31:47 -0800
commit5ec39af8eaba49aee7bafa44c661da39e2f40dc3 (patch)
tree1fb1a981602cbf22c7d2b2dba1168c715d7cecb5 /libbcache/btree_cache.c
parentbb1941de5378a7b8122d3575dcbc7d0aeb6326f0 (diff)
Rename from bcache-tools to bcachefs-tools
Diffstat (limited to 'libbcache/btree_cache.c')
-rw-r--r--libbcache/btree_cache.c756
1 files changed, 0 insertions, 756 deletions
diff --git a/libbcache/btree_cache.c b/libbcache/btree_cache.c
deleted file mode 100644
index a43e12da..00000000
--- a/libbcache/btree_cache.c
+++ /dev/null
@@ -1,756 +0,0 @@
-
-#include "bcache.h"
-#include "btree_cache.h"
-#include "btree_io.h"
-#include "btree_iter.h"
-#include "btree_locking.h"
-#include "debug.h"
-#include "extents.h"
-
-#include <trace/events/bcache.h>
-
-#define DEF_BTREE_ID(kwd, val, name) name,
-
-const char * const bch_btree_ids[] = {
- DEFINE_BCH_BTREE_IDS()
- NULL
-};
-
-#undef DEF_BTREE_ID
-
-void bch_recalc_btree_reserve(struct bch_fs *c)
-{
- unsigned i, reserve = 16;
-
- if (!c->btree_roots[0].b)
- reserve += 8;
-
- for (i = 0; i < BTREE_ID_NR; i++)
- if (c->btree_roots[i].b)
- reserve += min_t(unsigned, 1,
- c->btree_roots[i].b->level) * 8;
-
- c->btree_cache_reserve = reserve;
-}
-
-#define mca_can_free(c) \
- max_t(int, 0, c->btree_cache_used - c->btree_cache_reserve)
-
-static void __mca_data_free(struct bch_fs *c, struct btree *b)
-{
- EBUG_ON(btree_node_write_in_flight(b));
-
- free_pages((unsigned long) b->data, btree_page_order(c));
- b->data = NULL;
- bch_btree_keys_free(b);
-}
-
-static void mca_data_free(struct bch_fs *c, struct btree *b)
-{
- __mca_data_free(c, b);
- c->btree_cache_used--;
- list_move(&b->list, &c->btree_cache_freed);
-}
-
-#define PTR_HASH(_k) (bkey_i_to_extent_c(_k)->v._data[0])
-
-static const struct rhashtable_params bch_btree_cache_params = {
- .head_offset = offsetof(struct btree, hash),
- .key_offset = offsetof(struct btree, key.v),
- .key_len = sizeof(struct bch_extent_ptr),
-};
-
-static void mca_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
-{
- unsigned order = ilog2(btree_pages(c));
-
- b->data = (void *) __get_free_pages(gfp, order);
- if (!b->data)
- goto err;
-
- if (bch_btree_keys_alloc(b, order, gfp))
- goto err;
-
- c->btree_cache_used++;
- list_move(&b->list, &c->btree_cache_freeable);
- return;
-err:
- free_pages((unsigned long) b->data, order);
- b->data = NULL;
- list_move(&b->list, &c->btree_cache_freed);
-}
-
-static struct btree *mca_bucket_alloc(struct bch_fs *c, gfp_t gfp)
-{
- struct btree *b = kzalloc(sizeof(struct btree), gfp);
- if (!b)
- return NULL;
-
- six_lock_init(&b->lock);
- INIT_LIST_HEAD(&b->list);
- INIT_LIST_HEAD(&b->write_blocked);
-
- mca_data_alloc(c, b, gfp);
- return b->data ? b : NULL;
-}
-
-/* Btree in memory cache - hash table */
-
-void mca_hash_remove(struct bch_fs *c, struct btree *b)
-{
- BUG_ON(btree_node_dirty(b));
-
- b->nsets = 0;
-
- rhashtable_remove_fast(&c->btree_cache_table, &b->hash,
- bch_btree_cache_params);
-
- /* Cause future lookups for this node to fail: */
- bkey_i_to_extent(&b->key)->v._data[0] = 0;
-}
-
-int mca_hash_insert(struct bch_fs *c, struct btree *b,
- unsigned level, enum btree_id id)
-{
- int ret;
- b->level = level;
- b->btree_id = id;
-
- ret = rhashtable_lookup_insert_fast(&c->btree_cache_table, &b->hash,
- bch_btree_cache_params);
- if (ret)
- return ret;
-
- mutex_lock(&c->btree_cache_lock);
- list_add(&b->list, &c->btree_cache);
- mutex_unlock(&c->btree_cache_lock);
-
- return 0;
-}
-
-__flatten
-static inline struct btree *mca_find(struct bch_fs *c,
- const struct bkey_i *k)
-{
- return rhashtable_lookup_fast(&c->btree_cache_table, &PTR_HASH(k),
- bch_btree_cache_params);
-}
-
-/*
- * this version is for btree nodes that have already been freed (we're not
- * reaping a real btree node)
- */
-static int mca_reap_notrace(struct bch_fs *c, struct btree *b, bool flush)
-{
- lockdep_assert_held(&c->btree_cache_lock);
-
- if (!six_trylock_intent(&b->lock))
- return -ENOMEM;
-
- if (!six_trylock_write(&b->lock))
- goto out_unlock_intent;
-
- if (btree_node_write_error(b) ||
- btree_node_noevict(b))
- goto out_unlock;
-
- if (!list_empty(&b->write_blocked))
- goto out_unlock;
-
- if (!flush &&
- (btree_node_dirty(b) ||
- btree_node_write_in_flight(b)))
- goto out_unlock;
-
- /*
- * Using the underscore version because we don't want to compact bsets
- * after the write, since this node is about to be evicted - unless
- * btree verify mode is enabled, since it runs out of the post write
- * cleanup:
- */
- if (btree_node_dirty(b)) {
- if (verify_btree_ondisk(c))
- bch_btree_node_write(c, b, NULL, SIX_LOCK_intent, -1);
- else
- __bch_btree_node_write(c, b, NULL, SIX_LOCK_read, -1);
- }
-
- /* wait for any in flight btree write */
- wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight,
- TASK_UNINTERRUPTIBLE);
-
- return 0;
-out_unlock:
- six_unlock_write(&b->lock);
-out_unlock_intent:
- six_unlock_intent(&b->lock);
- return -ENOMEM;
-}
-
-static int mca_reap(struct bch_fs *c, struct btree *b, bool flush)
-{
- int ret = mca_reap_notrace(c, b, flush);
-
- trace_bcache_mca_reap(c, b, ret);
- return ret;
-}
-
-static unsigned long bch_mca_scan(struct shrinker *shrink,
- struct shrink_control *sc)
-{
- struct bch_fs *c = container_of(shrink, struct bch_fs,
- btree_cache_shrink);
- struct btree *b, *t;
- unsigned long nr = sc->nr_to_scan;
- unsigned long can_free;
- unsigned long touched = 0;
- unsigned long freed = 0;
- unsigned i;
-
- u64 start_time = local_clock();
-
- if (btree_shrinker_disabled(c))
- return SHRINK_STOP;
-
- if (c->btree_cache_alloc_lock)
- return SHRINK_STOP;
-
- /* Return -1 if we can't do anything right now */
- if (sc->gfp_mask & __GFP_IO)
- mutex_lock(&c->btree_cache_lock);
- else if (!mutex_trylock(&c->btree_cache_lock))
- return -1;
-
- /*
- * It's _really_ critical that we don't free too many btree nodes - we
- * have to always leave ourselves a reserve. The reserve is how we
- * guarantee that allocating memory for a new btree node can always
- * succeed, so that inserting keys into the btree can always succeed and
- * IO can always make forward progress:
- */
- nr /= btree_pages(c);
- can_free = mca_can_free(c);
- nr = min_t(unsigned long, nr, can_free);
-
- i = 0;
- list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
- touched++;
-
- if (freed >= nr)
- break;
-
- if (++i > 3 &&
- !mca_reap_notrace(c, b, false)) {
- mca_data_free(c, b);
- six_unlock_write(&b->lock);
- six_unlock_intent(&b->lock);
- freed++;
- }
- }
-restart:
- list_for_each_entry_safe(b, t, &c->btree_cache, list) {
- touched++;
-
- if (freed >= nr) {
- /* Save position */
- if (&t->list != &c->btree_cache)
- list_move_tail(&c->btree_cache, &t->list);
- break;
- }
-
- if (!btree_node_accessed(b) &&
- !mca_reap(c, b, false)) {
- /* can't call mca_hash_remove under btree_cache_lock */
- freed++;
- if (&t->list != &c->btree_cache)
- list_move_tail(&c->btree_cache, &t->list);
-
- mca_data_free(c, b);
- mutex_unlock(&c->btree_cache_lock);
-
- mca_hash_remove(c, b);
- six_unlock_write(&b->lock);
- six_unlock_intent(&b->lock);
-
- if (freed >= nr)
- goto out;
-
- if (sc->gfp_mask & __GFP_IO)
- mutex_lock(&c->btree_cache_lock);
- else if (!mutex_trylock(&c->btree_cache_lock))
- goto out;
- goto restart;
- } else
- clear_btree_node_accessed(b);
- }
-
- mutex_unlock(&c->btree_cache_lock);
-out:
- bch_time_stats_update(&c->mca_scan_time, start_time);
-
- trace_bcache_mca_scan(c,
- touched * btree_pages(c),
- freed * btree_pages(c),
- can_free * btree_pages(c),
- sc->nr_to_scan);
-
- return (unsigned long) freed * btree_pages(c);
-}
-
-static unsigned long bch_mca_count(struct shrinker *shrink,
- struct shrink_control *sc)
-{
- struct bch_fs *c = container_of(shrink, struct bch_fs,
- btree_cache_shrink);
-
- if (btree_shrinker_disabled(c))
- return 0;
-
- if (c->btree_cache_alloc_lock)
- return 0;
-
- return mca_can_free(c) * btree_pages(c);
-}
-
-void bch_fs_btree_exit(struct bch_fs *c)
-{
- struct btree *b;
- unsigned i;
-
- if (c->btree_cache_shrink.list.next)
- unregister_shrinker(&c->btree_cache_shrink);
-
- mutex_lock(&c->btree_cache_lock);
-
-#ifdef CONFIG_BCACHE_DEBUG
- if (c->verify_data)
- list_move(&c->verify_data->list, &c->btree_cache);
-
- free_pages((unsigned long) c->verify_ondisk, ilog2(btree_pages(c)));
-#endif
-
- for (i = 0; i < BTREE_ID_NR; i++)
- if (c->btree_roots[i].b)
- list_add(&c->btree_roots[i].b->list, &c->btree_cache);
-
- list_splice(&c->btree_cache_freeable,
- &c->btree_cache);
-
- while (!list_empty(&c->btree_cache)) {
- b = list_first_entry(&c->btree_cache, struct btree, list);
-
- if (btree_node_dirty(b))
- bch_btree_complete_write(c, b, btree_current_write(b));
- clear_btree_node_dirty(b);
-
- mca_data_free(c, b);
- }
-
- while (!list_empty(&c->btree_cache_freed)) {
- b = list_first_entry(&c->btree_cache_freed,
- struct btree, list);
- list_del(&b->list);
- kfree(b);
- }
-
- mutex_unlock(&c->btree_cache_lock);
-
- if (c->btree_cache_table_init_done)
- rhashtable_destroy(&c->btree_cache_table);
-}
-
-int bch_fs_btree_init(struct bch_fs *c)
-{
- unsigned i;
- int ret;
-
- ret = rhashtable_init(&c->btree_cache_table, &bch_btree_cache_params);
- if (ret)
- return ret;
-
- c->btree_cache_table_init_done = true;
-
- bch_recalc_btree_reserve(c);
-
- for (i = 0; i < c->btree_cache_reserve; i++)
- if (!mca_bucket_alloc(c, GFP_KERNEL))
- return -ENOMEM;
-
- list_splice_init(&c->btree_cache,
- &c->btree_cache_freeable);
-
-#ifdef CONFIG_BCACHE_DEBUG
- mutex_init(&c->verify_lock);
-
- c->verify_ondisk = (void *)
- __get_free_pages(GFP_KERNEL, ilog2(btree_pages(c)));
- if (!c->verify_ondisk)
- return -ENOMEM;
-
- c->verify_data = mca_bucket_alloc(c, GFP_KERNEL);
- if (!c->verify_data)
- return -ENOMEM;
-
- list_del_init(&c->verify_data->list);
-#endif
-
- c->btree_cache_shrink.count_objects = bch_mca_count;
- c->btree_cache_shrink.scan_objects = bch_mca_scan;
- c->btree_cache_shrink.seeks = 4;
- c->btree_cache_shrink.batch = btree_pages(c) * 2;
- register_shrinker(&c->btree_cache_shrink);
-
- return 0;
-}
-
-/*
- * We can only have one thread cannibalizing other cached btree nodes at a time,
- * or we'll deadlock. We use an open coded mutex to ensure that, which a
- * cannibalize_bucket() will take. This means every time we unlock the root of
- * the btree, we need to release this lock if we have it held.
- */
-void mca_cannibalize_unlock(struct bch_fs *c)
-{
- if (c->btree_cache_alloc_lock == current) {
- trace_bcache_mca_cannibalize_unlock(c);
- c->btree_cache_alloc_lock = NULL;
- closure_wake_up(&c->mca_wait);
- }
-}
-
-int mca_cannibalize_lock(struct bch_fs *c, struct closure *cl)
-{
- struct task_struct *old;
-
- old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
- if (old == NULL || old == current)
- goto success;
-
- if (!cl) {
- trace_bcache_mca_cannibalize_lock_fail(c);
- return -ENOMEM;
- }
-
- closure_wait(&c->mca_wait, cl);
-
- /* Try again, after adding ourselves to waitlist */
- old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
- if (old == NULL || old == current) {
- /* We raced */
- closure_wake_up(&c->mca_wait);
- goto success;
- }
-
- trace_bcache_mca_cannibalize_lock_fail(c);
- return -EAGAIN;
-
-success:
- trace_bcache_mca_cannibalize_lock(c);
- return 0;
-}
-
-static struct btree *mca_cannibalize(struct bch_fs *c)
-{
- struct btree *b;
-
- list_for_each_entry_reverse(b, &c->btree_cache, list)
- if (!mca_reap(c, b, false))
- return b;
-
- while (1) {
- list_for_each_entry_reverse(b, &c->btree_cache, list)
- if (!mca_reap(c, b, true))
- return b;
-
- /*
- * Rare case: all nodes were intent-locked.
- * Just busy-wait.
- */
- WARN_ONCE(1, "btree cache cannibalize failed\n");
- cond_resched();
- }
-}
-
-struct btree *mca_alloc(struct bch_fs *c)
-{
- struct btree *b;
- u64 start_time = local_clock();
-
- mutex_lock(&c->btree_cache_lock);
-
- /*
- * btree_free() doesn't free memory; it sticks the node on the end of
- * the list. Check if there's any freed nodes there:
- */
- list_for_each_entry(b, &c->btree_cache_freeable, list)
- if (!mca_reap_notrace(c, b, false))
- goto out_unlock;
-
- /*
- * We never free struct btree itself, just the memory that holds the on
- * disk node. Check the freed list before allocating a new one:
- */
- list_for_each_entry(b, &c->btree_cache_freed, list)
- if (!mca_reap_notrace(c, b, false)) {
- mca_data_alloc(c, b, __GFP_NOWARN|GFP_NOIO);
- if (b->data)
- goto out_unlock;
-
- six_unlock_write(&b->lock);
- six_unlock_intent(&b->lock);
- goto err;
- }
-
- b = mca_bucket_alloc(c, __GFP_NOWARN|GFP_NOIO);
- if (!b)
- goto err;
-
- BUG_ON(!six_trylock_intent(&b->lock));
- BUG_ON(!six_trylock_write(&b->lock));
-out_unlock:
- BUG_ON(bkey_extent_is_data(&b->key.k) && PTR_HASH(&b->key));
- BUG_ON(btree_node_write_in_flight(b));
-
- list_del_init(&b->list);
- mutex_unlock(&c->btree_cache_lock);
-out:
- b->flags = 0;
- b->written = 0;
- b->nsets = 0;
- b->sib_u64s[0] = 0;
- b->sib_u64s[1] = 0;
- b->whiteout_u64s = 0;
- b->uncompacted_whiteout_u64s = 0;
- bch_btree_keys_init(b, &c->expensive_debug_checks);
-
- bch_time_stats_update(&c->mca_alloc_time, start_time);
-
- return b;
-err:
- /* Try to cannibalize another cached btree node: */
- if (c->btree_cache_alloc_lock == current) {
- b = mca_cannibalize(c);
- list_del_init(&b->list);
- mutex_unlock(&c->btree_cache_lock);
-
- mca_hash_remove(c, b);
-
- trace_bcache_mca_cannibalize(c);
- goto out;
- }
-
- mutex_unlock(&c->btree_cache_lock);
- return ERR_PTR(-ENOMEM);
-}
-
-/* Slowpath, don't want it inlined into btree_iter_traverse() */
-static noinline struct btree *bch_btree_node_fill(struct btree_iter *iter,
- const struct bkey_i *k,
- unsigned level,
- enum six_lock_type lock_type)
-{
- struct bch_fs *c = iter->c;
- struct btree *b;
-
- b = mca_alloc(c);
- if (IS_ERR(b))
- return b;
-
- bkey_copy(&b->key, k);
- if (mca_hash_insert(c, b, level, iter->btree_id)) {
- /* raced with another fill: */
-
- /* mark as unhashed... */
- bkey_i_to_extent(&b->key)->v._data[0] = 0;
-
- mutex_lock(&c->btree_cache_lock);
- list_add(&b->list, &c->btree_cache_freeable);
- mutex_unlock(&c->btree_cache_lock);
-
- six_unlock_write(&b->lock);
- six_unlock_intent(&b->lock);
- return NULL;
- }
-
- /*
- * If the btree node wasn't cached, we can't drop our lock on
- * the parent until after it's added to the cache - because
- * otherwise we could race with a btree_split() freeing the node
- * we're trying to lock.
- *
- * But the deadlock described below doesn't exist in this case,
- * so it's safe to not drop the parent lock until here:
- */
- if (btree_node_read_locked(iter, level + 1))
- btree_node_unlock(iter, level + 1);
-
- bch_btree_node_read(c, b);
- six_unlock_write(&b->lock);
-
- if (lock_type == SIX_LOCK_read)
- six_lock_downgrade(&b->lock);
-
- return b;
-}
-
-/**
- * bch_btree_node_get - find a btree node in the cache and lock it, reading it
- * in from disk if necessary.
- *
- * If IO is necessary and running under generic_make_request, returns -EAGAIN.
- *
- * The btree node will have either a read or a write lock held, depending on
- * the @write parameter.
- */
-struct btree *bch_btree_node_get(struct btree_iter *iter,
- const struct bkey_i *k, unsigned level,
- enum six_lock_type lock_type)
-{
- struct btree *b;
- struct bset_tree *t;
-
- BUG_ON(level >= BTREE_MAX_DEPTH);
-retry:
- rcu_read_lock();
- b = mca_find(iter->c, k);
- rcu_read_unlock();
-
- if (unlikely(!b)) {
- /*
- * We must have the parent locked to call bch_btree_node_fill(),
- * else we could read in a btree node from disk that's been
- * freed:
- */
- b = bch_btree_node_fill(iter, k, level, lock_type);
-
- /* We raced and found the btree node in the cache */
- if (!b)
- goto retry;
-
- if (IS_ERR(b))
- return b;
- } else {
- /*
- * There's a potential deadlock with splits and insertions into
- * interior nodes we have to avoid:
- *
- * The other thread might be holding an intent lock on the node
- * we want, and they want to update its parent node so they're
- * going to upgrade their intent lock on the parent node to a
- * write lock.
- *
- * But if we're holding a read lock on the parent, and we're
- * trying to get the intent lock they're holding, we deadlock.
- *
- * So to avoid this we drop the read locks on parent nodes when
- * we're starting to take intent locks - and handle the race.
- *
- * The race is that they might be about to free the node we
- * want, and dropping our read lock on the parent node lets them
- * update the parent marking the node we want as freed, and then
- * free it:
- *
- * To guard against this, btree nodes are evicted from the cache
- * when they're freed - and PTR_HASH() is zeroed out, which we
- * check for after we lock the node.
- *
- * Then, btree_node_relock() on the parent will fail - because
- * the parent was modified, when the pointer to the node we want
- * was removed - and we'll bail out:
- */
- if (btree_node_read_locked(iter, level + 1))
- btree_node_unlock(iter, level + 1);
-
- if (!btree_node_lock(b, k->k.p, level, iter, lock_type))
- return ERR_PTR(-EINTR);
-
- if (unlikely(PTR_HASH(&b->key) != PTR_HASH(k) ||
- b->level != level ||
- race_fault())) {
- six_unlock_type(&b->lock, lock_type);
- if (btree_node_relock(iter, level + 1))
- goto retry;
-
- return ERR_PTR(-EINTR);
- }
- }
-
- prefetch(b->aux_data);
-
- for_each_bset(b, t) {
- void *p = (u64 *) b->aux_data + t->aux_data_offset;
-
- prefetch(p + L1_CACHE_BYTES * 0);
- prefetch(p + L1_CACHE_BYTES * 1);
- prefetch(p + L1_CACHE_BYTES * 2);
- }
-
- /* avoid atomic set bit if it's not needed: */
- if (btree_node_accessed(b))
- set_btree_node_accessed(b);
-
- if (unlikely(btree_node_read_error(b))) {
- six_unlock_type(&b->lock, lock_type);
- return ERR_PTR(-EIO);
- }
-
- EBUG_ON(!b->written);
- EBUG_ON(b->btree_id != iter->btree_id ||
- BTREE_NODE_LEVEL(b->data) != level ||
- bkey_cmp(b->data->max_key, k->k.p));
-
- return b;
-}
-
-int bch_print_btree_node(struct bch_fs *c, struct btree *b,
- char *buf, size_t len)
-{
- const struct bkey_format *f = &b->format;
- struct bset_stats stats;
- char ptrs[100];
-
- memset(&stats, 0, sizeof(stats));
-
- bch_val_to_text(c, BKEY_TYPE_BTREE, ptrs, sizeof(ptrs),
- bkey_i_to_s_c(&b->key));
- bch_btree_keys_stats(b, &stats);
-
- return scnprintf(buf, len,
- "l %u %llu:%llu - %llu:%llu:\n"
- " ptrs: %s\n"
- " format: u64s %u fields %u %u %u %u %u\n"
- " unpack fn len: %u\n"
- " bytes used %zu/%zu (%zu%% full)\n"
- " sib u64s: %u, %u (merge threshold %zu)\n"
- " nr packed keys %u\n"
- " nr unpacked keys %u\n"
- " floats %zu\n"
- " failed unpacked %zu\n"
- " failed prev %zu\n"
- " failed overflow %zu\n",
- b->level,
- b->data->min_key.inode,
- b->data->min_key.offset,
- b->data->max_key.inode,
- b->data->max_key.offset,
- ptrs,
- f->key_u64s,
- f->bits_per_field[0],
- f->bits_per_field[1],
- f->bits_per_field[2],
- f->bits_per_field[3],
- f->bits_per_field[4],
- b->unpack_fn_len,
- b->nr.live_u64s * sizeof(u64),
- btree_bytes(c) - sizeof(struct btree_node),
- b->nr.live_u64s * 100 / btree_max_u64s(c),
- b->sib_u64s[0],
- b->sib_u64s[1],
- BTREE_FOREGROUND_MERGE_THRESHOLD(c),
- b->nr.packed_keys,
- b->nr.unpacked_keys,
- stats.floats,
- stats.failed_unpacked,
- stats.failed_prev,
- stats.failed_overflow);
-}